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A 1D ion chain on a laser field: a Wigner solid with vacancies
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Abstract. Trapped ions in a periodic potential are a paradigm of a frustrated Wigner crystal. We study
a model for a 1D chain of such ions, as well as an approximation by a Frenkel-Kontorova model. The FK
model, however, has other long-range properties. We discuss the meaning of structures like kink or anti-
kink in the frame of the soliton theory, and that ion chains with large distances against the laser frame
can have difficulties to move solitons. We study the case with 3 particles only for which all important
properties can be demonstrated.
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1 Introduction

AWigner solid (WS) is an experimental fact [1–3] that has
first been observed in a system of two-dimensional surface-
state electrons floating above a liquid helium-4 surface [4,
5]. Trapped ions in a periodic potential are another para-
digm of a frustrated Wigner crystal. Here we discuss the
substitution of a Coulomb potential of a WS chain by
harmonic potentials in a Frenkel-Kontorova chain (FK)
[6,7].

The focus of research of WS properties concerns elec-
tron chains in one- or two dimensional structures [8–17],
which are often investigated using Luttinger-liquid the-
ory [18,19]. In contrast, the ionic chain which we treat
is formed by bosons. The WS gives rise to many inter-
esting phenomena, such as the stick-slip motion of a WS
[20–22], and the finite-size effect of WSs on sliding transi-
tion [23,24]. Ion chains can be used for quantum simula-
tions and quantum computing [25–31]. A special form of a
WS are chains of electrons in a carbon tube [32–37]. The
competition between the collective behavior of the corre-
lated particles and the influence of the environment on
individual particles is important for many-particle prob-
lems [38]. The connection to the Hubbard model [39,40]
is interesting. Chains of laser-cooled ions in linear Paul
traps are paradigmatic realizations of a harmonic crystal
in one dimension [41,42]. The nonlinear transport proper-
ties observed in the aforementioned works essentially re-
sult from the coupling of WSs and a laser field. In these

systems, order emerges from the interplay between the
Coulomb repulsion and the trapping potential. Even in
one dimension, the long-range nature of Coulomb interac-
tions warrants diagonal (quasi) long-range order, and any
finite chain is effectively a one-dimensional Wigner crys-
tal [2]. Transverse degrees of freedom are of interest and
they are decoupled from longitudinal degrees of freedom
[34]. At the typical temperatures reached by laser cooling
the ions vibrate harmonically at the crystal equilibrium
position and their motion is described by an elastic crys-
tal with power-law coupling [43]. The ion chain is simply
equilibrated at the minima of the potential, however with
electron chains we have the more complicated problems of
long-range pairing or long-range hopping [44]. The experi-
mental capability to image and monitor the individual ions
makes ion chains a prominent platform for studying struc-
tural phase transitions [45–48] and the static and dynamic
properties of crystal dislocations [49–56]. The progress in
cooling and trapping [57] paves the way for investigating
these dynamics deep in the quantum regime [58–63].

We understand the WS as a chain of particles and re-
port here on a numerical study of a 1D model WS. The
Coulomb potential between ions is not screened by the
presence of other ions. We understand a laser field like
an additional substrate potential. This periodic substrate
potential is assumed to be a sinusoidal function. The two
outer ions are assumed to sit near minima of the substrate.
The chain is really of finite length. In the ground state,
the boundary condition is then a nearly zero amplitude of
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the two outer ions. We search the form of the movement
of a 1D WS through a substrate potential. Here are as-
sumed large voids between the ions. We will see that such
vacancies destroy the possibility of solitons.

On the other hand, fixed boundary conditions for the
particles x1 and xN of the chain [7] would destroy a model
of a finite, but freely moving chain [64]. So we leave free
the boundary conditions of the chain, and it can move
like in the experiment under an external excitation, for
example by a laser field [23,24,65,66].

