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Zusammenfassung in deutscher Sprache

Die Ergodentheorie hat ihren Ursprung in der Statistischen Mechanik, welche das thermo-
dynamische Verhalten physikalischer Systeme auf mikroskopischer Ebene beschreibt. Aus-
gehend von einschneidenden mathematischen Durchbrüchen in den 30er Jahren hat sich
daraus im Laufe des 20. Jahrhunderts eine eigenständige mathematische Disziplin gebildet.
Diese moderne Theorie verbindet Funktional- und Fourieranalysis, Wahrscheinlichkeits-
theorie sowie Quantenmechanik und liefert mächtige Werkzeuge zur Lösung schwieriger
Fragestellungen in vielen mathematischen Bereichen, darunter z.B. Zahlentheorie und Har-
monische Analysis.

In der klassischen Ergodentheorie untersucht man sog. dynamische Systeme. In dem betrach-
teten Kontext verstehen wir darunter ein Tupel (X,ϕ), wobei (X,B, µ) einen Wahrschein-
lichkeitsraum darstellt und ϕ : X → X eine messbare Transformation beschreibt, welche
das Maß µ erhält, d.h. µ(ϕ−1A) = µ(A) für alle A ∈ B.
Für festes 1 ≤ p < ∞ induziert ϕ durch die Vorschrift Tf := f ◦ ϕ eine positive Kontrak-
tion auf Lp(X). Der diskrete zeitliche Durchschnitt eines Elementes f ∈ Lp(X) bis zum
Zeitpunkt t = (N − 1), N ∈ N ist dann durch das Cesàro Mittel AN := N−1∑N−1

n=0 T
nf

gegeben. Eine natürliche Frage ist die nach dem Langzeitverhalten dieser Mittel. Eine er-
ste Antwort geht dabei auf den Ungarn John von Neumann zurück, der für f ∈ L2(X)
zeigte, dass die Ausdrücke ANf in der Norm konvergieren (Mittelergodentheorem). Durch
dieses Resultat inspiriert, gelang dem Amerikaner George David Birkhoff der Nach-
weis der punktweisen fast sicheren Konvergenz auf L1(X) (Individuelles Ergodentheorem).
In dieser Arbeit betrachten wir anstelle von ϕ maßerhaltende Wirkungen von amenablen
(mittelbaren) Gruppen auf σ-endlichen Maßräumen.
In Kapitel 2 geben wir eine kurze Einführung in die Theorie mittelbarer Gruppen und stellen
unter anderem fest, dass alle kompakten, alle abelschen und alle auflösbaren Gruppen zu
dieser Klasse gehören. Falls die Gruppe G zusätzlich σ-kompakt ist, so wird ihre Mittel-
barkeit charakterisiert durch die Existenz einer Folge {Fn} kompakter Teilmengen aus G,
welche sich durch spezielle Invarianzeigenschaften auszeichnen (Følnerfolge). Details und
Beispiele sind in Kapitel 3 zu finden. Mittels Følnerfolgen lassen sich abstrakte ergodische
Mittel ANf durch

ANf(x) := mL(FN )−1
∫
FN

f(g · x) dmL(g), f ∈ Lp(X),

definieren, wobei mL(·) das Linkshaarmaß auf G und g · x die Wirkung des Elements g ∈ G
auf x ∈ X bezeichnet.

Im Folgenden werden die Konvergenzeigenschaften der ANf ausführlich untersucht. Als
Höhepunkt der Arbeit beweisen wir mittels eines Transferenzprinzips eine Erweiterung von
Elon Lindenstrauss’ (Fields Medaillen Preisträger 2010 für Arbeiten über Maßrigidität
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6 Zusammenfassung in deutscher Sprache

in der Ergodentheorie und deren Anwendungen in der Zahlentheorie) gefeiertem Individu-
ellen Ergodentheorem für fast alle σ-kompakten, mittelbaren Gruppen. Während Lin-
denstrauss nur den L1-Fall auf Wahrscheinlichkeitsräumen betrachtet, weiten wir dieses
Resultat auf alle Lp-Räume (1 ≤ p < ∞) über σ-endlichen Maßräumen aus (siehe Korol-
lar 8.8). Der Fall p = ∞ für unendliche Maßräume kann im Rahmen dieser Arbeit nicht
behandelt werden, da hier zentrale Argumente wie Kompaktheitskriterien (siehe Kapitel 4)
und bestimmte Ungleichungen (siehe z.B. Kapitel 6 und 7) nicht mehr gelten müssen.

Wir gehen in vier Schritten vor.

• In Kapitel 4 weisen wir die Normkonvergenz der abstrakten ergodischen Mittel durch
einen allgemeinen Mittelergodensatz nach. Wir erhalten dabei eine Zerlegung des
betrachteten Banachraumes in die direkte Summe zweier abgeschlossener Teilräume.
Für den Beweis der punktweisen Konvergenz werden diese im Folgenden separat be-
trachtet.

• Wir erklären das Konzept einer Lp-Maximalungleichung in Kapitel 5. Mit der mittel-
ergodischen Zerlegung beweisen wir das punktweise Ergodentheorem mit elementaren
Rechnungen auf einem dichten Teilraum von Lp(X). Wir zeigen ferner, dass wir die
Maximalungleichung nutzen können, um das Konvergenzresultat auf den Abschluss
(also auf den ganzen Raum) auszuweiten.

• Im folgenden Kapitel 6 wird das bereits angesprochene Transferenzprinzip erläutert.
Wir zeigen, dass sog. Transferenzungleichungen hinreichend für Lp-Maximalungleichungen
sind.

• Schließlich beweisen wir unter Ausnutzung der intrinsischen Gruppenstruktur die
Gültigkeit der Transferenzungleichungen für alle 1 ≤ p < ∞. Dabei stellen wir
zunächst die deterministischen, kombinatorischen Argumente von Weiss für abzählbare
mittelbare Grupen vor (Kapitel 7). Danach werden Lindenstrauss’ stochastische
Methoden erläutert, welche letztlich die Transferenzungleichungen für die betrachteten
σ-kompakten amenablen Gruppen liefern (Kapitel 8).

Abschließend erwähnen wir in Kapitel 9 mögliche Anwendungen des Individuellen Ergoden-
theorems.



1 Introduction

Ergodic theory has its origin in statistical thermodynamics which describes the thermody-
namic behaviour of physical systems involving a large number of small particles. By the end
of the 19th century, one of the originators of statistical mechanics, the Austrian physicist
Ludwig Boltzmann (1844-1906) formulated the so-called ergodic hypothesis. It states
that given a ’typical’ transformation ϕ on a physical state space X (e.g. the motion of
particles in a box filled with an ideal gas described by the change of their space and velo-
city coordinates), the trajectory (orbit) of each initial state hits every possible state of the
system as time progresses. These systems were called ergodic by Boltzmann. However,
it turned out that such ’ergodic systems’ do not exist at all (cf. [35]). Consequently, the
ergodic hypothesis was weakened and one conjectured that the orbit of each initial state gets
’close’ to every element in the state space (quasi ergodic hypothesis). But what does ’close’
mean in this setting? By the turn of the century, strong efforts were put into the develop-
ment of a precise theory. At the beginning of the 1930s, fundamental contributions were
made by mathematicians such as John von Neumann (1903-1957), Norbert Wiener
(1894-1964) and George David Birkhoff (1884-1944). Linking probability theory,
functional and Fourier analysis as well as quantum mechanics, the ergodic theory was born
as a new mathematical discipline. Today, it provides powerful tools to approach difficult
problems in various areas such as Lie theory, number theory or harmonic analysis.

