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Abstract

The Potential Energy Surface (PES) is a mathematical object represented by a
continuous function of N variables. It represents the changes of the energy
which occurs if a molecular system is deformed. The minimums are related to
stable molecular structures. It is impossible a completly display the PES if the
molecule has more than 2 atoms.

The concept of a Reaction Path (RP) reduces the problem since it represents a-
one-dimensional curve on the PES. Then the knowledge of the whole PES is not
necessary. The RP is a monotonically increasing curve from a minimum to a first
order saddle-point (TS) and a monotonically decreasing curve from the TS to the
next minimum. There exist different RP_models: Intrinsic Reaction Coordinate
(IRC), Newton Trajectories (NT), Gradient Extremals (GE), ... and many others.
From a physical point of view any RP can be seen as if one envisions a large cloud
of classical trajectories evolving on the PES. Very often the average trajectory is
going to be close to the curve selected for the RP. This gives support to the
dynamical theories: TST, and RP-Hamiltonian. The mathematical basis of
different RP model is discussed. In this aspect the theory of Calculus of
Variations plays an important role. Some features of the PES like valley-ridged
inflection points (VRI) and Conical Intersections (Cl) are also revisited. Finally, a
new view of PES model is also given and briefly discussed.
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1.- The Reaction Path Concept.



The Reaction Path Concept.

The concept of Reaction Path: R.A. Marcus, J. Chem. Phys. 49, 2610, 2617
(1968) and K. Fukui, J. Phys. Chem. 74, 4161 (1970).
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Reaction Path: A continuous curve monotonicaly increasing in energy from a minimum of the
Potential Energy Surface to a First Order Saddle Point and monotonicaly decreasing from this
point to a new minimum of this Potential Energy Surface.




2.- a) Variational Nature of the Intrinsic Reaction Coordinate
(Steepest Descent Path ).



Variational Nature of Intrinsic Reaction Coordinate Path.
The Intrinsic Reaction Coordinate is the path that follows a gradient curve.

Gradient curve is also known as Steepest Descent (SD) or Ascent curve (SA).
Introduced by: K. Fukui, J. Phys. Chem. 74, 4161 (1970).

Mathematically is characterized by: tangent curve = t(x)=dx/dt = VXV(X)

Muller-Brown Potential EnerqvSurface (PES) On a PES there exists a field of
| : S22 - gradients.

Except for sationary points, at each
point of the PES only a Steepest

Descent or Steepest Ascent passes
through this point.

The Intrinic Reaction Coordinate is
the only Steepest Descent or
Steepest Ascent connecting two
minimae through a first order saddle
point (Transition State).

Gradient field

Intrinsic Reaction Coordinate Path



Variational Nature of Intrinsic Reaction Coordinate Path.

A. Tachibana and K. Fukui, Theor. Chim. Acta 57, 81 (1980); K. Fukui, Int. J.
Quantum Chem., Quantum Chem. Symp. 15, 633 (1981).

R. Crehuet, J.M. Bofill, J. Chem. Phys. 122, 234105 (2005).
Theory of Calculus of Variations.

t t

Ly (9)= [ £(a)y(da/dr) (da/dr')dr' = [ (G (a)\(da/dr") (dg/d")dr

0 0

Gradient norm: G(q)=(g7(q)g(q)),

We take , t' =0) as fixed inital point
(a ) P Speed Law.

and (q,, t’ =t) as variable end point.

Evaluated through the Steepest Ascent

Euler-Lagrange equation: the tangent of curve, ly,.(a) = V(a,) - V(q,,).

the path q(t) that extremalizes the variational

integral, I(q), is dg/dt = g(q) . The extremal At the point (q,, t’ = t):

curve is a Steepest Ascent. Slsq(a) = dV = g7(q)da, a total differential

Hamilton-Jacobi equation. form.




Variational Nature of Intrinsic Reaction Coordinate Path.