Newton trajectories (NT) describe the moving station-
ary points of the potential energy surface (PES) under
an external force. The NTs are curves in the configura-
tion space of the chain. The NT theory was discussed in
Refs. [67–70] to name a few. They are curves where at ev-
ery point the gradient of the PES points into the same
direction, called the search direction. If we compress or
pull the chain, some or all coordinates of the ions change.
Some examples of a changed chain are drawn below. Every
point of an NT is a configuration of the chain. We treat the
PES here like in chemistry where reaction paths describe
movements of the molecule over saddles (SP) of the PES
[71,72]. To a given driving force, the search direction, on
any number of chain ions, we get the ’static’ curve of the
NT on the PES of the movement of the stationary points
of the chain. For practical reasons, we divide an NT into
M nodes. The number of nodes used depends on the step
length of the predictor of the NT program.

We find that the chain not moves as an inelastic, ’solid’
body, or with a ’collective sliding’, if the trapping laser
field has a certain strongness. The black spaces between
the ions in this model are the reason, schematically shown
in Fig. 1. The chain of ions in the drain of an experiment
will be picked up by an external force (see Eq.(3) below).

Fig. 1. Illustration of a trapped-ion model. N=6 cold ions
(dots) at assumed average distance d0 under the Coulomb re-
pulsion. The ions are interacting with the standing wave of a
laser field (shades), forming a periodic potential with period-
icity as. We assume d0 ≫ as causing barenesses between the
ions. Courtesy Ref.[7].

A kink is a stretched structure of a part of the chain
where an antikink is its compressed counterpart. In an
abstract imagination, for many parameters of the chain
[22,73–75], these are ‘quasi particles’ which can move like
a wave through the chain along a flat valley of the N -
dimensional PES. However for a chain of ions with larger
distances than the laser ground field, compare Fig.1, such
structures are questionable, see our study below. We un-

derstand kinks and anti-kinks as descriptions of solitons
[76], but not as simple distortions of the chain [77]. A soli-
ton is a nonlinear, self-reinforcing, localized wave packet
that is stable [76]. It preserves its shape while propagating
more or less freely, at constant velocity, through the chain.
The remarkable stability of a soliton in a dense FK chain
can be traced to a balanced action of two potentials. To
achieve the soliton behavior, we study the PES of the
chain and search for a pathway in the mountains, how-
ever, which is there quite flat. The soliton wave can move
there after a push over the so called Peierls-Nabarro bar-
rier [78].

This paper is a new part to a series of works to the
Frenkel-Kontorova model [22,75,79–86]. In our previous
work [79] we found kinks in commensurate and in incom-
mensurate lattices. Here in this case with large distances
between the ions, we do not find sliding antikinks, kinks
or pairs of them doing the movement of the chain. It is in
contrast to Refs. [7,56] where the authors claim that kinks
are possible and are an indicator for incommensurate lat-
tices.

We report: The ground state is in any case a global
minimum of the PES. If there exist a substrate potential
then there exist global minima, and we cannot see any
kind of a fractal ground state of the ion chain [7]. If no ex-
ternal force acts then no stip-slick motion can take place.
Thus a general sliding-to-pinned transitions [7] is to reject.
We show that the imagination of a soliton like movement
of an ionic chain with large gaps in relation to the trap
potential is not correct. The claim of a kink structure of
a WS [7], especially, is to reject.

In section 2 we introduce the WS model used in this
paper. Section 3 enrols the FK approximation of the WS
for N=3 and studies the impossibility of kinks and an-
tikinks. Section 4 comes back to the WS model itself. We
find a partial soliton like property for a special region of
the parameters of the chain, indeed, though we assume a
vacancy. A Discussion and Conclusions are finally given.

2 A model for a Wigner solid

xT = (x1, ..., xN ) represents the position of N discrete
particles of a chain, here ions of the Wigner crystal. Bold
letters depict vectors. The positions xi are on a linear
axis. It holds xi < xi+1. We treat a finite chain. The free
end points of the chain determine the average distance
do = (xN − x1)/(N − 1). It is determined by the density
of the ions. Caused by the experiment, we have an integer
number of ions in an integer number of trapping bowls,
so there is always given a rational relation. Between the
repelling ions we have the long-range Coulomb potential
[7,48,87]

VW (x) =
Wo

2

N∑
j=2

j−1∑
1=1

1

|xj − xi|α
+

N∑
i=1

Vs(xi), (1)

where charge Wo=2 is a parameter, and α=2 is specified
here. (For this α we can avoid the amount bars || in the re-
pulsions.) All parameters are used in dimensionless form.
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The substrate potential is