In classical ergodic theory one studies the state space and the transformation in a dynam-
ical system (X,ϕ) which is supposed to run for a long time. In topological cases one often
assumes that X is a compact Hausdorff space and that the map ϕ : X → X is a homeo-
morphism. For the purpose of this thesis, we restrict ourselves to the class of so-called mea-
sure dynamical systems given by a probability space (X,B, µ) and by some transformation
ϕ : X → X preserving the measure, i.e. µ(ϕ−1A) = µ(A) for all A ∈ B. A transformation
ϕ is then said to be ergodic if all ϕ-invariant measurable sets (ϕ−1A = A) have either zero
or full measure.
Fixing some 1 ≤ p <∞, the transformation ϕ induces a positive contraction on Lp(X) via
Tf := f ◦ ϕ with T1 = 1, where 1 denotes the constant one-function on X. In this con-
text one can interpret some f ∈ Lp(X) as a map which assigns some physically observable
number to almost every state of the space X (returning to the gas box system one might
e.g. think of the kinetic energy). Hence, the measurement of the key number at time n ∈ N
gives the value Tnf(x) = f ◦ ϕn(x) for the initial state x ∈ X. Thus, measuring at each
point of time from t = 0 up to t = N − 1, N ∈ N, the (unweighted) time average of the
measurements will be denoted by the Cesàro means ANf := (1/N)

∑N−1
n=0 T

nf . So the nat-
ural follow-up question is about the long term behaviour of the system, i.e. to understand
what happens to the terms AN as N tends to infinity. In 1931, von Neumann gave a
first answer by proving his mean ergodic theorem in the L2-case. It states that the Cesàro
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8 1 Introduction

means ANf converge to some almost surely ϕ-invariant limit f∗ in L2(X)-norm. Inspired by
this result, Birkhoff managed by the end of the same year to prove the pointwise ergodic
theorem, likewise called individual ergodic theorem by showing that for each f ∈ L1(X),
the ANf converge to f∗ pointwise almost surely. In particular, if the transformation ϕ is
ergodic, then f∗(x) =

∫
X f dµ for almost every x ∈ X by the invariance of f∗. It follows

that the trajectory {ϕn(x)}n returns to every set of positive measure infinitely often for
almost every initial state x and therefore, a precise version of the quasi ergodic hypothesis
was confirmed. While von Neumann’s mean ergodic theorem (which also proves the quasi
ergodic hypothesis) came out in January 1932 (see [42]), Birkhoff managed to publish his
individual ergodic theorem already in December 1931 (see [2]). Historic facts even indicate
that Birkhoff used his strong academic influence in order to delay the paper of the young
von Neumann (cf. [30]). Although the latter kept on pretending not to care too much, the
relation between these outstanding mathematicians was always affected by tensions.

During the 20th century, many generalizations of both ergodic theorems have been found.
As shown in [19] by Hopf, the induced operator can e.g. be replaced by a positive isometry
on L1(X) with the additional property that T1 = 1. In 1965, Garsia gave a far simpler
proof of this fact in [15] which also lays the basis for many modern pointwise ergodic results.
In light of that, Akcoglu significantly extended the work of Ionescu-Tulcea (cf. [22])
by showing that the pointwise ergodic theorem also holds in the case of a σ-finite measure
space and for each positive contraction T on the corresponding reflexive Lp-spaces (cf. [1]).
Moreover, convergence theorems for modified ergodic averages have been proven, see e.g.
[20].

In this thesis, we devote ourselves to the case when the dynamics on the measure space
is induced by actions of so-called amenable groups allowing for the definition of abstract
ergodic averages. This class is large enough to comprise e.g. all compact as well as all
abelian groups. As a main issue we examine the convergence properties of these averages.
This has been done before by calderon for a rather narrow class of groups in [4] and by
Emerson for a large class of σ-compact amenable groups in [11]. As a highlight, we give
an extension of Lindenstrauss’ (Fields Medalist 2010 for his work on measure rigidity in
ergodic theory and its applications to number theory) celebrated general pointwise ergodic
theorem for second countable amenable groups. While this result was originally stated for
integrable functions on a probability space (see [29]), we use the transfer principle to show
the validity of the theorem for all p-integrable functions on a σ-finite measure space (see
Chapter 8). We will not be able to draw conclusions if p = ∞ on an infinite measure
space because essential arguments such as compactness criteria (cf. Chapter 4) and certain
inequalities (cf. Chapter 6 and Chapter 7) will fail in this case.

We proceed as follows. In Chapter 2, we explain in detail the notion of an amenable group
and give significant examples. Next, we draw our attention to σ-compact groups, which are
amenable if and only if there is a so-called Følner sequence of compact subsets of the group
with certain invariance properties. A Følner sequence is the crucial ingredient to define
abstract ergodic averages.
In Chapter 3, we give examples for such sequences and introduce growth conditions which
will become important for pointwise ergodic theorems.
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The Chapters 4 to 8 are devoted to the presentation of a standard technique for proving
pointwise ergodic theorems. This procedure is divided into four parts.

(1) Mean ergodicity. One starts by proving a mean ergodic theorem. In Chapter 4, we
amend an abstract version which is due to Greenleaf in 1973 (cf. [18]). One major
result will be that mean ergodicity (defined as the strong convergence of the ergodic
averages) is equivalent to the direct decomposition of the Banach space into the direct
sum of two closed subspaces with specific properties. For the proof of the individual
ergodic theorem, it is convenient to treat these spaces separately.

(2) Maximal inequality. We explain the concept of an Lp-maximal inequality in Chap-
ter 5. It turns out that using the mean ergodic decomposition in the Lp-case, the
pointwise almost everywhere convergence of the abstract ergodic averages is obtained
by elementary calculations on a dense subspace of Lp(X). The maximal inequality will
provide the tool needed to extend the convergence result to the closure.

(3) Transfer principle. In Chapter 6, we describe the transfer principle which gives a
sufficient condition for the validity of an Lp-maximal inequality in form of a transfer
inequality. The main conclusion here will be the fact that one can turn away from the
action of the group on the measure space and consider instead the canonical action of
the group on itself.

(4) Transfer inequality. Finally, we use combinatorial arguments and the intrinsic struc-
ture of the group to prove the transfer inequalities for all 1 ≤ p < ∞. We present
a method of Weiss for countable amenable groups in Chapter 7. As already men-
tioned, using Lindenstrauss’ ideas, we treat the case of σ-compact amenable groups
in Chapter 8 and prove the pointwise ergodic theorem in a rather general setting.

In a short outlook (Chapter 9), we give a brief outline of possible applications of the point-
wise ergodic theorem as well as of the decompositions presented in Chapter 8.
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2 Amenability

The following discussion of amenable groups is mainly based on the first two chapters of
[17]. Deviations are labeled separately.
In this chapter, we introduce the notion of amenability for locally compact groups. In light
of that, we verify the existence of so-called left-invariant means on (left-)invariant function
spaces (cf. Definition 2.2) over the group. We will see that the property of amenability
as specified in Definition 2.6 allows some flexibility concerning the invariance properties
(cf. Lemma 2.3) as well as the domain of definition (cf. Theorem 2.5) of the mean. We
present examples of amenable and non-amenable groups in the example Sections 2.4 and 2.7.
Further, we examine specific nets of the group with weak and strong invariance properties
as determined in Definition 2.9 and show that their existence is equivalent to amenability
of the group (cf. Theorems 2.11 and 2.10, Corollary 2.12).

