The Use of Newton Trajectories in Theoretical Chemistry

Wolfgang Quapp

Mathematical Institute, University Leipzig, Germany

25 Years of Theoretical Chemistry Network of Catalonia, Barcelona, 29 June to 3 July 2009
Abstract

The talk starts with a discussion of problems of the definition of a reaction pathway, especially of the intrinsic reaction coordinate (IRC). We propose Newton trajectories (NT) for an alternative.1

An NT is a curve where at every point the gradient of the PES points into the same direction.

Definitions of NTs and different calculation methods are reported.2

NTs connect stationary points of the PES, thus, they can be used to find saddle points.

Another important property of NTs is: they bifurcate at valley-ridge inflection points (VRI). By simple 2D schemes we explain some methods used to find VRIs.

A further step are some theoretical extensions: NTs allow to explore the PES in relation to convex regions (valleys), or concave regions (ridges), as well as statements about the index of connected stationary points.

An outlook on future research concerns the problem to find unsymmetric VRIs by a variational theory ansatz.3

Figure: Gradient extremal, IRC, and Newton Trajectories
What is a Reaction Path?

You hopefully know this after the talk...

... a little better.
General problems of the steepest descent

IRC I

\[
\frac{dx(s)}{ds} = -\frac{g(x(s))}{|g(x(s))|}, \quad g \text{ is gradient}, \quad \text{Start at SP}
\]

- Does not always **follow the valley** of the PES

Hirsch, Quapp, CPL 395 (2004) 150

(2D modified PES using the Neria, Fischer, Karplus-surface, see JCP 105 (1996) 1902)
General problems of the steepest descent

IRC I

\[
\frac{dx(s)}{ds} = -\frac{g(x(s))}{|g(x(s))|}, \quad g \text{ is gradient}, \quad \text{Start at SP}
\]

- Does not always follow the valley of the PES

Hirsch, Quapp, CPL 395 (2004) 150

(2D modified PES using the Neria, Fischer, Karplus-surface, see JCP 105 (1996) 1902)
General problems of the steepest descent

IRC I

\[
\frac{dx(s)}{ds} = -\frac{g(x(s))}{|g(x(s))|}, \quad g \text{ is gradient}, \quad \text{Start at SP}
\]

- Does not always follow the valley of the PES

Hirsch, Quapp, CPL 395 (2004) 150

(2D modified PES using the Neria, Fischer, Karplus-surface, see JCP 105 (1996) 1902)
General problems of the steepest descent

IRC II

IRC does not indicate bifurcations of a valley

The dotted curve is the IRC. It does not see the Valle-Ridge inflection point.
General problems of the steepest descent

IRC III

\[\mathbf{x}_{k+1} = \mathbf{x}_k - \lambda \frac{g(\mathbf{x}_k)}{|g(\mathbf{x}_k)|}, \lambda \text{ any steplength} \]

- Shows numerical zigzagging

Left: exact IRC, right: numerically determined IRC (Fig. by Benjamin Schmidt)
Definition of Reaction Pathway

RP
- Is a **monotone** way between Minimum and Transition State
- It looks nice if going through a **valley** of the PES
- It would be nice if indicating **bifurcations** of the valley

A synonyme for RP would be **Minimum Energy Path**. From the point of view of practical calculations, it would also be helpful if we could calculate the RP **beginning at the minimum**.

Examples
- Steepest descent from SP, IRC
- Gradient Extremal
- Newton Trajectory

Note: none of the examples fulfills all properties, in all cases. Thus, we can treat different RP-Examples on an equal footing.
Distinguished Coordinate

Historical Source: Distinguished Coordinate

Choose a driving coordinate along the valley of the minimum, go a step in this direction, and perform an energy optimization of the residual coordinates.

- This leads to problems if the valley ends . . .
- The Distinguished Coordinate jumps

Alternative

- Use another definition: Newton Trajectory.
Distinguished Coordinate

- **Historical Source: Distinguished Coordinate**
 Choose a driving coordinate along the valley of the minimum, go a step in this direction, and perform an energy optimization of the residual coordinates.
 - This leads to problems if the valley ends . . .
 - The Distinguished Coordinate jumps

Alternative
- Use another definition: Newton Trajectory.
Definition of Newton Trajectory

- Chose a Search Direction \mathbf{r}
- Build the Projector Matrix $\mathbf{P}_r = \mathbf{I} - \mathbf{r} \mathbf{r}^T$
- Search the Curve $\mathbf{P}_r \mathbf{g} = 0$. It is the Newton Trajectory.
Predictor-Corrector Method I

Predictor
- Go along the tangent of the Newton trajectory

\[
0 = \frac{d}{ds} \left[P_r \, g(x(s)) \right] = P_r \frac{d}{ds} g(x(s)) = P_r \, H(x(s)) \, x'(s)
\]

the tangent is \(x'\); note: \(P_r\) is a constant \(n \times n\) matrix.