Vs(x) =
Vo

2
(1− cos(

2π

0.6
x))

with periodicity as = 0.6 and Vo=1/2. This Vo is in the
interval (0.03, 1.066) of Ref. [7]. The function Vs forms the
axial confinement. If Vo > 0 then a finite chain will always
be locked [88]. We treat N=3 ions for 6 wells of the laser,
so, the half of the extension of Fig. 1. (The case N=2
for electrons is being studied intensively [17,35,89]. The
somewhat simpler ions enable the next case N=3 here.)
The distance do = 1.5. Note that we do not have a de-
pendence on this do distance in the Coulomb ansatz; this
distance is determined by the density of the ions in the
experiment. The periodicity as is still large enough to as-
sume that the ions interact like point charges [4].

A PES section for fixed x1 and x3 (red dots) is shown
in Fig. 2. There exist two minima where both of which
can form a chain structure. If we leave free the bound-
ary ions x1 and x3 we get the two minima of the chains
at (-0.04, 1.22, 3.016) or (-0.015, 1.78, 3.04) length units.
Thus the ions are spaced non-uniform. This will be of
importance for the question of the existence of solitons
below.

The chain has the following eigen system: The three
eigenvalues for the left version with x2=1.22 are λ1=31.11,
λ2=27.73, λ3=25.85 with the corresponding eigenvectors
e1={0.54, -0.83, 0.13}, e2={-0.24, 0, 0.97}, and
e3={-0.81, -0.55, -0.2}. e1 and e3 are mainly the quasi-
symmetric and antisymmetric vibrations between x1 and
x2 while e2 is the quasi-symmetric vibration between x1

and x3.
Note that the representation in Fig. 2 with fixed edge

ions x1 and x3 covers up the problem that the Wigner
chain with potential (1) has no stable end ions by itself.
If not fixed by the substrate potential, they move away
and the chain destroyes itself. Without the part Vs(x) the
chain would spread to the left and to the right hand side
without a border. This also means that the amplitude of
Vs must have a certain amount.

3 An approach to replace the Wigner solid by
a Frenkel-Kontorova model

The study of the Wigner chain will be postponed until
Section 4. One can change the treated PES to a quadratic
Frenkel-Kontorova form [7] not only with nearest neighbor
terms but also with further long-range interactions [90,91].
The new PES is again combined from two parts, compare
Fig.3. It is [6,7]

V (x1, x2, x3) =

3∑
i=1

Vs(xi) +
k

2
((x3 − x2 − do)

2 +

(x2 − x1 − do)
2 +

1

24
(x3 − x1 − 2do)

2) . (2)

The factor k is defined by the former potential through

k =
α(α+ 1)Wo

dα+2
o
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V

Fig. 2. The energy profile of ion x2 in blue for α = 2 in Eq.(1).
It is the sum of the green and the dark yellow curves. as=0.6,
and the length of the chain is L=3. Green is the substrate
potential, but dark yellow is the repulsion of the central ion
x2 by x1 and x3 (red dots). There are two equivalent minima
for x2: blue bullets. Note that the ion x2 is artificially lifted
on the potential line. The real chain is on a straight line. Only
the distances can change.
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Fig. 3. Additional included is the red curve: the approach (2).
It is qualitatively similar to Fig. 2 near the minima. The p i are
positions on the substrate potential: p0 is position of the here
fixed x1=0, p2 and p3 are possible positions of x2, but p5 is
x3=3 also fixed. Positions p1 and p4 are bareness.

so here by k = 2.37. This FK model is not the Taylor ap-
proximation of potential (1) like it is claimed in Ref. [7].
It is simply a nice polynomial approximation [12]. There
is a next-nearest neighbor term, thus we have a modi-
fied Hamiltonian [92] against the original FK model. The
change of the model equation is locally quite appropri-
ate in comparison to Eq.(1), however, it does now also fit
the outer two ions. The minima states of both potentials
are nearly equal, and one can calculate small local vibra-
tions [43,93,94]. However, if the single ions come nearer
together then the potentials (1) and (2) are different. The
Coulomb potential (1) has singularities, but the FK poten-
tial (2) not. It is to observe in Fig. 4 where no singularity
emerges.
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Fig. 4. PES section of the FK model over x1 and x2, but
x3 = 3 is fixed.