Impact: a Steepest Ascent or Steepest Descent curve, starts at the point q,,
propagates through the PES according to the speed law or continuous slowness
model, (G(q))?, arrives at the point q, traveling with the extremal (least)
potential energy variation, I,V,_>q(q) = V(qq) - V(q,,). (Fermat Variational
Principle).

Hamilton-Jacobi equation. At the variable end point (q,, t" = t) we have d/,,
»¢(q) = dV and from this we derive the Eikonal equation

T a/a%
(qu) (qu) =1 where V = :

6 "\

Let V(q) a solution of the above equation, then the Steepest Ascent curves
(extremal curves) transverse the family of equipotential energy surfaces V(q) =
v = constant.

The construction of solutions of the Eikonal equation as a set of equipotential
energy surfaces is similar to the Fermat—-Huyghens principle for the
construction of wave fronts.



Variational Nature of Intrinsic Reaction Coordinate Path.

Dashed curves are SA curves emerging from the minimum
located at (0,0). Thin curves, equipotential energy curves,
(V(a) = v = constant) solution of Eikonal equation.
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SA curves (extremal curve).
——=» Family of equipotential energy curves, V(q) = v.

—

dq
L qu(q) =8 . . .
C ical " £ | dt “The like Hamilton canonical
anonical equations o CUrves: 1 equations for the SA extremal curves.”
dg
L VqG(q)
L dt

These equations are the basis of many algorithms to compute the SA (SD)

reaction path, see e.g. the review: H. B. Schlegel, J. Comput. Chem. 24, 1514
(2003).



Variational Nature of Intrinsic Reaction Coordinate Path.

Second order variations. We compare the value of the basic integral
evaluated through an arbitrary curve (AC) and that evaluated through the
Steepest Ascent curve both joining the same initial and final points, namely,

(ay, t' =0)and (q,, t' =t).
IM—>q (qAC)_IM—>q (qSA) =

f JG (@, )\(da,c/dr) (da,e/dr')dr'- f JG (a5 )\ (dag, /dr) (dag, /dt')dr

Computed through the Arbltrary Curve (AC) that joints the pomts Computed through the Steepest Ascent Curve (SA) that joints the pomts
M and q. M and q.

This difference between integrals is the Weierstrass E-function or Error Function, that
in the present case is always positive. The Weierstrass E-function is related with the
second or higher order variation of the tangent argument, dq/dt. The Steepest Ascent
(Descent) curves make positive the Error Function. Nevertheless, this is a necessary
condition but not sufficient to ensure that any Steepest Ascent (Descent) curve
minimizes the functional integral /,,..(q). The sufficient condition is satisfied if and
only if the Steepest Ascent (Descent) curve joining two consecutive minimae does not
contain a point that is second of higher order saddle point. These points are conjugate
points of the starting minima. The Intrinsic Reaction Coordiante Path is the

unique Steepest Descent curve of character minimum.




Variational Nature of Intrinsic Reaction Coordinate Path.

The second order variation: R. Crehuet, J.M. Bofill, J. Chem. Phys. 122, 234105
(2005); A. Aguilar-Mogas, R. Crehuet, X. Giménez, J. M. Bofill, Mol. Phys. 105,
2475 (2007); W. Quapp, Theor. Chem. Acc. 121, 227 (2008).

 Extremal curves emerging
from the same minimum.

Gradient field. €




Variational Nature of Intrinsic Reaction Coordinate Path.

Applications: Location of an Intrinsic Reaction Coordinate curve between two
minima using the minimization of the Weierstrass E-function.
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The white open dots are the set of 21 points of
the initial guess curve. The dark dots indicate the
final converged position of the 21 points. In this
final position, all points are located in the Intrinsic
X ' Reaction Coordinate curve.

The dark dots are the set of 21 points of the guess curve.
The point R is labeled as 1 and the point P as 21. The bold
faced arrows are the gradient vectors of the Weierstrass E-
function computed at each point of the guess curve.




