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Last year we detected that Newton trajectories are an important
tool for Mechanochemistry.
Under a pull one has two anchor atoms where a force is added.
An enzyme acts by an electrostatic force.



Abstract

The talk starts with the definition of Newton trajectories (NT).1

On an NT, at every point the gradient of the potential energy surface (PES) points into the same direction.

Definitions of NTs and different calculation methods are reviewed.2

NTs connect stationary points of the PES, thus, they can be used to find saddle points.

Another important property of NTs is: they bifurcate at valley-ridge inflection points (VRI).

The problem to find unsymmetric VRIs is solved by a variational theory ansatz.3

Second part:
We apply NTs to Mechanochemistry and Catalysis:

NTs describe the movement of stationary points on an effective PES under an external force.4

It can be a mechanical pulling or an electrostatic force of an enzyme.

1W.Quapp, M.Hirsch, O.Imig, D.Heidrich, J.Computat.Chem. 19 (1998) 1087;

W.Quapp, M.Hirsch, D.Heidrich, Theor.Chem.Acc. 100 (1998) 285

2W.Quapp, J.Theoret.Computat.Chem. 2 (2003) 385, and 8 (2009) 101

3W.Quapp, Theor.Chem.Acc. 121 (2008) 227; and 128 (2011) 47, 132 (2012) 1305 (with B.Schmidt)

4W.Quapp, J.M.Bofill, J.Phys.Chem. B 120 (2016) 2644; Theor.Chem.Acc. 135 (2016) 113

and J. Computat. Chem. 37 (2016) 2467



In the next two slights I show for Your imagination three kinds of
curves on a surface:
Gradient extremal and steepest descent, and Newton
trajectories.
The surface has central a quasi-shoulder. The dashed curves
are the convexity-border: The steepest descent crosses here a
ridge; but the Gradient extremal follows the minimum energy
pathway.



Example 1

Gradient extremal (black) and IRC (red)
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The IRC leaves the valley and goes over a ridge:
M.Hirsch, W.Quapp: Chem. Phys. Lett. 395 (2004) 150-156



On the next slight are some Newton trajectories. Along every
NT, the gradient of the surface points into the same direction.
Here, all the NTs have turning points of their energy. Thus they
are not good reaction path models.
The green curve is discussed later.



Example 1

Some Newton Trajectories (blue)
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Green is the BBP condition det(H) = 0.



Definition

A Reaction Pathway (RP)
I Is a monotone way between Minimum and Transition State
I It looks nice if going through a valley of the PES
I It would be nice if indicating bifurcations of the valley

A synonyme for RP would be Minimum Energy Path.
From the point of view of practical calculations, it would also be
helpful if we could calculate the RP beginning at the minimum.
Examples

I Steepest descent from SP, IRC
I Gradient Extremal
I Newton Trajectory

Note: none of the examples fulfills all properties, in all cases.
Thus, we can treat different RP-Examples on an equal footing.



I Historical Source: Distinguished Coordinate
Choose a driving coordinate along the valley of the
minimum, go a step in this direction, and perform an
energy optimization of the residual coordinates.

I This leads to problems if the valley ends . . .
I The Distinguished Coordinate jumps

Alternative
I Use another definition: Newton Trajectory.



I Historical Source: Distinguished Coordinate
Choose a driving coordinate along the valley of the
minimum, go a step in this direction, and perform an
energy optimization of the residual coordinates.

I This leads to problems if the valley ends . . .
I The Distinguished Coordinate jumps

-1.5 -1 -0.5 0 0.5 1

0

0.5

1

1.5

2

Startpunkt

Sprung

distinguished coordinate

Umkehrpunkt

Umkehrpunkt

Alternative
I Use another definition: Newton Trajectory.



The first use of NTs in Chemistry was named distinguished
coordinate.
The famous Müller-Brown surface was constructed to
demonstrate the difficulties of this method.
The correct use of the NT-definition solves the jump-problem of
the old distinguished coordinate method:
The jump point convertes into a turning point.



Definition of Newton Trajectory
I W. Quapp M. Hirsch O. Imig D. Heidrich, J Comput Chem 19 1998, 1087-1100, "Searching for Saddle Points

of Potential Energy Surfaces by Following a Reduced Gradient"

I W. Quapp M. Hirsch D. Heidrich, Theor Chem Acc 100 (1998) No 5/6, 285-299 "Following the streambed

reaction on potential-energy surfaces: a new robust method"
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I Build the Projector Matrix Pr =I-r rT where r is a unit vector.
I Search the Curve Pr g=0. It is the Newton Trajectory.