3.1 Search for anti-kinks

The aim of this subsection is a numerical study concerning
the possible existence of solitons. First, the outer ions x1

and x3 are put in the outer bowls of the substrate poten-
tial at x1 ≈ 0 and x3 ≈ 3. There are 6 bowls in sum. Then
ion x2 could be in 4 different bowls in between, and there
are indeed 2 different minima of the PES (2), at positions
p2 and p3, compare the 2D-section of Fig.4 also. Because
the middle value x2 at 1.5 is a saddle point (SP) of the
PES, the two global minima are asymmetric to x1 and x3,
see Figs.2 to 4. There are L/as = 5 peaks of the laser field
in between. Without the border ions x1 and xN there are
for the N -ionic chain N −2 internal ions for Ns−2 bowls.
The equations for the calculation of the stationary points
are usual nonlinear coupled equations which are solvable
without a Fourier transformation [7]. Note that one should
not use periodic boundary conditions (BC) [7] for a lin-
ear chain, which one needs for the Fourier transformation
only. If one will study a moving chain caused by pulls or
pushes (a soliton like case) then fixed BC are excluded.
Of course for rings of ions hold periodic BC [95].

One should also observe that the outer parts of the
potentials (1) and (2) are qualitatively different. For a
large enough force in the FK model, an xj can move over
an xj+1. This should be forbidden by the definition of the
chain. It is a gap of the model (2).

Fig. 5 shows the potential profiles of a free ion x2 un-
der fixed x1 and x3 positions. Where x3 is fixed at 3
throughout, but x1 moves over the substrate potential.
x1={0, 0.6, 1.2} are minima and stationary x2-curve points
show the correct index. x1={0.3, 0.9} are SPs of x1, thus
the corresponding minima of the x2-curves are transition
states (TSs) of index one, but SPs of the x2-curves are
TSs of index two. Fig. 6 shows in contrast the profile of a
moving x1 for fixed values of x2 and x3.

A movement of a chain [20,66] may be forced by an
external excitation with a linear unit force f of amount F
by the effective potential

Veff (x) = V (x)− F fT x . (3)
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Fig. 5. Potential curves for x2 under different fixed values of
x1 and fixed x3 = 3, see text.
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x2=1.2

x2=1.8

x2=2.4

Fig. 6. Potential curves for x1 by different fixed values of x2 at
p2 or p3 and fixed x3=3. The potential sections are orthogonal
to the former Fig. 5.

F zero is the original PES, but for an increasing force
the stationary points of Veff move. The calculation of
this pathway is given by Newton trajectories (NT) [64,
96]. NTs have the nice property that they connect station-
ary points of the original PES. If no turning point (TP)
emerges, they can be used as a model for the minimum en-
ergy path (MEP) between SP and minimum. We imagine
a chain ground state at xT= (0, 1.2, 3). A force acting only
on x1, thus in direction fT=(1, 0, 0), can move the ion x1

to position p1, compare the gray curve in Fig. 6. In Fig. 7
it is at the position at the right minimum at (0.53, 1.29).
The blue curve in Fig. 7 is the NT to the given direction on
the PES with fixed x3=3. The blue dots are from a calcu-
lated NT on the full 3D PES with free x3. Both curves are
near identical. Thus the 2D projection of Fig. 7 is a good
approximation of the full dimensional problem. Note that
NTs describe the movement of stationary points under the
force F fT on the effective PES Veff (x). The green lines
are the index boundaries (IB) of the Hessian matrix given
by Det(H) = 0. They are drawn for orientation on the
PES. Closed green regions describe the regions of minima
with index zero of the Hessian, regions of an SP with index
one, or of a maximum with index two.

Further pressure into the same direction would move
the outer ion to position p2, however there is no further
minimum of the PES. Already the ion x2 is sitting there.
The amount of force may be larger, however, the ion x2
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2

Fig. 7. 2D PES section for x1 and x2 and fixed x3=3. The
blue dotted curve is the NT to direction (1, 0, 0). It has a turn-
ing point TP, but does not find the direction to the next x2

minimum at (0.6, 1.8) units.

must not evade. It is not really pushed away on the as-
sumed PES (2), in contrast, for example, to a chain in
ref [22]. A corresponding NT ends at a turning point (TP)
in the PES ’mountains’. The valley after minimum p1 for
x1 is a ’dead’ valley. The PES (2) causes too less repulsion
between the ions.