Definition 2.1
Let G be an arbitrary set and let Y be a closed subspace of B(G), the space of all bounded,
complex-valued functions on G, equipped with the sup-norm ‖ · ‖∞. Assume further that Y
contains the constant functions and is closed under complex conjugation z 7→ z.
Then a positive linear functional m on Y is said to be a mean if

(i) m(f) = m(f) for all f ∈ Y and

(ii) m(1) = 1,

where 1 := 1G denotes the constant one-function on G.

It follows that ‖m‖ := supf∈B(G), ‖f‖∞=1 |m(f)| = 1. By the Banach-Alaoglu Theorem, the
closed set of means on Y forms a weak∗-compact, convex set Σ ∈ Y ∗, where we denote by
Y ∗ the dual space of Y . If G is a group, one can define (left-)invariant function spaces and
(left-)invariant means.

Definition 2.2
Let G be a group and Y ⊆ B(G) be a closed subspace of B(G). Then Y is called left-
invariant if for all g ∈ G and for all f ∈ Y , Lgf := f(g−1·) ∈ Y .
We say that m is a left-invariant mean on the left-invariant space Y if m is a mean on
Y and m(Lgf) = m(f) for all g ∈ G and for all f ∈ Y .
The operator Lg is called left translation by g ∈ G.

Right-invariant function spaces are defined in an analogous manner. Note that the right
translation by some g ∈ G is denoted by Rg(f) := f(·g). Consequently, a space Y is called
invariant if it is both left- and right-invariant. An invariant mean m is a mean on an
invariant function space Y which is invariant under Lg and Rg for all g ∈ G.

11



12 2 Amenability

Lemma 2.3
Let G be a group and Y be a left-invariant subspace of B(G). Then the following statements
are equivalent:

(i) There is a left-invariant mean on Y .

(ii) There is a right-invariant mean on Ỹ := {f(·−1) | f ∈ Y }.

Proof
Given a left-invariant mean m on Y , define

m̃ : Ỹ → C : m̃(f) := m(I(f)),

where I(f) := f(·−1). We see that

Rg[I(f)] = f(·−1g) = f((g−1·)−1) = I[Lg(f)]

and thus

m̃(Rg[I(f)]) = m̃(I[Lg(f)])
Def.= m(Lgf) = m(f) Def.= m̃(I(f))

for each g ∈ G and every f ∈ Y . �

The existence of (left-)invariant means on Y ⊆ B(G) cannot be confirmed for all groups as
the following example shows.

Example 2.4
Let G = F2 be the free group on two generators a, b and assume that m is a left-invariant
mean on B(G). Then one can define a left-invariant, finitely additive function µ on the
powerset of F2 by µ(A) = m(1A) for A ⊆ F2.
By definition, we can decompose F2 into disjoint subsets {Hi | i ∈ Z} with Hi containing
exactly the elements expressed as a reduced word by

g = aibi1ai2 . . . , i1 6= 0 if g 6= ai.

Then the mappings λa : Hi → Hi+1 : g 7→ ag, (i ∈ Z) and λb : Hi → H0 : g 7→ bg, (i ∈
Z \ {0}) are well defined. Since µ is left-invariant and λa is bijective, we must have µ(Hi) =
µ(Hi+1) for all integers. By the fact that m is a mean, µ(G) = 1 and by disjointness
of the Hi we conclude that µ(Hi) = 0 for all i ∈ Z. Now λb maps every set Hi with
i 6= 0 into H0, so that µ(H0) ≥ µ(∪i 6=0Hi). But since µ is finitely additive, one obtains
µ(H0) + µ(∪i 6=0Hi) = µ(G) = 1 and by the preceding inequality this implies µ(H0) ≥ 1/2.
This is a contradiction to our previous result stating that µ(Hi) = 0 for all i ∈ Z. Hence,
such a mean m cannot exist.

So far, we have restricted our attention to means on B(G). In the following we take G to
be a locally compact group, i.e. a topological Hausdorff group with the property that each
point in G has a compact neighborhood.



2 Amenability 13

Then the space B(G) does not reflect the topological structure of G. We now consider
subspaces Y which take into account the topology of the group. A good choice for an ap-
propriate space Y is CB(G), the space of all bounded, continuous functions on G.
A function f : G → C is called right uniformly continuous if for some given ε > 0, there is
a neighborhood U(ε) of the unit in G such that |Lhf(g) − f(g)| < ε for all g ∈ G and all
h ∈ U(ε). So one can examine (left-)invariant means on Y = UCBr(G), the (‖ · ‖∞-closed)
space of all right uniformly continuous functions.
Another reasonable space is L∞(G,mL), the collection of all mL-essentially bounded func-
tions (equivalence classes) on G with respect to mL, where mL is the left Haar measure on
G (see [9], Section 1.3).
In fact, the existence of some left-invariant mean on one of these three spaces implies the
existence of a left-invariant mean on all of the others.
Theorem 2.5
The following statements are equivalent:

(i) There is a left-invariant mean on CB(G).

(ii) There is a left-invariant mean on UCBr(G).

(iii) There is a left-invariant mean on L∞(G,mL).

Proof
See [17], Theorem 2.2.1. �

In the following, we simply write L∞(G) instead of L∞(G,mL). Let us introduce the notion
of amenability for locally compact groups.

Definition 2.6
A locally compact group G is said to be amenable if there exists a left-invariant mean m
on L∞(G), i.e. m is a mean and for the operator Lg from above, considered on L∞(G), we
have

m(Lgf) = m(f)

for all g ∈ G and all f ∈ L∞(G).

We give some examples and refer to certain stability conditions for amenability such as
inheritance on closed subgroups (cf. [37], Theorem 1.2.7) and division by closed normal
subgroups (cf. [37], Theorem 1.2.10).

Examples 2.7 (cf. [37], Examples 1.1.5 and 1.2.11)
(1) Each compact group is amenable. Since the Haar measure mL is a Radon measure,

we have mL(G) < ∞ and thus L∞(G) ⊆ L1(G). By the left-invariance of the Haar
measure,

m : L∞(G)→ C : m(f) = 1
|G|

∫
G
f(g)dmL(g)

is a left-invariant positive functional with m(1) = 1, hence a left-invariant mean.
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(2) Each locally compact, abelian group is amenable. As mentioned above, the set Σ of all
means on L∞(G) is weak∗-compact and convex. For each g ∈ G, define a linear map

Tg : L∞(G)∗ → L∞(G)∗ : m 7→ Tgm

through

〈f, Tgm〉L∞,(L∞)∗ = 〈Lgf,m〉L∞,(L∞)∗ .

If m ∈ Σ, then Tgm is evidently a mean on L∞(G), i.e. Tg(Σ) ⊆ Σ for all g ∈ G.
Further, the maps Tg are weak∗-continuous. Since G is abelian, we can apply the
Markov-Kakutani fixed-point theorem ([10], Theorem V.10.6). Hence there must be
some m∗ ∈ Σ such that Tgm∗ = m∗ for all g ∈ G and we conclude that m∗ is an
invariant mean on L∞(G).