Predictor-Corrector Method I
Predictor

I Go along the tangent of the Newton trajectory

0 =
d

d s
[Pr g(x(s))] = Pr

d g(x(s))
d s

= Pr H(x(s)) x′(s)

the tangent is x′; note: Pr is a constant n×n matrix.

Corrector
I Use the Newton-Method, jump back to the Curve

Both of the steps need the Hessian of the PES, or updates of it.
I The method was included in 3 top level quantum chemistry packets:

in MOLPRO, COLUMBUS, and TURBOMOL.
I The method was accelerated by the TASC-method

W.Quapp, M.Hirsch, D.Heidrich: TCA 105 (2000) 145-155;
see also M.Hirsch, W.Quapp: JCC 23 (2002) 887



Predictor-Corrector Method II

TASC-method
I Use the tangent of the Newton trajectory for the next

search direction r.
The result is a Gradient Extremal (GE).

I Quapp, Hirsch, Heidrich: Theor. Chem. Acc. 105 (2000) 145

Definition of a GE
I At every point the gradient of the PES is an eigenvector of

the Hessian.
H g = λg

and λ is the corresponding eigenvalue.

I D.K.Hoffman, R.S.Nord, K.Ruedenberg: TCA 69 (1986) 265-279.
”Gradient Extremals”

I W.Quapp: TCA 75 (1989) 447-460.
”Gradient Extremals and Valley Floor Bifurcations on PES”



Gradient Extremal (GE)

At every point the gradient of the PES is an eigenvector of the
Hessian: H g = λ g, and λ is the Eigenvalue.
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The fat curves are the GEs,
they are fixed curves.

The thin dashes are NTs.
They form a field.



NTs indicate Bifurcations of the Valley
I NTs have a second definition by a differential equation

dx(t)
dt

= ±A(x(t)) g(x(t))

named the Branin equation.
It uses the adjoint matrix A of the Hessian H,
which is [(−1)i+j mij ]

T , where mij is the minor of H.
It is A H = Det(H) I.

I The singular points of the equation are zeros of
A(x) g(x) = 0, thus
(i) stationary points, if also g(x) = 0, or
(ii) valley-ridge inflection points (VRI), if g(x) 6= 0

If A(x) g(x) = 0 and g(x) 6= 0, then an eigenvector of the
Hessian to eigenvalue zero is orthogonal to the gradient.



Branin is the desingularized, continuous Newton equation
I A Newton step is

x1 = x0 − H−1(x0) g(x0)

I One may change this difference into a differential equation,
the continuous Newton equation

dx(t)
dt

= −H−1(x(t)) g(x(t)

I However, the inverse Hessian is singular, if the Hessian
has a zero determinat. The way out is a desingularization
of the differential equation

dx(t)
dt

= −Det(H(x(t))H−1(x(t))g(x(t))



String Method

I Chose an initial Chain between two Minimums.
I Change the Chain by a controlled Newton-Method, step by

step, back to the searched Newton Trajectory.
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The colored curves are different NTs
(W.Quapp, JTCC 8, (2009) 101-117
"The growing string method for flows of

NTs by a second order corrector")
The PES concerns Alanine-Dipeptide:
CH3CO-NHCHCH3CO-NHCH3
The dimension is (3N-6)=60, N=22 atoms
One of the blue NTs shows

Predictor- and Corrector steps



Effort for the String Method

I Example Alanine-Dipeptide, 60 internal coordinates,
(2 dihedrals fixed, thus 58 coordinates optimized)

I Used: GamesUS on PC, DFT calculations
B3LYP/6-31G basis set

I Number of chains calculated: 9
I Number of nodes per chain: 30
I Number of corrector steps per node: 2-3
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With such a nice convergence velocity,
one can calculate many nodes per chain,
and many NTs at all,

so to say, a flow of NTs.



The Index Theorem

Index Theorem: Let a and b be stationary points connected by
a regular Newton trajectory. Then it holds

index(a) 6= index(b) ,
and the difference is one.
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Regular NTs connect a SP (index 1)
and a minimum (index 0).
The PES shows two adjacent SPs
of index one.
There is no regular NT connecting
the SPs.
Between the SPs a VRI point
has to exist.
One singular NT leads to the VRI point
and branches there.
Hirsch, Quapp: JMSt THEOCHEM 683 (2004) 1



Two consecutive saddles can be connected only by a singular
Newton trajectory which crosses a valley-ridge inflection (VRI)
point.



Index Theorem: Let a and b be stationary points connected by
a regular Newton trajectory. Then it holds

index(a) 6= index(b) ,
and the difference is one.
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Regular NTs Singular NT Regular NTs
At the bottom may be a minimum, at the top an index-2 SP, and left and right may be an index-1 SP.