If the compressed structure would behave like an anti-
kink then the ion x1 had to push the ion x2 away under
its own pressure. However this does not happen. The val-
ley from structure xT ≈(0.6, 1.2, 3) to xT ≈(0.6, 1.8, 3) is
relatively flat, but there is no force to push the first to the
second state.

If the ion x2 has found a way to jump to position p3,
for example by its zero point vibration, then an analogous
situation like in Fig. 7 emerges, shown in Fig. 8. The force
(1, 0, 0) pushes only x1 along the valley up to high values
of energy, however, again there does not open a door for
the jump to p4 for ion x2. Especially, x3 is not moved.

Min Min

Max

TP

Min

0.0 0.5 1.0 1.5 2.0

1.7

1.8

1.9

2.0

2.1

2.2

x1

x
2

Fig. 8. 2D PES section for x1 and x2 and fixed x3=3 for x2

near 1.8, thus position p3. The blue curve is the NT to direction
(1, 0, 0). It has again a turning point TP far in the mountains,
but does not find the direction to the next x2 minimum at 2.4
units at p4. The three minima correspond to positions p0, p1,
and p2 for ion x1 on the blue profile in Fig. 6.

The central property of such an ion chain with vacan-
cies is that every ion of the chain can relax from an SP on

the substrate potential to a next isolated minimum of the
laser field without to push stronger the other ions out of
their equilibrium positions. It is a fundamental property
of this kind of chain caused by its vacancies between the
ions, compare Fig. 4 (where there x3 is still fixed). One
must remark that the profile of this movement does not
look like a profile for the movement of a soliton [79,80]. It
is in contrast to a claim of refs.[7,97] where a soliton like
behavior also for ion chains with gaps is assumed.

3.2 A collective excitation

If we push the chain in a collective excitation to direc-
tion fT = 1/

√
2 (1, 1, 0) we can move two ions to two

neighboring positions, but this is not the idea of a soliton,
compare Figs. 9 and 10. The chain behaves like a harmon-
ica. No single soliton wave of an anti-kink will move along
the chain. Note that the magenta NT describes a mini-
mum energy path (MEP) through two quasi orthogonal
valleys, though the search direction points diagonal in the
Figure. Contrary to the idea of a soliton, the movement
first is done by ion x2, and followed by a move of x1. This
NT can be used for a description of the corresponding
movement of the initial part of the chain.

Min
Min

Max

Min
Min

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.2

1.4

1.6

1.8

2.0

x1

x
2

Fig. 9. 2D PES section for x1 and x2 and fixed x3=3. The
magenta dotted curve is an NT to direction (1, 1, 0). It reaches
the next x2 minimum at (0.6, 1.8) units by a MEP.

3.3 Search for the minimum energy path (MEP) for a
kink

A so called kink can happen after a pull of the right border
ion to the right hand side one bowl further. Note that we
name ’kink’ not only a distortion of the chain [97]. So, if
one pulls the last ion xN out of the chain then may emerge
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x2->p3 x1->p1

0 20 40 60 80
M1.1

1.2

1.3

1.4

1.5

1.6

V

Fig. 10. Potential profile for the MEP of Fig. 9 of a move of
parts of the chain by one period of the substrate potential, a
move for ions x2 and x1: the left peak is the pathway of x2

to position p3, after that the way of x1 follows, from p0 to p1
(again a minimum).

a kink, for which the distortion should wander through the
chain backwards.

This does not happen here, in analogy to the former
test for an anti-kink. In Fig. 11 we show an NT to the
pure pulling direction of x3. The pull may move the x3 to
a next minimum, but later does not equivalently move ion
x2. In contrast the NT again runs up to a TP and comes
back to a maximum in between. The chain may jump by
its internal zero point vibration to the next, whished min-
imum at point (0, 1.8, 3.57). However, here again emerges
the relation analogous that the pulling goes only along the
x3 valley. So, no kink behaviour is to constate. (One may
observe the symmetry to the antikink test of Fig. 7.)