(3) A group G is called solvable if there are normal subgroups N0, N1, . . . , Nn of G with

{1} = N0 ⊆ N1 ⊆ · · · ⊆ Nn = G

and Nj/Nj−1 is abelian for 1 ≤ j ≤ n. Solvable groups are amenable if we endow
such a group G with the discrete topology. To see this, note that the property of
being solvable does not depend on the topology and use the fact that amenability is
compatible with division by closed normal subgroups, i.e. if N is such a subgroup and
both N and G/N are amenable, so is G (cf. [37], Theorem 1.2.10). Combining this
result with example (2), we observe that discrete solvable groups are amenable. Hence,
there is some left-invariant mean m on B(G). If we examine other topologies on G, we
have that CB(G) ⊆ B(G) and we conclude that the restriction of m is a left-invariant
mean on CB(G). Therefore, all solvable locally compact groups are amenable.
We present two concrete examples.

(a) We denote by H the Heisenberg group, defined as

H :=


1 x y

0 1 z
0 0 1

 ∣∣∣x, y, z ∈ R


with the matrix multiplication as group operation. Put N0 = {I3}, N1 = [H,H]
and N2 = H, where I3 is the unit matrix in R3×3 and [H,H] is the commutator
subgroup of H. It is easily verified that these normal subgroups of H satisfy the
requirements for solvability of H. Therefore, the Heisenberg group is amenable.

(b) The Lamplighter group is denoted by

G := Z + Z2 := {(m, a) |m ∈ Z, a ∈
⊕
i∈Z

Z2},

where Z2 is the cyclic group of order two. Thus, we have G = {(m, a) |m ∈ Z, a ∈
ZZ

2} as a set. With σ as the left shift on the space of all 0-1-sequences over Z (i.e.
σ((xn)n) = (xn+1)n), the group operation is

(m, a) · (n, b) := (m+ n, σna+ b).
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This group is solvable as the wreath product of two solvable groups and hence
amenable. For a more detailed discussion of wreath products and its properties, see
[36], p. 172 ff.

(4) As we have seen before, the free group F2 on two generators is not amenable.

(5) Using the theory of linear fractional transformations (see [6], III.3.) one can show that
the groups SL(n,C) (all complex (n× n)-matrices with determinant equal to one) and
GL(n,C) (all complex, invertible (n × n)-matrices) with their natural locally compact
topologies are not amenable for n ≥ 2.
To see this, note first that for every matrix

A =
(
a b
c d

)
∈ GL(2,C),

there is a map

hA : C ∪ {∞} → C ∪ {∞} : z 7→ az + b

cz + d
,

where we put hA(∞) := a/c and hA(−d/c) :=∞. These maps hA form a group G with
composition as group multiplication. The non-amenability of the group SL(n,C) can
now be proven as follows (cf. [37], Exercise 1.2.6).
Observing that the assignment

M : GL(2,C)→ G : A 7→ hA

is a group homomorphism, one defines the group PSL(2,R) as the image of SL(2,R)
underM. Further, one can show PSL(2,R) ∼= SL(2,R)/ ≈, where A ≈ B if and only if
A = −B or A = B for A,B ∈ SL(n,R). With the quotient topology (the finest topology
making the canonical map SL(2,R) → PSL(2,R) continuous), PSL(2,R) becomes a
topological group.
Using the theory of fractional linear transformations, we can find elements h1, h2 ∈
PSL(2,R) generating a subgroup which is isomorphic to F2. Hence, by Theorem 1.2.7
of [37], the group PSL(2,R) cannot be amenable. It follows that none of the groups
SL(2,R), SL(2,C), GL(2,R) and GL(2,C) is amenable. Interpreting these elements
as subgroups of the corresponding higher-dimensional type, we note that the groups
SL(n,R), GL(n,R), SL(n,C) as well as GL(2,C) are not amenable for all n ≥ 2.

(6) The matrix groups SL(2,R) and GL(2,R), endowed with the discrete topology, contain
a subgroup which is isomorphic to F2. As a consequence of Theorem 1.2.7 in [37], they
are not amenable.

In the following, we look at the functions

P (G) := {f ∈ L1(G) | f ≥ 0, ‖f‖L1 = 1}.

One can consider the elements in P (G) as objects in (L1(G)∗)∗ = (L∞(G))∗. Since ‖f‖L1(G) =
1 for f ∈ P (G), they can be identified with means on L∞(G).
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Proposition 2.8
The set P (G) is weak∗-dense in Σ, the collection of all means on L∞(G).

Proof
Assume that P (G) ∗ 6= Σ. As P (G) ∗ is a weak∗-closed, convex set in Σ we can then find
some m0 ∈ Σ \ P (G) ∗. By the Hahn-Banach Separation Theorem (cf. [44], Theorem VIII
2.12), there is some f0 ∈ (L∞(G)∗σ((L∞)∗,L∞))

∗ such that

Re m0(f0) > 1 ≥ Re m(f0)

for all m ∈ P (G) ∗. With the fact that f0 ∈ (L∞(G)∗σ((L∞)∗,L∞))
∗ = L∞(G) (cf. [44],

Corollary VIII 3.4), this contradicts the definition of a mean: the first inequality implies
‖f0‖L∞ > 1, i.e. there is some measurable set M ⊆ G of positive finite (Haar)measure
where f0 takes values greater than one. Obviously, the function |M |−1 · 1M is in P (G)
and by identification, defines a mean mM on L∞(G). But by choice of the set M, we have
mM (f0) > 1, which is a contradiction to the second inequality. �

Definition 2.9
A net {Φα} ⊂ P (G) is weakly (strongly) convergent to left-invariance if LgΦα−Φα →
0 weak∗ in L∞(G) (in ‖ · ‖L1-norm) for each g ∈ G.

In 1957, Day established in [7] the following link between the set P (G) and amenability
for discrete groups. This result was extended in 1966 to the general case by Hulanicki
(cf. [21]).

Theorem 2.10
There is a net in P (G) which is weakly convergent to left-invariance if and only if G is
amenable.

Proof
If the net {Φα} converges weakly to left-invariance, its elements, identified with means on
L∞(G), lie in the weak∗-compact set Σ of all means. So one can extract a subnet which we
also call {Φα} that is weak∗ convergent to some mean m ∈ Σ. For this mean, one computes
for each g ∈ G and each f ∈ L∞(G) that

m(Lgf)−m(f) = lim
α

[Φα(Lgf)− Φα(f)]

= lim
α
〈Lgf − f,Φα〉

= lim
α
〈f, Lg−1Φα − Φα〉 = 0,

where 〈·, ·〉 stands for the natural pairing of L∞(G) with L∞(G)∗.
Conversely, if m ∈ Σ is left-invariant, the weak∗-density of P (G) in Σ (cf. Proposition 2.8)
insures that by identification of L1-functions with means we can find a weak∗-convergent
net {Φα} ⊆ P (G) such that Φα → m. We have to show that this net is weakly convergent
to left invariance. Indeed, for each f ∈ L∞(G) and every g ∈ G, we have m(Lgf) = m(f),
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which implies

〈f, Lg−1Φα − Φα〉 = 〈f, Lg−1Φα〉 − 〈f,Φα〉
= 〈Lgf,Φα〉 − 〈f,Φα〉
= 〈Lgf,Φα〉 − 〈Lgf,m〉+ 〈f,m〉 − 〈f,Φα〉
→ 0 + 0 = 0,

where again 〈·, ·〉 denotes the natural pairing of L∞(G) with L∞(G)∗. �

It follows from the first part of the proof that each weak∗-limit point of {Φα} is a left-
invariant mean. In general, these limit points are far from being unique (cf. [17], p. 4).