2.- b) Variational Nature of Newton Trajectory (Distinguished
Coordinate Path).



The Variational Nature of the Newton Trajectory Reaction Path.

The other curve used as Reaction Path is the Distinguished or Driven
Coordinate Path (DC), (M. J. Rothman and L. L. Lohr, Jr., Chem. Phys. Lett. 70,
405 (1980)) or a more recent version, the so-called Reduced Gradient
Following (RGF),(W. Quapp, M. Hirsch, O. Imig, and D. Heidrich, J. Comput.
Chem. 19, 1087 (1998), J. M. Anglada, E. Besalu, J. M. Bofill, R. Crehuet, J.
Comput. Chem. 22, 387 (2001)) also labeled as Newton Path or Newton
Trajectory (NT) (W. Quapp, M. Hirsch, and D. Heidrich, Theor. Chem. Acc.
100, 285 (1998)).

The Reduced Gradient Following or Newton Trajectory Reaction Path is
characterized by a curve in the PES such that at each point of this curve, the
gradient vector points at a constant direction. This can be seen in another
way, the Reduced Gradient Following curve crosses the steepest descent
curve at each point so that at the same point the tangent has the same
direction as the constant direction of the prescribed Reduced Gradient
Following direction.

The Reduced Gradient Following or Newton Trajectory Reaction Path
possesses other important features largely studied by Hirsch and Quapp (M.
Hirsch and W. Quapp, J. Math. Chem. 36, 307 (2004)) in their studies on the

convexity of the PES region where the reaction path is located.



The Variational Nature of the Newton Trajectory Reaction Path.

The Miller-Brown potential energy
surface, E(x,y). Reduced Gradient
Following or Newton Trajectory
solutions (E, = 0 , E,) (dashed
curve) and (E,, E,= 0) (bold curve).
They connect the three minima
with the two saddle points. TP
marks one of the turning points of
the Reduced Gradient Following
or Newton Trajectory curve (E, ,
E,=0).

The concept may be
generalized by the challenge
that any selected gradient
direction is fixed

V)|V E ()| x

where r is the selected unit vector
of the search direction.

W.Quapp, M.Hirsch, O.Imig, D.Heidrich, J.Comput.Chem. 19, 1087 (1998).
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The Variational Nature of the Newton Trajectory Reaction Path.

The Reduced Gradient Following approach or Driven Coordinate method
shows an important analogy to the mathematical theory of Branin, the global
Newton method, that is given by the equation:

X —2A(x)g(x)

Where A(X) is the adjoint matrix of the Hessian matrix H(x) and g(x) is the
gradient vector all computed at the position x.

The +" option is used for searching stationary points with odd index
(stationary points with an odd number of negative eigenvalues of the
Hessian), whereas the “*-" option searches for stationary points with even
index (minima, or stationary points with an even number of negative
eigenvalues of the Hessian). (W.Quapp, M.Hirsch, D.Heidrich,

Theor.Chem.Acc. 100, 285 (1998).

Limit points: stationary points (g(x) = 0) and points where g(x) # 0 but A(x)
g(x) = 0. In these points the Newton Trajectory or Reduced Gradient
Following curve bifurcates.



The Variational Nature of the Newton Trajectory Reaction Path.

The Reduced Gradient Following curves or that is the same the Newton
Trajectory curves are extremal curves of the integral functional

—T

- Xre
I(X)=fx0 V(ch,X)dx Where X =('xl’”.’xrc—l’xrcﬂ’.”’xN)

rc

. . T
and V(X) is the potential energy surface, x" (xrc,x ) 0,
The Euler-Lagrange equation is 0
re-1
1
V- V(xrc,x) =0,_, because dV/dx_ =0 then V V X, /HV V X, H "

This set of Euler-Lagrange equations determines the reaction path
function x = x(x,.) implicitly. We note that in this case the boundary | O,

values, x, = x(x,%) and x; = x(x,/), cannot be prescribed arbitrarily if the
problem should have a solution.