Min

Min
Min

Max

TP

1.2 1.4 1.6 1.8 2.0 2.2 2.4

3.0

3.5

4.0

x2

x
3

Fig. 11. PES section for x2 and x3 under fixed x1=0. Blue is
the NT to direction (0, 0, 1). Blue points are calculated by a
3D NT on the full surface.

We conclude that PES (2) with the given parameters
and with vacancies between the ions does not allow kinks
or antikinks.

4 The Wigner chain

Fig. 12. Case N=3, 2D section of PES (1) for fixed x3=3, in
contrast to Fig. 4.

We still have to compare the potentials (1) and (2).
Fig. 12 represents correctly the repulsion between the ions
in the chain for potential (1). The PES becomes infinite
for a touching of the ions, in contrast to the case of PES
(2). It is clear that we cannot hope for a soliton like kink
in a Wigner chain, because there are no springs which
hold the ions together. Only the bowls of the field do this.
If one pulls out the last ion xN then it leaves the chain
without any counter-force. We have to conclude that the
idea of a kink for potential (1) is not correct.

In contrast, in the FK model Eq.(2) there may be a
’spring’ force which pulls piece by piece of the chain fur-
ther, if we pull strongly xN . But we have seen that a wave
of such a kink through the chain again does not happen
because of the vacancies of the chain.

4.1 Are there anti-kinks in a Wigner chain?

Fig. 13 is the analogous PES projection for fixed x3=3 like
Figs.7 and 8, but now for the Wigner potential (1). The
IB lines are again drawn in green, and the blue line is
the NT to direction (1, 0, 0). To come from the minimum
Min1 left below to the minimum Min3 right above, there
is first a MEP for x2 at the left hand side to the minimum
Min2 at (0, 1.8), and then the horizontal path for x1 to
the aim. The figure has a certain similarity to the FK
case, however, the repulsion of the ions is stronger, and
this makes another relation between the two minima of
interest, the original Min1 at (0, 1.2), and this of Min3
at (0.6, 1.8) after a move by one period of the substrate
potential. Here a direct SP emerges on a diagonal pathway,
and a former intermediate minimum is missing. By red
dots are included the points of a SD calculation from the
SP, see Figs. 13 and 14.

If one excites the left outer ion x1 of the ground state
p0-p2-p5 of the chain by a force then this SP comes into
the play. With this Fig. 13 we can assume that a push of
the outer ion x1 can lead over this SP to a movement of the
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Min1
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Max
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1.4
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2.0

x1

x
2

Fig. 13. 2D section of PES (1) for fixed x3=3, with NT to
direction (1, 0, 0). Compare Figs.7 and 8. Red dots form the
steepest descent (SD) from the given SP.

Min1

Min3

SP

0 10 20 30 40 50
M

1.0

1.5

2.0

VW

Fig. 14. Energy for a partial soliton like move of two neigh-
boring ions along the SD diagonal path in Fig. 13.

couple (x1, x2) into the minimum Min3 at (0.6, 1.8). This
is, so to say, a partial soliton for the couple. The energy
step to the SP is 1.1 energy units, see Fig. 14, and the
push of ion x1 leads in a soliton like push to an equivalent
move of ion x2. A series of snapshots of this movement is
shown in Fig. 15. Note that two ions have to overcome two
barriers of the substrate, but there is on the pathway of
the red dots only one SP for this movement.

However, it is again not the pattern of a ‘full’ soliton
because at the end of the push, an intermediate deep min-
imum exists, Min3. It does not exist the quasi energy less
possibility of a further movement of the x1-distortion to
push the next ion x3 one bowl further, in a here not shown
third dimension. It is deeper reported in Fig. 16. It is the
effective PES projection for fixed x3=3 but under the force
f=2.25 (1, 0, 0)T . The diagonal SP becomes lower than the
left SP for a movement of x2 alone, for x1=0. Addition-
ally the calculated NT on the full 3D PES is overlayed by
blue dots. The calculation of the NT for this partly sin-
gular potential (1) is not fully stable. It jumps after the
SP region into the upper valley, onto the upper branch of
the NT. But it demonstrates that the 2D projection for
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Fig. 15. Snapshots of the chain on the SD pathways of Fig. 13.
Only the pair (x1, x2) moves in a combined kind, but x3 is
quasi not included. The ions are artificially lifted on the sub-
strate potential line.

fixed x3 is a good approximation of the full 3D-problem.
The upper branch of the blue NT in Fig. 16 leads to a new
minimum Min4 for x1. The reason is that the chain had
at the beginning two vacancies between x2 and x3. After
a first soliton like step the couple (x1, x2) falls in the first
vacancy but the second one is still there.