Surprisingly, the following is true.

Theorem 2.11
The following statements are equivalent:

(i) There is a net in P (G) weakly convergent to left-invariance.

(ii) There is a net in P (G) strongly convergent to left-invariance.

Proof
Let {Φα} ⊆ P (G) be weakly convergent to left-invariance. For every g ∈ G, take a copy
of L1(G) and construct the locally convex product space E :=

∏
g∈G L

1(G) carrying the
canonical product (norm-)topology. Further, we define the linear map

T : L1(G)→ E : (Tf)g := Lgf − f.

Now the σ(E,E∗)-topology coincides with the product of the σ(L1(G), L∞(G))-topologies
(cf. [23], Chapter 5, Section 17.13 (iii)).
Since by assumption LgΦα − Φα → 0 weak∗ in L∞(G)∗ for each g ∈ G, we conclude that

〈f, LgΦα〉L∞,(L∞)∗ − 〈f,Φα〉L∞,(L∞)∗ → 0,

whenever f ∈ L∞(G). We can interpret this convergence as LgΦα−Φα → 0 weakly in L1(G)
(σ(L1(G), L∞(G))-topology) for every g ∈ G. In light of that, the zero element (0)E of E
is contained in T (P (G)) ⊆ E, where the closure is taken with respect to the weak topology
on E. Since E is locally convex and the set T (P (G)) is convex, its weak and strong closure
must coincide (cf. e.g. [23], Chapter 5, Section 17.1). Hence there is some net {Ψα} in P (G)
such that T (Ψα)→ (0)E strongly, which means by the definition of the topology on E that

lim
α
‖LgΨα −Ψα‖L1(G) = 0

for all g ∈ G. This finishes the proof.
The converse direction is trivial. �

Corollary 2.12
A locally compact group G is amenable if and only if there is a net {Φα} ⊆ P (G) that
converges strongly to left invariance.
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Proof
This is a direct consequence of the preceding Theorems 2.10 and 2.11. �
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In the following, we present an important characterization of amenability for σ-compact
amenable groups (see Definition 3.3). We start with a simple example motivating the
main theorem (3.5) of this chapter. It shows that for σ-compact groups, amenability is
equivalent to the existence of a so-called Følner sequence which can be seen as a special case
of a net converging strongly to left-invariance. Examples for Følner sequences are given in
Section 3.7. Further, we draw our attention to sequences with specific growth restrictions
and introduce the Tempelman condition as well as the Shulman condition (cf. Definition
3.8). As Lemma 3.10 shows, Følner sequences with Shulman condition always exist in
amenable σ-compact groups. To enter the world of ergodic theory and measure dynamical
systems, we explain the notion of a group action on a measure space by measure preserving
transformations (see Definition 3.11 and Examples 3.12). Finally, we give a concrete example
of a group action in Theorem 3.13 showing that it is not possible to prove a pointwise ergodic
theorem of Birkhoff type along arbitrary Følner sequences. We conclude that additional
restrictions on the sequence as introduced above are indeed necessary for pointwise almost
everywhere convergence.

Example 3.1
Consider G = (R,+) with the natural topology, as well as the sets Fn := [−n, n] ⊆ R. Then
it is not hard to show that for an arbitrary ε > 0 and an arbitrary compact set K ⊆ R, one
can find some n0 := n0(ε,K) ∈ N such that

|Fn4xFn|
|Fn|

< ε (3.1)

for all x ∈ K, whenever n ≥ n0. Here and also throughout the remainder of our elaborations,
the symbol 4 stands for the symmetric difference of sets. To justify the claim we recall that
every compact K ⊂ R is bounded, i.e. there is some c > 0 such that |x| ≤ c for all x ∈ K.
Note that xFn = [−n+ x, n+ x] and that |Fn4xFn| ≤ |Fn4cFn| which means that

|Fn4xFn| ≤ 2c

for all x ∈ K. We now put Φn := |Fn|−1
1Fn . Then for each x ∈ K

lim
n→∞

‖LxΦn − Φn‖L1 = lim
n→∞

|Fn4xFn|
|Fn|

≤ lim
n→∞

2c
|Fn|

= 0.

SinceK was arbitrary, the sequence {Φn} is strongly convergent to left-invariance and hence,
(R,+) is amenable by Corollary 2.12. This is of course not surprising, as we have already

19
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seen that abelian groups are amenable. However, this construction raises the question if
there is a connection between amenability and condition (3.1). This is indeed the case, as
the following theorem shows.

Theorem 3.2
A locally compact group G is amenable if and only if the Følner condition (FC for short)
holds, i.e. if for each ε > 0 and every compact set K ⊆ G there exists some non-empty
compact set F ⊆ G of positive measure such that

|F4gF |
|F |

< ε for all g ∈ K (FC).

Remark
For discrete groups, this theorem is due to Erling Følner, a Danish mathematician
(cf. [13]). It was extended to the general topological case by efforts of Namioka in [32] and
Ryll-Nardzewski (cf. [17], Theorem 3.6.3).

Proof (of ’⇐=’)
Using Corollary 2.12, it is not hard to see that (FC) implies amenability. Namely, take the
net I consisting of all pairs (ε,K), where ε is a positive number and K ⊆ G is a compact
set. This collection is partially ordered; for α = (εα,Kα) and β = (εβ,Kβ) in I we say
α ≥ β if εα ≤ εβ and Kα ⊇ Kβ.
By (FC), we find for each γ = (εγ ,Kγ) ∈ I some compact set Fγ such that

|Fγ4gFγ |
|Fγ |

< εγ

for all g ∈ Kγ . Define Φγ := |Fγ |−1
1Fγ . Then by the fact that each point g ∈ G has a

compact neighborhood we have that

lim
γ
‖LgΦγ − Φγ‖L1 = lim

γ
|Fγ |−1 · |Fγ4gFγ |

(FC)= 0

and the net {Φγ} ⊆ P (G) converges (strongly) to left-invariance. Hence, G is amenable.
A direct proof of the converse direction is rather technical and shall be omitted. The
interested reader may consult ([41], Theorem 4.7). �

Remark
Theorem 3.2 shows that amenability of a locally compact group is equivalent to the existence
of some net {Fγ} consisting of compact sets which are asymptotically relatively invariant
under translations by compact sets (with respect to the Haar measure). This makes sure
that the sets Fγ have to grow in a uniform manner (see picture 3.1 for G = (R2,+)).
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Figure 3.1: Example for G = (R2,+); in bold face: translations by singletons {(0, c)}, c > 0

Note that there are many characterizations of amenability for locally compact groups. For
our purposes, the Følner condition is the most adequate one. Also, we will draw our
attention to σ-compact groups defined as follows.

Definition 3.3
A group G is called σ-compact if it can be represented as a countable union of compact sets.