The tangent of this curve is:  dx/dx,. = A(x)g(x) = A(x)D,V(x).
Where the A(x) matrix is the adjoint of the Hessian matrix.




The Variational Nature of the Newton Trajectory Reaction Path.

The extremal curve x = x(x,.) makes the integral I(§) = fZ”V(x'rc,g)dxrc

rec

a minimum: If the determinant of the Hessian matrix, V.,V V(x)

projected in the subspace orthogonal to r (hormalized gradient vector) is
positive definited at each point of the curve.

,,,, - -« &~

V(x,y): The Wolfe-Quapp Potential Energy Surface .

== Newton Trajectory
S reaction path.
Because &/ > 0 then

—* this rection path is a
MEP (minimum
energy path).

» Valley-ridged border line.

. Equipotential curves
of the PES.




The Variational Nature of the Newton Trajectory Reaction Path.
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~of the PES (red curves).

In the turning point the Newton Trajectory curve has dV/dx,. =0

At each point of the valley-ridge border line the determinant of the Hessian
matrix projected in the subspace orthogonal to the gradient is zero. The matrix S
collects the set of linear independent vectors orthogonal to g(x).



The Variational Nature of the Newton Trajectory Reaction Path.

)

NT

A Newton Trajectory curve starting in @ minimum minimizes the variational
integral /(x) if the curve does not have a Valley Ridged Inflection point otherwise
no statement can be made. In the former situtation the Newton Trajectory locates
a Transition State and the whole curve is located in a walley. The Newton
Trajectory is a Reaction Path with character Minimum Energy Path. (J. M. Bofill, W.
Quapp, J. Chem. Phys. 134, 074101 (2011)).

Newton Trajectories (dx/dt = A(x)g(x)) locate both stationary points, g(x) = 0
and Valley-Ridged-Inflection points A(x)g(x) = 0. It can be used to locate Conical

Intersections. (W. Quapp, J. M. Bofill, M. Caballero, Chem. Phys. Lett. 541, 122
(2012)).




The Variational Nature of the Newton Trajectory Reaction Path.

The Reduced Gradient Following or Newton Trajectory curves open a
cornucopia of insights into the structure/topography of the Potential Eenergy

Surface. To get this we need to test a somehow greater number of Newton
Trajectory curves.

See e.g. applications in cyclopropyl radical (W. Quapp, J.M. Bofill, J. Aguilar-
Mogas, Theor. Chem. Acc. 129, 803 (2011); W. Quapp, J.M. Bofill, J. Math.
Chem. 50, 2061 (2012)).

Other applications to chemical reactivity:
M. Hirsch, W. Quapp, J.Mol.Struct. THEOCHEM 683, 1 (2004).



2.- ¢) Variational Nature of Gradient Extremals Path.



The Variational Nature of Gradient Extremals Path.

The curve where at each point the gradient norm is stationary in the equipotential
surface is called Gradient Extremals.

The curve at each point transverses the equipotential
curve V(q) = v. At this point the norm g'(q)g(q) is 0.
stationary with respect to any displacement whitin the
equipotential curve .

g'(q)g(q) stationary 02|/ P )
with respect to q in the curve V(q)—v=0 —_— |/
GE(bold curve): Gradient Extremals curves.

Pancir, J. Collect. Czech. Chem. Commun. 40, 1112 (1975); Basilevsky, M. V.; Shamov, A. G.
Chem. Phys. 60, 347 (1981); Basilevsky, M. V. Chem. Phys. 67, 337 (1982); Hoffman, D. K;
Nord, R. S.; Ruedenberg, K. Theor. Chim. Acta 69, 265 (1986); Jgrgensen, P.; Jensen, H. J.
Aa.; Helgaker, T. Theor. Chim. Acta 73, 55 (1988); Quapp, W. Theor. Chim. Acta 75, 447
(1989); Schlegel, H. B. Theor. Chim. Acta 83, 15 (1991); Sun, J.-Q.; Ruedenberg, K. J. Chem.
Phys. 98, 9707 (1993); Bondensgard,K.; Jensen,F. J.Chem.Phys. 104, 8025 (1996).