The finish of our treatment is an (x2, x3) section. Fig. 17
shows the 2D PES section for a fixed ion x1 at 0.479 units,
the value at the SP of Fig. 13. It is an SP of index one.
The Min4 there now has disappeared. The NT (in brown
color) to the direction (0, 0, 1) for a push of ion x3 is added
for orientation. It is useless for the treatment of a soliton
like behavior.

The aim of a movement of a soliton should be the
translation of the full chain with x3 at its new well at the
place p6 at 3.6 units. It is the minimum Min5 in the upper
region. However, neither an NT to a moderate movement
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Min1

Min2 Min3

Min4

Max

SP

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.2

1.4

1.6

1.8

2.0

x1

x
2

Fig. 16. 2D section of effective PES (1)/(3) for fixed x3=3
and force f=2.25 (1, 0, 0)T in Eq.(3), and also NT to direction
(1, 0, 0), compare Fig. 13. One can follow the movement of sta-
tionary points along the NT.

in direction (1, 0, 0) of only x1, our initial beginning, nor
the NT to collective direction (1, 1, 0), or the push in direc-
tion of pure x2 by (0, 1, 0) gives a kind of soliton pattern
like in Fig. 13. The direction to push the former couple of
x1, x2 from Min 3 to Min5 is the pure third direction to x3

represented by the brown NT. Before, there does not lead
a usefull pathway from the SP in Fig. 17 to Min5, because
in between is a valley-ridge inflection point [64,67,96], and
any push to Min5 would need a push in x3-direction. From
Min3 to Min5 again a barrier has to be overcome. There
is no direct way by a nearly flat mountain path form Min1
in Fig. 13 to Min5. It demonstrates that for two vacancies
between the ions x2 and x3 no anti-kink soliton can exist.
This would be a wave where an excitation of x1 would be
transported to x3.

In a certain symmetry, starting in minimum Min3, one
can see with Fig. 17 that a special excitation to pure x2

by fT=(0, 1, 0) could induce a partial soliton to the upper
right minimum with x2=2.4 and x3=3.6 over the SP near
the maximum. Again, this soliton like step surmounts only
one vacancy. However, this structure would leave behind
the x1 at 0.6, and would also not be a translation of the
initial chain.

Finally, we report that a very strong push of x1 pushes
together the chain like an harmonica, and can move this
lump together along the substrate. However, this is also
not the pattern of a soliton.

4.2 A further search for anti-kinks in a Wigner chain

The possibility of a soliton crucially depends on the con-
figuration of the trap, the ratio of Wo and Vo in the po-
tentials, and the proportion of the length as and do. A

Min5

Min3

Max2
Max1

SP

1.4 1.6 1.8 2.0 2.2 2.4

2.8

3.0

3.2

3.4

3.6

3.8

x2

x
3

Fig. 17. 2D projected section of PES (1) for fixed x1=0.479,
the SP value of Fig. 14, brown is the NT to direction (0, 0, 1),
blue is the NT to direction (0, 1, 0), see text.

relation is given by the g-parameter [7]

g =
k a2s
8Vo

. (4)

It is claimed that for g ≪ 1 we expect pinning, but for
g ≫ 1 we expect the possibility of a sliding soliton. In
former subsections, we have used g = 0.21 and obtain
that a soliton is not possible. We found only a soliton like
behavior of an ion pair. The too many vacuities destroy
the possibility of solitons.