Clearly, the groups Rd and Zd are σ-compact. The same is true for the Lamplighter group
which can be written as a countable union of finite sets. As an abstract example, consider
the following proposition:

Proposition 3.4
Any locally compact, second countable group is σ-compact.

Proof
It follows from elementary topology that by the Hausdorff property of the group, we can find
for each g ∈ G some open neighborhood Ug with compact closure. So if {Vn} is a countable
base of the topology of G, then one can choose some n(g) ∈ N with g ∈ Vn(g) ⊆ Ug. Taking
closures, we see that Vn(g) ⊆ Ug. The sets Ug are compact by the choice of the Ug and since
G is a Hausdorff group, Vn(g) must be compact as a closed subset of a compact set. We
conclude G = ∪g∈G g ⊆ ∪g∈G Vn(g) ⊆ ∪n∈N Vn ⊆ G and the proposition is proven. �

Emerson and Greenleaf showed in [12] that for σ-compact groups, amenability is equiv-
alent to the existence of a sequence of compact sets such that the corresponding normalized
characteristic functions converge strongly to left-invariance in a uniform manner.

Theorem 3.5
A σ-compact group G is amenable if and only if there exists a sequence {Fn} of non-empty
compact sets in G of positive measure such that for every compact set ∅ 6= K ⊆ G we have

lim
n→∞

|Fn4KFn|
|Fn|

= 0.
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Proof
See [12], Theorem 3.2.1. �

Definition 3.6
A sequence {Fn} as in Theorem 3.5 is called Følner sequence.

As we have seen in the Theorems 2.10 and 2.11, Følner sequences provide useful tools to
define left-invariant means on L∞(G). We give some examples of Følner sequences for
various amenable groups.

Examples 3.7
(1) For any compact group (e.g. G = Td), the sequence {Fn}n = {G}n is a Følner sequence.

(2) For G = (Zd,+), (Rd,+), the canonical cubes {Fn} with Fn = {−n,−(n− 1), . . . , (n−
1), n}d resp. Fn = [−n, n]d are Følner sequences. For G = (Z,+), the sequence defined
by Gn = {n2, n2 + 1, . . . , n2 + n} is a Følner sequence.

(3) Consider the Lamplighter group and set

Fn :=
{

(m, a) ∈ G
∣∣∣ |m| ≤ n, a =

2n∑
k=−2n

αkek, αk ∈ {0, 1}
}
,

with ek = (δjk)j∈Z and δjk the Kronecker symbol. We claim that {Fn} is a Følner
sequence.
Let g ∈ G, i.e. g = (l, b) with l ∈ Z and b =

∑r
k=−r βkek for some r ∈ Z, βk ∈ {0, 1}.

Let further f = (m, a) ∈ Fn. We compute

g · f = (l, b) · (m, a) = (l +m,σmb+ a)

=
(
l +m,

r−m∑
k=−r−m

βkek +
2n∑

k=−2n
αkek

)
.

Note that for n > r, one obtains with |m| ≤ n (def. of Fn) that

−2n < −r −m < r −m < 2n.

Hence,

r−m∑
k=−r−m

βkek +
2n∑

k=−2n
αkek =

2n∑
k=−2n

γkek

with γk ∈ {0, 1} for −2n ≤ k ≤ 2n.
It follows from the definition of the Fn that gf ∈ Fn as long as |l + m| ≤ n. The
condition that for fixed g = (l, b) ∈ G, we have f = (m, a) ∈ Fn with |l + m| > n
(and thus gf /∈ Fn) implies that for any choice of l, we have exactly |l| choices for m.
Therefore,

|Fn4gFn| ≤ |l| · 24n+1,
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which with |Fn| = (2n+ 1) · 24n+1 implies that

|Fn4gFn|
|Fn|

≤ |l|
2n+ 1 → 0, n→∞.

Hence, {Fn}n is a Følner sequence.

We will see in a moment that it is not possible to prove pointwise convergence results along
arbitrary Følner sequences of amenable groups acting on a Lebesgue space. In fact, some
growth restrictions on the sequence are required. We present the following two conditions.

Definition 3.8
A Følner sequence {Fn}n satisfies the Tempelman condition if there exists some C > 0
such that for all n ∈ N ∣∣∣∣∣∣

⋃
k≤n

F−1
k Fn

∣∣∣∣∣∣ ≤ C|Fn|. (3.2)

It satisfies the Shulman condition if there exists some C > 0 such that for all n ∈ N∣∣∣∣∣∣
⋃
k<n

F−1
k Fn

∣∣∣∣∣∣ ≤ C|Fn|. (3.3)

Følner sequences satisfying the Shulman condition are called tempered.

Evidently, the Tempelman condition implies the Shulman condition. The converse is not
true in general. Let us consider some examples.

Examples 3.9
(1) The canonical cubes, defined above, satisfy the Shulman as well as the Tempelman

condition.

(2) We have already mentioned that the sequence Fn := {n2, n2 + 1, . . . , n2 +n} is a Følner
sequence in G = Z. It neither satisfies the Tempelman, nor the Shulman condition. To
see this, we remark that

F−1
k Fn = {−k2 − k + n2, . . . ,−k2 + n+ n2}.

It is easily verified that with k < n, −(k+ 1)2 +n+n2 ≥ −k2− k+n2 and we conclude
that F−1

k−1Fn ∩ F
−1
k Fn 6= ∅ for 2 ≤ k ≤ (n− 1). In light of that, we have⋃

1≤k<n
F−1
k Fn = {−(n− 1)2 − (n− 1) + n2, . . . ,−12 + n+ n2}

= {n, . . . , n2 + n− 1},

so that

lim inf
n→∞

| ∪k<n F−1
k Fn|

|Fn|
= lim inf

n→∞
n2

n+ 1 =∞.



24 3 Følner conditions

Hence, {Fn} is not tempered and in particular, it does not satisfy the Tempelman
condition.

(3) Again, consider the Lamplighter group G with the Følner sequence {Fn}n from the pre-
vious example. We claim that this sequence does not satisfy the Tempelman condition,
but contains a tempered subsequence (cf. [3], example 1.50).
Note that the inverse element of some g = (l, b) ∈ G is g−1 = (l, b)−1 = (−l, σ−lb). In
light of that we write the set F−1

m Fn as

F−1
m Fn =

(k − l, σk−lb+ c
) ∣∣∣ |l| ≤ m, |k| ≤ n , b =

2m∑
s=−2m

βses, c =
2n∑

t=−2n
γtet


=


k − l, 2m∑

s=−2m
βses+(k−l) +

2n∑
t=−2n

γtet

 ∣∣∣ |l| ≤ m, |k| ≤ n


=


d, 2m+d∑

s=−2m+d
β(s−d)es +

2n∑
t=−2n

γtet

 ∣∣∣ |d| ≤ n+m

 , (3.4)

where of course, we take all combinations for βs, γt ∈ {0, 1}. Thus, for m = n, we obtain

F−1
n Fn =


d, max{2n,2n+d}∑

s=min{−2n,−2n+d}
δses

 ∣∣∣ |d| ≤ 2n, δs ∈ {0, 1}

 .
Therefore,

|F−1
n Fn| =

2n∑
d=−2n

24n+d+1 = 22n+1(24n+1 − 1)

and it follows that

lim inf
n→∞

|F−1
n Fn|
|Fn|

= lim inf
n→∞

22n+1(24n+1 − 1)
(2n+ 1)24n+1 =∞,

so that the sequence {Fn}n cannot satisfy (3.2).
However, by extracting a subsequence {Gk}, we can construct a tempered Følner se-
quence in G. Note first that with d ≤ n + m, it is true that 2m + d ≤ 3m + n and
−2m+ d ≥ −3m− n. Thus, if we choose n ≥ 3m, equality (3.4) transforms to