Corrector
- Use the Newton-Method, jump back to the Curve

Both of the steps need the Hessian of the PES, or updates of it.

- The method was included in 3 top level quantum chemistry packets: in MOLPRO, COLUMBUS, and TURBOMOL.
- The method was accelerated by the TASC-method
 see also M. Hirsch, W. Quapp: JCC 23 (2002) 887
Predictor-Corrector Method II

TASC-method

- Use the tangent of the Newton trajectory for the next search direction r.

The result is a Gradient Extremal (GE).

Definition of a GE

- At every point the gradient of the PES is an eigenvector of the Hessian.

$$Hg = \lambda g$$

and λ is the corresponding eigenvalue.

- W. Quapp: TCA 75 (1989) 447-460. "Gradient Extremals and Valley Floor Bifurcations on PES"
Gradient Extremal

GE

At every point the gradient of the PES is an eigenvector of the Hessian: $\mathbf{H} \mathbf{g} = \lambda \mathbf{g}$, and λ is the Eigenvalue.

The fat curves are the GEs, the thin dashes are NTs.
Gradient Extremal

At every point the Gradient of the PES is an Eigenvector of the Hessian: \(\mathbf{H} \mathbf{g} = \lambda \mathbf{g} \), and \(\lambda \) is the Eigenvalue.

Beale PES

The fat curves are the GEs, the thin dashes are NTs.
Applications of NTs: Reaction Pathways, TSs (Examples only)

String Method

- Chose an initial Chain between two Minimums.
- Change the Chain by a controlled Newton-Method, step by step, back to the searched Newton Trajectory.

The colored curves are different NTs (W. Quapp, JTCC 8, (2009) 101-117)

"The growing string method for flows of NTs by a second order corrector"

The PES concerns Alanine-Dipeptide: \(\text{CH}_3\text{CO-NHCHCH}_3\text{CO-NHCHCH}_3 \)

The dimension is \((3N-6)=60\), \(N=22\) atoms

One of the blue NTs shows

Predictor- and Corrector steps
String Method

Effort for the String Method

- Example Alanine-Dipeptide, 60 internal coordinates, (2 dihedrals fixed, thus 58 coordinates optimized)
- Used: GamesUS on PC, DFT calculations
 B3LYP/6-31G basis set
- Number of chains calculated: 9
- Number of nodes per chain: 30
- Number of corrector steps per node: 2-3

With such a nice convergence velocity, one can calculate many nodes per chain, and many NTs at all, so to say, a flow of NTs.
Higher-dimensional NTs

- Use a path following method in a **reduced PES**
- Predictor: IRC- or eigenvector-following technique
- Corrector: Newton-Raphson method

The **reduced PES** is defined by a set of molecular geometry parameters, (bond distances, bond angles, or dihedrals) that undergo the largest change for the reaction. The remainder of the coordinates are forced to have a zero gradient.

- Thus again use $P \cdot g = 0$ in a reduced space.
- Examples of so called **Newton Leaves**
Application

- Search the way out of a barrierless PES by NTs

Quapp, Kraka, Cremer: JPC A 111 (2007) 11287

Further Applications of NTs (Examples only)

 "Exploring the PES of ethyl cation ..."

- D. H. Ess et al.: JOC 73 (2008) 7472, and 7586, Angew. Chem. In. Ed. 47 (2008) 7592: dimerization of 1,3-cyclohexadiene, isomerization of methoxy radical to hydroxymethylene radical, semibullvalene, aldaldehyde radical anion additions to alkyl halides, Cyclopropylidene to allene, deazetization of heterocyclic nitrosimines, 1,2,6-heptatriene to 3-methylene-1,5-hexadiene, endo cyclopentadiene dimerization,...

 "... methanol synthesis .. on the .. ZnO(0001j) Surface"
NTs indicate Bifurcations of the Valley

- NTs have a second definition by a differential equation

\[
\frac{dx(t)}{dt} = \pm A(x(t)) \cdot g(x(t))
\]

named the **Branin equation**. It uses the adjoint matrix \(A \) of the Hessian \(H \), which is \(\left[(-1)^{i+j} m_{ij} \right]^T \), where \(m_{ij} \) is the minor of \(H \). It is \(A \cdot H = Det(H) \cdot I \).

- The singular points of the equation are zeros of \(A(x) \cdot g(x) = 0 \), thus
 (i) stationary points, if also \(g(x) = 0 \), or
 (ii) valley-ridge inflection points (VRI), if \(g(x) \neq 0 \)

If \(A(x) \cdot g(x) = 0 \) and \(g(x) \neq 0 \), then an eigenvector of the Hessian to eigenvalue zero is orthogonal to the gradient.
Branin is the desingularized, continuous Newton equation

- A Newton step is
 \[x_1 = x_0 - H^{-1}(x_0) \cdot g(x_0) \]
- One may change this difference into a differential equation, the continuous Newton equation
 \[\frac{dx(t)}{dt} = -H^{-1}(x(t)) \cdot g(x(t)) \]
- However, the inverse Hessian is singular, if the Hessian has a zero determinant. The way out is a desingularization of the differential equation
 \[\frac{dx(t)}{dt} = -Det(H(x(t))) \cdot H^{-1}(x(t)) \cdot g(x(t)) \]
- what is noting else then the Branin equation.
 \[\frac{dx(t)}{dt} = -A(x(t)) \cdot g(x(t)) \]
Eigenvectors and Eigenvalues of A

λ_i, μ_i are the eigenvalues of H and A.