We try a next search for a larger g parameter with
Vo = 0.25, the half value of the former studies. Fig. 18
shows three corresponding PES sections, in part A for
x3 = 3 fixed, in part B for x2 = 1.8 fixed, but in part C for
x1 = 0.6 fixed. The different projections are to use for an
illustration of the PES over the 3D coordinate space. We
have to interpret the PES sections in the following kind:
the former soliton like behavior of the pair (x1, x2) now
again disappears. There is in part A no quasi-soliton-SP
like in Fig. 13, but only a ridge of the PES remains with a
TP of the NT to direction x1. An excitation of ion x1 from
left into the chain is immediately redirected to a push on
ion x2 which moves to Min2, and only then x1 moves to
intermediate Min3. This Min3 is also shown in part B, and
together with part C it is to see that from intMin3 only a
move of the chain to Min5 is possible where x3 has moved
to a new global minimum. Min5 represents a full move-
ment of the initial chain starting at Min1. Fig. 18B addi-
tionally enrols a common pathway of the pair (x1, x3) like
in Fig. 13 for the pair (x1, x2), the former quasi-soliton-
pathway. Now the not nearest neighbors move combined,
only the former quasi-soliton-SP is replaced by the quasi-
soliton intMin3. The interaction of the first and the last
ion is also obtained in the next subsection below. But at
all, here it is not the behavior of a soliton of the full chain.
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AMin1
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int Min3Min2

0.0 0.2 0.4 0.6 0.8
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x2=1.8
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Fig. 18. 2D projected sections of PES (1) for changed parameter Vo = 0.25 and A) fixed x3=3, B) fixed x2=1.8, but C) fixed
x1=0.6. Note that the SP of Fig. 13 has disappeared in part A); only a TP of the NT remains. The red curve is the NT to
direction (1, 0, 0), correspondingly.

So, the assumption that an increase of the parameter g
brings us nearer to a soliton is not fulfilled. We have to
reject the importance of parameter g of Eq.(4).

4.3 The case of a vanishing trap

In contrast, if we further lower Vo, thus if we have g ≫ 1
then we obtain more and more a pure Wigner chain with
an unimportant substrate potential. Then the chain be-
haves like a Newton cradle [98]. If one pushes the left x1

then this impulse flows through the chain transmitting a
pressure wave through the stationary ions, which creates
a force that pushes the last ion. Finally the right xN ion
flyes away. The remaining chain stays still on its former
place. Again this is not the behavior of a soliton.

5 Discussion

We study in this paper a linear chain. Usually there is
treated the possibility of a planar zig-zagging of the chain
[48–52,55,58,59,97,99–109]. Then many kinds of distor-
tions can become a soliton. This is excluded here.

Potential (2) is an approximation of potential (1) for
local problems around a ground state structure of the
chain. It can be used for vibrations or motional spec-
troscopy [43,110,111], for example. For a motion of parts
of the chain by an antikink, or a kink, the problem is that
a touching of the ions is not strong enough repelled in the
potential (2). The Coulomb potential (1) has there sin-
gularities. This difference causes a somewhat different be-
havior against the soliton problem. The FK potential (2)
with the given parameters [7] does not allow solitons. For
the Wigner chain (1), in contrast, we find a partial soliton
like behavior for couples of ions if only one vacancy is in
between. However, for more than one vacancy between the
ions, also here no antikink soliton is possible. Especially,
a kink soliton is not probably from the definition of the
potential (1). Since solitons are not expected in the chains

discussed here, we will not find any type of conductance
caused by moving ions, or by backward-moving vacancies
[112].

For very longer chains, one should note that the central
region of such a Wigner chain can be a little compressed
[109] in comparison to the edge regions. The inter ionic
spacing is a slowly varying function. However, this does
not change our nutshell result here.

6 Conclusion

If there are many vacant sites of the laser field then we as-
sume that a soliton will not find a ’flat’ potential line like
in many other cases of the FK model. In the figures emerge
minima of different energy. They do not fit to the imagi-
nation for kinks or anti-kinks that the pinning energy in
chains with reasonable parameters should be significantly
lower than the amplitude of the substrate potential [74].
For a soliton one needs collective coordinates [113] for the
center, X(t), and the length, l(t), of its structure. These
cannot be defined here. In contrast, if the chain has over-
come a barrier for a quasi soliton like movement, it imme-
diately falls down into the next bowl with a corresponding
energy step. A near zero force to move the soliton further
cannot be found. Thus, for a chain with vacancies, a soli-
ton behavior will become complicated, or should one say,
impossible?
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