F−1
m Fn =


d, 2n∑

s=−2n
δses

 ∣∣∣ |d| ≤ m+ n, δs ∈ {0, 1}

 .
Consequently, one obtains in this situation that

|F−1
m Fn| = (2n+ 2m+ 1)24n+1

and hence

|F−1
m Fn|
|Fn|

= 2n+ 2m+ 1
2n+ 1 = 1 + 2m

2n+ 1 . (3.5)
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Now define Gk := Fnk , where nk := 3k. Since then nk = 3nk−1, we can use (3.5) to
conclude

| ∪l<k G−1
l Gk|

|Gk|
=
|G−1

k−1Gk|
|Gk|

=
|Fnk−1Fnk |
|Fnk |

= 1 + 2 · 3k−1

2 · 3k + 1 < 2

for all k ∈ N. Recalling inequality (3.3), we see that {Gk}k is a tempered Følner
sequence.

The following lemma shows that the construction in the latter example is ’typical’ for
amenable groups. Indeed, from every Følner sequence, one can extract a tempered subse-
quence.

Lemma 3.10 (Lindenstrauss, cf. [29])
Let G be an amenable group G with a Følner sequence {Fn}n. Then there is some subse-
quence {Fnk}k satisfying the Shulman condition (3.3).

Proof
We proceed inductively. Set n1 := 1. If n1, . . . nj−1 (j ≥ 2) are chosen, define F̃j :=
∪j−1
i=1F

−1
ni . Clearly, this set is compact. It follows from the Følner property (Theorem 3.5)

with ε = 1 that there is some nj large enough such that

| ∪i<j F−1
ni Fnj | = |F̃jFnj | ≤ |Fnj |+ |Fnj4F̃jFnj |

(FC)
≤ |Fnj |+ ε|Fnj | = 2|Fnj |.

Hence, {Fnj}j is tempered with constant C = 2. �

It turns out that a statement of this kind cannot be proven for the Tempelman condition.
Lindenstrauss showed in [29] (Corollary 5.5) that the Lamplighter group does not contain
a Følner sequence satisfying condition (3.2). Therefore, the condition on such a sequence
{Fn}n to be tempered is not only milder than the Tempelman restriction but is also natural
in the sense that it always exists in an amenable σ-compact group.

In order to link the theory of σ-compact amenable groups with ergodic theory, we need the
notion of a group action on a measure space by measure preserving transformations.

Definition 3.11 (measure preserving action of a group)
Let G be a σ-compact group and let (X,B, µ) be some σ-finite measure space. We say that
G acts on X by measure preserving transformations if there is a map

π : G×X → X

with the following properties:

(i) π is (J × B)-B-measurable, where J is the Borel σ-algebra on G,

(ii) π(e, x) = x for each x ∈ X, where e is the unit element in G,
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(iii) π(g1, π(g2, x)) = π(g1g2, x) for each x ∈ X and all g1, g2 ∈ G,

(iv) µ(π(g,A)) = µ(A) for each g ∈ G and each A ∈ B.

For short, we introduce the notation

g · x := gx := π(g, x), g ∈ G, x ∈ X.

Examples 3.12
(1) We start with a standard example, the rotation on the circle. Put G := (Z,+) and fix

α ∈ [0, 1). Further, consider the measure space (T,B(T),L(T)), where T is the one-
dimensional torus T := R/Z, endowed with the Borel σ-algebra B(T) and the Lebesgue
measure L(T). Then G acts on T by measure preserving transformations via

πα : G× T→ T : (n, z) 7→ n · α+ z (mod 1).

For z ∈ T, we call the set O(α)
z := {πα(n, z) |n ∈ Z} the orbit of the element z. It is a

well-known fact that for α ∈ R \Q, the orbit O(α)
z is dense in T for each z ∈ T (see e.g.

[14], Example 2.19).

(2) Every σ-compact group G with Borel σ-algebra J and left Haar measure mL(·) acts on
itself via group multiplication. By the left-invariance ofmL, we havemL(g0B) = mL(B)
for all g0 ∈ G and every B ∈ J and the action is measure preserving.

Continuing the first example, we fix some irrational value α ∈ [0, 1) and consider the function
f(x) := x−1/2 ∈ L1(T). By the Birkhoff Ergodic Theorem (see e.g. [14], Theorem 10.1
and below), the limit

lim
n→∞

1
n

n−1∑
j=0

f(πα(j, z))

exists for L(T)-almost every z ∈ T. The following theorem shows that this is not the case
for all Følner sequences in Z.

Theorem 3.13 (cf. [11], Theorem 1)
Consider the action of the integers Z on the torus T as defined in Example 3.12 (1), where
α is any fixed irrational number in [0, 1). Moreover let f(z) = z−1/2 ∈ L1(T). Then there
is a Følner sequence {Fn} in Z such that

lim sup
n→∞

|Fn|−1 ∑
m∈Fn

f(πα(m, z)) =∞

for all z ∈ T.

Proof
Set En := {0,±1,±2,±3, . . . ,±n!}. Beginning at the point p1 := 0 and in counter clockwise
direction, we lay off adjacent closed ’intervals’ In of length 1/n (n ∈ N) on T. We denote the
left-hand endpoint of the interval In by pn. The divergence of the harmonic series insures
that each point of T is contained in infinitely many of the In. Moreover, we have seen in
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Example 3.12 (1) that for all z ∈ T, the transformation z 7→ z + α (mod 1) has dense orbit
in T such that for each endpoint pn, there exist infinitely many integers m ∈ Z such that
πα(m, pn) ∈ [0, 1/n]. We construct the Følner sequence {Fn} in a recursive manner.
Put F1 := E1 and assume that for n > 1 and k < n, all Fk have been constructed. Denote
by Dn an arbitrary collection of exactly int(n!n−1/4) distinct integers m ∈ Z for which
πα(m, pn) is contained in [0, 1/n], where

int(r) := max{m ∈ N |m ≤ r}

is the integer function defined on R+
0 . Further, define Fn := En ∪ Fn−1 ∪Dn. One verifies

by induction that |Fk| ≤ 3k! for all k ≥ 1. To see this, note that |F1| = 3 and recursively,
we have

|Fk| ≤ 2(k!− (k − 1)!) + |Fk−1|+ k!k−1/4

= 2k! + k!
( |Fk−1|

k! + 1
k1/4 −

2
k

)
(3.6)

for all k ≥ 2. For the first elements of the sequence, we compute

|F1| = 3 = 3 · 1!
|F2| = 2 + 3 + int(2 · 2−1/4) = 6 = 3 · 2!
|F3| = 8 + (5 + 2 · 2−1/4) + 3 · 3−1/4 ≤ 18 = 3 · 3!.