This curve is not widely used due to their computation cost. Nevertheless, still are
very appropriated as reaction paths.



The Variational Nature of Gradient Extremals Path.

000 There does not exist an Intrinsic
ol Reaction Coordinate Path
~500 connecting the minimum A with

the minimum C.

Classical dynamics. Quantum dynamics.



The Variational Nature of Gradient Extremals Path.

Mathematical Basis: An example of Lagrange-Bolza Variational Problem.

1(a)= [ {1/287 (a)(a) - 2(a)(V (a)-v)} s

The resulting Euler-Lagrange equation: Hg — Ag where H is the Hessian matrix.



The Variational Nature of Gradient Extremals Path.

The Euler-Lagrange equation, H(q)g(q) = A(q)g(q) , determines the Gradient
Extremals curve, g = q(t), implicitly. We note that in this case the boundary
values, q, = q(t,) and q; = q(t;), cannot be prescribed arbitrarily if the
problem should have a solution. The tangent curve was first derived by J.-Q.
Sun, K. Ruedenberg, J. Chem. Phys. 98, 9707 (1993).

T
gg o)+ H B Hg 194 _
g'g g'g dt

Third derivative tensor of the
energy with respect to position.

Using the perturbation theory due to McWeeny (R. McWeeny, Phys. Rev. 126,
1028 (1961)) can be derived this tangent curve equation (J. M. Bofill, W.
Quapp, and M. Caballero, J. Chem. Theory Comput. 8, 927 (2012)).



The Variational Nature of Gradient Extremals Path.

Special points of the Gradient Extremals (GE) curve.

. . The points where the matrix in the
- 88 <Fg>+H2—g HgH dq=0 brakets is not invertible are Turning
g'g g'g dt Points or Bifurcation Points of the

Gradient Extremals curve.

Bifurcation Point

K. Bondensgard, F. Jensen, J. Chem. Phys.
104, 8025 (1996); J. M. Bofill, W. Quapp,
and M. Caballero, J. Chem. Theory
Comput. 8,927 (2012)

Turning Point

GE: Gradient Extremals curve



The Variational Nature of Gradient Extremals Path.

The Extremal Sufficient Conditions. Conjugate Points of GE Curves.

Necessary condition, the stationary condition: Hg =Ag.

Sufficient condition, the second variation: &/(q) > 0 minimum (&/(q) < 0 maximum).

6’1(q,p)= t:pT [(Fg) +H’ - )LH]pdt = t:pTCp dt

If det (C) > 0 along the interval t, <t <t’ then the Gradient Extremals curve
minimizes the variational integral, /(q), otherwise maximizes I(q).

If the Gradient Extremals curve from t, to t, the det (C) > 0, but at t, the det (C) = 0 and
from this point until t’ the det (C) < O then the Gradient Extremals curve loses the
minimum character. There exists an arbitrary curve joining the the same points q(t,)
and q(t’) that makes the value of the integral /(q) lower with respect to the value of the
same integral computed using the Gradient Extremals curve.

The points where the Gradient Extremals curve has det (C) = 0 are Turning Points or
Bifurcation Points. The Turning Points and Bifurcation Points can be seen as the Conjugate
Points of Gradient Extremals curves.



The Variational Nature of Gradient Extremals Path.
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Gradient Extremals

(GE) curve (2) from
SP1 to SP2
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Turning Point

0975 N

Gradient Extremals (GE)
curve (1) from SP1 to SP2

Basic Gradient Extremals I(q) _ ft:{l/ng (q)g(q) _ A(q)(V(q) — V)}dt

Variational Integral:

I(q) evaluated on GE curve (1) > /(q) evaluated on GE curve (2)




3.- Extensions of the Reaction Path Model: the Reaction Path
Hamiltonian.