- H is regular then and only then if A is regular.
- H and A have the same eigenvectors. Thus, to any λ_i belongs exactly one μ_i.
- $\lambda_i\mu_i = DetH = \prod_k \lambda_k$.
Bifurcation points of NTs are valley-ridge inflection points (VRI) \(A(x) \, g(x) = 0 \) and \(g(x) \neq 0 \)
Bifurcations

Bifurcation points of NTs are valley-ridge inflection points (VRI) \(A(x) \ g(x) = 0 \) and \(g(x) \neq 0 \)
Bifurcation points of NTs are valley-ridge inflection points (VRI) $A(x) g(x) = 0$ and $g(x) \neq 0$
Bifurcation points of NTs are valley-ridge inflection points (VRI) \(A(x) g(x) = 0 \) and \(g(x) \neq 0 \)
Dimension of "Bifurcation Points"

- Note: in higher dimensional configuration space, the definition of VRIs can result in a higher dimensional VRI-manifold. It may be at least $(N-2)$-dim.

 3D example of a test PES
 (derived from malone aldehyde PES)

- Hirsch, Quapp, Heidrich, PCCP 1 (1999) 5291
 3D example: PES of water

- Quapp, Melnikov, PCCP 3 (2001) 2735
 6D example: PES of formaldehyde
Channels and Index Theorem

Index Theorem Let \(a \) and \(b \) be stationary points connected by a regular Newton trajectory. Then it holds

\[
\text{index}(a) \neq \text{index}(b),
\]

and the difference is one.

Regular NTs connect a SP (index 1) and a minimum (index 0). The PES shows two adjacent SPs of index one. There is no regular NT connecting the SPs. Between the SPs a VRI point has to exist. One singular NT leads to the VRI point and branches there.

Hirsch, Quapp: JMS ThEOCHEM 683 (2004) 1

All NTs which connect a minimum and a SP are a Reaction Channel
Channels and Index Theorem

Index Theorem Let a and b be stationary points connected by a regular Newton trajectory. Then it holds

$$\text{index}(a) \neq \text{index}(b),$$

and the difference is one.
Channels and Index Theorem

Index Theorem Let \(a \) and \(b \) be stationary points connected by a regular Newton trajectory. Then it holds

\[
\text{index}(a) \neq \text{index}(b),
\]
and the difference is one.

All NTs which connect a minimum and a SP are a Reaction Channel
Convexity Theorem

A regular NT may connect minimum and SP. If the PES along the NT is monotone increasing, then the NT goes through a valley.

Monotone increasing means for NTs, there is no Turning point.

Convexity Theorem

A regular NT may connect minimum and SP. If the PES along the NT is monotone increasing, then the NT goes through a valley.

Monotone increasing means for NTs, there is no Turning point.

Object of the search are unsymmetric VRIs:

\[g(x)^T A(x) g(x) = 0 \]

Included is the border between ridge and valley regions.
The pattern of the flow of steepest descent lines around a SP is exactly the same like the flow of NTs around a VRI point. Calculus of Variations is already used for the IRC. (Crehuet and Bofill, JCP 122, 234105 (2005).) We plan to transform the method to NTs.
Variational NTs

It is possible to formulate a variational ansatz for NTs

\[l(a, b) = \int_{a}^{b} F(x_{1}(t), ..., x_{n}(t), x'_{1}(t), ..., x'_{n}(t)) \, dt \rightarrow \text{Min!} \]

with a variational functional

\[F(x, x') = (x' \mp A(x) g(x))^T (x' \mp A(x) g(x)) \]

Of course, it uses the differential equation of Branin.
(Quapp, TCA 121 (2008) 227)
Variational NTs II

Bofill proposes another variational functional in a recent note (JCP 130 (2009) 176102)

\[F(t, x(t), x'(t)) = t \left(g^T g \right)^{1/2} \left(r^T x' \right) + E(x(t)) \]

where \(E \) is the PES, \(g \) is the gradient, and \(r \) is the search direction for a special NT.
Summary: How to find a RP, If You Must

Properties of NTs

- Describe the RP by (some) Newton Trajectories: it is tractable – in many practical cases.
- Find TS by Newton Trajectories: it is tractable.
- Find Bifurcations by special Newton Trajectories: it is tractable.

Acknowledgement

- I thank my colleagues over many years Prof. Dr. D. Heidrich from Theoretical Chemistry Dr. M. Hirsch from Mathematics.

A row of results (which are presented here) are born in discussions with them.
Some References to Newton Trajectories