Mathematik I für Chemiker 15. Serie vom 04.02.04

- 53. Bestimmen Sie die Stammfunktionen der folgenden gebrochen-rationalen Funktion: $f(x) = \frac{2x^2 5x}{(x-1)^2(x+2)}$. (6 Punkte)
- 54. Der räumliche Bereich $\mathbb K$ wird begrenzt von den Ebenen mit den Gleichungen

$$x = 1, x = 2, y = 0, z = 0, x + y + z = 3$$

Berechnen Sie das Bereichsintegral $\iiint_{\mathbb{K}} x \, dk$. (6 Punkte)

- 55. Berechnen Sie das Kurvenintegral $\int_{\gamma} \vec{f}(\vec{x}) \cdot d\vec{x}$, wenn das Vektorfeld \vec{f} und die Kurve γ wie folgt gegeben sind:
 - a) $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3$ und die Parameterdarstellung $\vec{x}: [0, 2\pi] \to \mathbb{R}^3$ von γ sind definiert durch

$$\vec{f}(x, y, z) = \begin{pmatrix} xy \\ yz \\ xz \end{pmatrix}$$
 und $\vec{x}(t) = \begin{pmatrix} \cos t \\ \sin t \\ 2t \end{pmatrix}$

(6 Punkte)

- b) $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2$ mit $\vec{f}(x,y) = \begin{pmatrix} xy \\ y-x \end{pmatrix}$ und γ ist das vom Punkt (0,0) zum Punkt (2,0) führende Stück der Parabel mit der Gleichung $y=x^2$. (6 Punkte)
- 56. Berechnen Sie das Kurvenintegral des auf $\mathbb{D} = \{(x,y) \mid |x| \leq 1, y \in \mathbb{R}\}$ definierten Vektorfeldes

$$\vec{f}: \mathbb{D} \to \mathbb{R}^2, \quad \vec{f}(x,y) = \begin{pmatrix} e^{\sqrt{x^2 + y^2}} \\ 3y\sqrt{1 - x^2} \end{pmatrix}$$

längs der geschlossenen Kurve γ , die aus der Strecke vom Punkt (0,0) zum Punkt P=(0,1), dem Kreisbogen von P bis Q=(1,0) (der Kreishat den Mittelpunkt (0,0) und den Radius 1) und der Strecke von Q bis (0,0) zusammengesetzt ist. (6 Punkte)