Extensions of the Reaction Path Model: The Reaction Path Hamiltonian.

Reaction Path model is linked to the path described on a multidimensional,
configuration space potential-energy surface, when the transformation from
reactants to products is considered. To use configuration space instead of
phase space obviously means neglecting the contribution of the kinetic
energy of the nuclei.

An effort to incorporate the dynamic information while, at the same time,
keeping the simplicity of envisaging the reaction as a single path on the
potential energy surface, was introduced with the formulation of the
reaction-path Hamiltonian (RPH) [W.H. Miller, N.C. Handy, J.E. Adams, J
Chem Phys 72, 99 (1980); W.H. Miller, J Phys Chem 87, 3811 (1983).]

Variety of formulations, e.g., G. D. Billing, Mol Phys 89, 355 (1996); J.
Gonzdlez, X. Giménez, J.M. Bofill, J Phys Chem A 105, 5022 (2001); J.
Gonzalez, X. Giménez, J.M. Bofill, J Chem Phys 116, 8713 (2002); J. Gonzalez,
X. Giménez, J.M. Bofill, Theor Chem Acc 112, 75 (2004). The list is very far to
be complete.




Extensions of the Reaction Path Model: The Reaction Path Hamiltonian.

B. A. Ruf and W. H. Miller, J. Chem. Soc., Faraday Trans. 2 84, 1523 (1988); D. P. Tew, N. C. Handy,
S. Carter, S. Irle, and J. M. Bowman, Mol. Phys. 101, 3513 (2003); K. A. Nguyen, C. F. Jackels, and
D. G. Truhlar, J. Chem. Phys. 104, 6491 (1996); G. A. Natanson, B. C. Garret, T. N. Truong, T.
Joseph, and D. G. Truhlar, J. Chem. Phys. 94, 7875 (1991); Y. Okuno, J. Chem. Phys. 113, 3130
(2000); Y. Okuno, S. Yokohama, and S. Mashiko, ibid. 113, 3136 (2000); S. J. Klippenstein, J. Chem.
Phys. 96, 367 (1992); V. B. Pavlov-Verevkin and J. C. Lorquet, J. Chem. Phys. 123, 074324 (2005);
V. Szalay, A. G. Csaszar, J. Santos, and J. Ortigoso, J. Chem. Phys. 118, 6801 (2003); T. Carrington,
Jr. and W. H. Miller, J. Chem. Phys. 81, 3942 (1984); 84, 4364 (1986); T. Taketsugu and M. S.
Gordon, J. Chem. Phys. 104, 2834 (1996); C. Coletti and G. D. Billing, Phys. Chem. Chem. Phys. 1,
4141 (1999); T. Taketsugu and T. Hirano, J. Chem. Phys. 99, 9806 (1993); J. Mol. Struct.:
THEOCHEM 116, 169 (1994); C. Minichino and V. Barone, J. Chem. Phys. 100, 3717 (1994); A.
Palma, E. Semprini, F. Stefani, and A. Talamo, J. Chem. Phys. 105, 5091 (1996); T. Yanai, T.
Taketsugu, and K. Hirao, J. Chem. Phys. 107, 1137 (1997); B. Lasorne, G. Dive, D. Lauvergnat, and
M. Desouter-Lecomte, J. Chem. Phys. 118, 5831 (2003); W. H. Miller, J. Chem. Phys. 76, 4904
(1982); 87, 3811 (1983); N. R. Walet, A. Klein, and G. D. Dang, J. Chem. Phys. 91, 2848 (1989); W.
H. Miller, J. Am. Chem. Soc. 105, 216 (1983); S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F.
Schaeffer Ill, J. Chem. Phys. 73, 2733 (1980); J. Am. Chem. Soc. 103, 1900 (1981); G. D. Billing,
Chem. Phys. 89, 199 (1984); W. H. Miller, B. A. Ruf, and Y. T. Chang, J. Chem. Phys. 89, 6298
(1988); G. D. Billing, Chem. Phys. 277, 325 (2002); W. H. Miller and S. Shi, J. Chem. Phys. 75, 2258
(1981); W. H. Miller and S. D. Schwartz, J. Chem. Phys. 77, 2378 (1982); S. Lee and J. T. Hynes, J.
Chem. Phys. 88, 6853 (1988); S. Jang and S. A. Rice, J. Chem. Phys. 99, 9585 (1993); J.-Y. Fang and
S. Hammes-Schiffer, J. Chem. Phys. 108, 7085 (1998); 109, 7051 (1998); B. Fehrensen, D.
Luckhaus, M. Quack, M. Villehe, and T. Rizzo, J. Chem. Phys. 119, 5534 (2003); S. P. Shah and S. A.
Rice, Faraday Discuss. Chem. Soc. 113, 319 (1999); T. Taketsugu and M. S. Gordon, J. Chem. Phys.
103, 10042 (1995); J. Gonzalez, X. Giménez, and J. M. Bofill, J. Chem. Phys. 116, 8713 (2002);...