The VRI point divides the two families of NTs to the two index-1 SPs.



Mechanochemistry and Catalysis

Apply a pulling force f to the PES:
the generally accepted model consists in a first order
perturbation on the PES of the unperturbed molecular system
due to a catalytic or pulling force by

Vf (r) = V (r)− fT (r− ro)

Vf is named the effective PES. The disarrangement of the
stationary points of the new effective PES is described by NTs:
The stationary points are given by the zero of the derivation

∇rVf (r) = 0 = g− f

g is the gradient of the PES. One searches a point where the
gradient of the original PES has to be equal to the force, f. If f
points always into the same direction then the solution is an NT.



Apply a force to a molecule: it means apply the force also to the
PES.



Example 1

To start with we treat a one-dimensional case.
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1D Morse potential over the x-axis: the upper curve. Below are
two effective potential curves with increasing forces. The
minimum moves to increasing x-values, where the SP moves to
decreasing values. The lowest potential is the final case:
minimum and SP coalesce to a shoulder. The former barrier is
broken. The point is named barrier breckdown point (BBP).



Example 2
Let be two minimums connected by regular NTs over an SP.
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Pulling into a defind direction uses a respective NT for the movement of
minimum and SP. The arc of the NT can be of different length. Thin
dashed NTs have a turning point (TP): pulling along such NTs is possible.



Example 2

We include a green BBP line whith Det(H)=0 (barrier break).1
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The energy, as well as the gradient norm variate on the green line.
1Konda, Avdoshenko, Makarov, J.Chem.Phys. 140 (2014) 927,

Quapp, Bofill, Theoret. Chem. Acc. 135 (2016) 113.



Example 2

Norm of the gradient over three inner NTs (thick blue curves).
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The gradient norm variate with the crossing of the green line:
there must be a minimum: the optimal BBP.



Example 2
Optimal Newton trajectory
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A special regular NT (blue) and a Gradient Extremal (thick black) cross the
green line at the same point. This point is the BBP with lowest |g| with
respect to the others NTs crossing the green line. The regular NT indicates
the optimal pulling direction.
Proof: Quapp / Bofill, TCA 135 (2016) 113



Example 2

Extreme case of a regular NT with a turning point (TP).
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The NT goes from minimum R over a TP and along a ridge back to the SP.
The red point is its BBP.
The effective stationary points are black points.
The sticks are the connections between the
effective SPs (above on the ridge) and the
effective minimums (below in the valley) at the forces, F .



Example 3a
Development of effective PESs
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Left above F=0.0, original PES with GE and optimal BBPs (red points).
(a)-(c): Effective PESs for f=F l with pull direction l=(0.98,0.18)T and
(a) F=1.4, (b) F=2.8, and (c) F=4.25 force along the same NT.
The Reff , SPl,eff and SPu,eff are marked by black points.



Example 3b
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GEs (fat) on a surface with 2 pathways. Crossings (red points) with the
green lines are optimal BBPs. The optimal NT for a pulling over SPup is
NT1. It intersects the left upper BBP1. A pulling moves R and SPup

together, but it moves also Max and SPlow together. Thus, the hight of SPup

decreases, but of SPlow increases.



A pull to the upper saddle along NT1 can circumvent the
Woodward-Hoffman rules: it drives the reaction over the
heigher saddle point.
NT1 is here the optimal NT. On this NT, the minimum R and the
SPup move together.
However, the NT goes after the SPup over the maximum to
SPlow , and then to the product minimum, P.
This is allowed by the Index Theorem.
Inverting this pulling causes a hysteresis.
The pull along NT1 makes that the height of SPup decreases,
however that of SPlow increases.
In the next slight are shown the reactivity consequences.



Example 3b
Reaction Rates:
kF ,up = ko,up Exp[−(VF (SPup)− VF (Min))/kT ]
kF ,low = ko,lowExp[−(VF (SPlow )− VF (Min))/kT ]
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Eyring rates for the pulling force in the direction of NT1
uphill to the high SPup.
Left (a): exit over SPup,
center (b) full rate of a reaction R→P, kF = kF ,up + kF ,low

right (c): exit over SPlow .

See: Quapp / Bofill, JCC 37 (2016) 2467.



Summary: How to find a curve of
Force Displaced Stationary Points, FDSPs?

I Describe the FDSPs by Newton Trajectories:
it is tractable – in many practical cases.

I Find the BBP by Newton Trajectories: it is tractable.
I Find VRI-Bifurcations by special Newton Trajectories:

it is tractable.
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