The list is far to be complete.



Extensions of the Reaction Path Model: The Reaction Path Hamiltonian.

How good is the dynamics on a Reaction Path?
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A comparison between the path described by the Intrinsic Reaction
Coordinate and a representative, long exact classical trajectories. From a
physical point of view any Reaction Path (RP) can be seen as if one
envisions a large cloud of classical trajectories evolving on the PES. Very
often the average trajectory is going to be close to the curve selected for
the RP. This gives support to the dynamical theories: Transition State
Theory (TST), and RP-Hamiltonian.



Extensions of the Reaction Path Model: The Reaction Path Hamiltonian.

Comparison between Reaction Path and Quantum Trajectories.
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Extensions of the Reaction Path Model: The Reaction Path Hamiltonian.

For a big set of quantum trajectories the comparison is done using the
Caratheodory matrix. Each element of this matrix is a distance between two
curves: C; = |Xqr(t) — Xgp(s;)| . Quantum Trajectory (QT) Time t, < t; < ¢,
Reaction Path (RP) Arc-Lenght s, <'s; <'s.

Carathéodory plot associated with
the Quantum Trajectories
computed on Miuller-Brown
Potential Energy Surface. The
transition from red to blue indicates
an increasing distance between the
Reaction Path and the respective
Quantum Trajectory.

b

Distance / arb. units

A big subset of Quantum Trajectories
: follows the Reaction Path (Intrinsic
Reaction Coordinate).
o~ ur“ts

e art- A.S. Sanz, X. Giménez, J.M. Bofill, S. Miret-
Artés, Chem. Phys. Lett. 478, 89 (2009).




Extensions of the Reaction Path Model: The Reaction Path Hamiltonian.

The above results suggest a Quantum Reaction Path Hamiltonian (QRPH).

In their formulation is assumed that highest value of [¥(xt)/? is mainly
located in the reaction path region of the Potential Energy Surface.

1/4

0

m(s)

0s

ms)

1/2

0

0s

ms)

1/4

+V(X(S))

m(s) is a function of the tangent and curvature of the reaction path.

It is a Schrodinger equation where the mass is a function of the position, s
(the arc-lenght of the reaction path).

HQRPH\P(S,t) =ih

G‘P(s,t)

Solved using the sincDVR functions

ot

expansion.

as a basis of wave function



Extensions of the Reaction Path Model: The Reaction Path Hamiltonian.

1.0 T T T T
2.0 — Exact 2D Miiller-Brown
~— RP-Constant Mass PES
—— Q-RPH
1.5- b 0.8+
101 £ 0.6}
y 8
TS
" IRC Path
0.4
0.0\ R
0.2
_0.5 L | x | .
-2.0 10 00 1.0
Muller-Brown Potential Energy 0.0 . : ' .
0.0 0.2 0.4 0.6 0.8 1.0
Surface

Energy / a.u.

The transmission coefficient as a function of total energy for a wave packet evolving
on a Miller—Brown Potential Energy Surface for three different cases: A 1-Dimensional
motion along the Intrinsic Reaction Coordinate with a constant mass term, a 1-
Dimensional motion with a variable mass term as obtained from the present
Quantum Reaction Path Hamiltonian theory, and the exact 2-Dimensional term for a
system having a perpendicular energy corresponding to the ground vibrational energy.
(J. Gonzdlez, X. Giménez, J. M. Bofill, J. Chem. Phys. 131, 054108 (2009)).




Extensions of the Reaction Path Model: The Reaction Path Hamiltonian.

A more realistic example: F+H, = FH +H

The 3-Dimensional with total angular momentum set to zero of the F + H,
reaction dynamics is considered on the well-known Stark—Werner (SW) PES.

This reaction has also been used as a compelling system to test the
approximate quantum methods.

1.0 T T

O =
2 co
T T

Probability
o
H
I

"t

' 'y
l;4 2. ok 3

-~ Exact
- Variable Mass
Fixed Mass

1 1 1

0.0 :
0.20 0.25 0.30

0.35 0.40 0.45 0.50
Total Energy / eV

The transmission coefficient as a
function of total energy for a system
corresponding to the 3-Dimensional
J=0 F + H, reaction on the Stark-
Werner PES. The present Quantum
Reaction Path Hamiltonian results
with (green trace) and without (red
trace) the variable mass term are
compared against exact 3-
Dimensional quantum scattering
calculations (blue trace).



4.- A New View of Potential Energy Surface:
The Huyghens Construction.



A New View of Potential Energy Surfaces: The Huyghens Construction.

The figure of a set (field) of Steepest Ascent (Descent) curves (extremal
curves of a Variational Principle) transversing a family of energetically
equidistant equipotential surfaces is completly analogous to the Fermat-
Huyghens contruction of the propagation of light rays in an non-isotropic

medium studied in optics. Fjeld of Steepest Ascent curves

~— > Family equidistant
=» equipotential surfaces.

Since the propagation of light rays can be
studied using waves, then it is obvious to
ask why not to see the propagation of
Steepest Ascent curves using the wave’s
theory.




A New View of Potential Energy Surfaces: The Huyghens Construction.

Question: Which the equation is that governs the propagation?

The only possibility is a second order partial differential equation type hyperbolic
related in some way (through the Characteristic Theory) with the Potential Energy
Surface.

Vivv. Vv
Solution: Characteristic Surface
| > v=V(x)
G ( X) N - g
N — _ Chayacteristic Surfacq:
Characteristic Equation: Family of Equipotential Surface
Eikonal Equation

The solutions of the hyperbolic partial differential equation are “wave-like”.

The solution of the proposed hyperbolic differential equation will result in a wave
function of position, x, and energy surface,v, ¥(x,v), being v = V(x).



A New View of Potential Energy Surfaces: The Huyghens Construction.

The hyperbolic differential equation satisfying the above requirements is:
"W (x,v) o (x,v)

P +Trace[H(X)] P =(

V¥ (x,v)-G(x)

where, V2 =09/0x’ +...+0>/ox>,,
G(x) is the square of the gradient norm,
H(x) is the Hessian matrix and

v is the equipotential energy surface, v =V (x).

A solution:

W(x,v)= exp(z’(v — V(X))) -1



A New View of Potential Energy Surfaces: The Huyghens Construction.

A graphical view.

Model for the action of Huygens Construction. Wavelets of different
”speed”, 1 /G(x)/2, start from a lower level line, an equipotential energy
surface (the bold curve). They build an envelope. It is the new wave
front, or the new level line or equipotential energy surface, respectively.

(J.M. Bofill, W. Quapp, M. Caballero (to be publish).

The Huyghens Construction may be open a new view of the
Potential Energy Surface and Reaction Path Models.
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