Further, using equality (3.6), we see inductively that( |Fk−1|
k! + 1

k1/4 −
2
k

)
≤

(3(k − 1)!
k! − 2

k
+ 1
k1/4

)
= k−1 + k−1/4 < 1

and thus |Fk| ≤ 3k! for all k ≥ 4 as claimed.
It follows that |Fn−1 ∪Dn| ≤ 3(n− 1)! + n!n−1/4 for n ≥ 2 and noting that |En| = 2n! + 1,
one computes that

|Fn4zFn|
|Fn|

≤ |En ∪ (Fn−1 ∪Dn)4 z(En ∪ (Fn−1 ∪Dn))|
|En|

≤ |En4zEn|
|En|

+ |(Fn−1 ∪Dn)4 z(Fn−1 ∪Dn)|
|En|

≤ |En4zEn|
|En|

+ 2 |Fn−1 ∪Dn|
|En|

≤ |En4zEn|
|En|

+ 3
n

+ n−1/4 (3.7)

for each z ∈ T, where we used the general inclusion

(A ∪B)4 (C ∪D) ⊆ (A4C) ∪ (B4D)

for sets A,B,C and D. As {En} is a Følner sequence, the expression in (3.7) converges to
zero as n→∞ and we conclude that {Fn} is indeed a Følner sequence.
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Now let z ∈ T be fixed and take one of the (infinitely many) ’intervals’ In containing z. Let
us estimate the ergodic average over the set Fn evaluated at z. By construction, we have
πα(m, pn) ∈ [0, 1/n] for every m ∈ Dn. Since pn is the left-hand endpoint of the ’interval’
In of length 1/n, one obtains for each m ∈ Dn that p+mα (mod 1) ∈ [0, 2/n] for all p ∈ In.
Therefore, as z ∈ In, we have

f(z +mα) ≥ (2/n)−1/2 = (n/2)1/2

whenever m ∈ Dn. Recalling the fact that |Fn| ≤ 3n!, this implies

|Fn|−1 ∑
m∈Fn

f(z +mα) ≥ 1
3n!

∑
m∈Dn

f(z +mα)

≥ |Dn|(n/2)1/2

3n!

≥ n!n−1/4n1/2

6n! = n1/4

6 .

As mentioned above, there are infinitely many such n ∈ N and thus, the theorem is proven.�

Theorem 3.13 shows that additional growth conditions on the Følner sequence are indeed
needed for pointwise convergence. Before turning to pointwise ergodic theorems, we will
prove a mean ergodic theorem for σ-compact, amenable groups in the next chapter. No
restrictions on {Fn} are required here. We will exploit the Shulman condition in Chapters
7 and 8, where we prove the transfer inequality (6.1).
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This chapter is devoted to general mean ergodic theorems for amenable σ-compact groups.
We start in a rather abstract setting which requires the notion of a weakly measurable
action of a group on a Banach space Y (cf. Definition 4.1). Using Følner sequences, we
define abstract ergodic averages which exist in the weak sense only, but have a strong
representation. Moreover, we show in Theorem 4.2 that if the closed convex hull of an orbit
(under the group action) of some element in Y is weakly compact, then it must contain
some G-invariant element. We will see in the Abstract Mean Ergodic Theorem 4.3 that the
existence of such a fixed point is equivalent to the convergence of (the strong representation
of) the corresponding ergodic average to this fixed point in the Banach space norm. In
particular, if each orbit contains a G-invariant element, then the representations of the
ergodic averages converge in the strong operator topology to some projection on the fixed
space of the group.
After this and also for the remainder of this thesis, we turn to a special case of the situation
described above. In light of that, the Banach space Y will be some Lp-space (1 ≤ p < ∞)
over some σ-finite measure space X. Further, the weakly measurable action on Lp(X) is
induced by an action of the amenable group on the measure space X by measure preserving
transformations (see Proposition 4.4). It is proven in Lemma 4.5 that the corresponding
orbits satisfy the weak compactness condition if in the case p = 1, we assume additionally
that the measure space is finite. Exploiting the Abstract Mean Ergodic Theorem 4.3, we
finally derive a general mean ergodic theorem for Lp-spaces in Corollary 4.6. We also give
a counter example in the case of an infinite measure space for p = 1 (cf. Example 4.7).

Definition 4.1 (weakly measurable action of a group on a Banach space)
Let G be a σ-compact group and let (Y, ‖ · ‖Y ) be a Banach space. Then the map

T : G× Y → Y : (g, f) 7→ Tgf

is called a weakly measurable action of G as a bounded family {Tg} of operators on Y if

(i) Tg : Y → Y is a linear operator for each g ∈ G and supg∈G ‖Tg‖ <∞,

(ii) Tef = f for each f ∈ Y , where e is the unit element in G,

(iii) Tg1(Tg2f) = Tg1g2f for each f ∈ Y and all g1, g2 ∈ G,

(iv) the map

Φf,h : G→ C : g 7→ 〈Tgf, h〉Y,Y ∗

is J -B(C)-measurable for each f ∈ Y and each h ∈ Y ∗, where J and B(C) are the
Borel σ-algebras of G and C respectively.

29
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Further, we denote by

Fix(TG) := {f ∈ Y |Tgf = f for all g ∈ G}

the fixed space of G. Analogously, if T ∗g is the adjoint operator of Tg, one defines

Fix(T ∗G) := {h ∈ Y ∗ |T ∗g h = h for all g ∈ G}.

We prove the following essential result.

Theorem 4.2 (Existence of a fixed point, Greenleaf 1973)
We assume that a σ-compact, amenable group G acts weakly measurably on the Banach
space (Y, ‖ · ‖Y ) by a family {Tg} of bounded operators on Y with A := supg∈G ‖Tg‖ < ∞.
Let m be a left invariant mean on L∞(G) and assume further that f ∈ Y is an element
such that the closed, convex hull of the G-orbit of f , denoted as Cf := co{Tgf | g ∈ G} is
weakly compact. If we put Φf,h(g) := 〈Tgf, h〉Y,Y ∗, then Tm(f), defined by the equation

〈h, Tm(f)〉Y ∗,Y ∗∗ = m(Φf,h) for all h ∈ Y ∗,

determines an element f∗ in Y which belongs to Fix(TG) ∩ Cf .
In particular, Fix(TG) ∩ Cf 6= ∅.

Remark
Note that for all g ∈ G, we have |Φf,h(g)| ≤ A‖f‖Y ‖h‖Y ∗ so that Φf,h ∈ L∞(G) and Tm(f)
is well-defined.

Proof
If h ∈ Y ∗, then

|〈h, Tm(f)〉Y ∗,Y ∗∗ | = |m(〈T·f, h〉Y,Y ∗)| ≤ ‖m‖ ·A‖f‖Y ‖h‖Y ∗
= A‖f‖Y ‖h‖Y ∗

and therefore, Tm(f) ∈ Y ∗∗. We consider Y ∗∗ with the weak∗-topology σ(Y ∗∗, Y ∗) and let
j : Y → Y ∗∗ be the canonical injection. Now the set Cf is σ(Y, Y ∗)-compact and thus,
by the weak-(weak∗)-continuity of j, we obtain that j(Cf ) is a convex, weak∗-compact set.
By [44], Corollary VIII 3.4, we have (Y ∗∗, σ(Y ∗∗, Y ∗))∗ = Y ∗. So if Tm(f) /∈ j(Cf ), by the
Hahn-Banach separation theorem (cf. [44], VIII 2.12), there must be some h ∈ Y ∗ and some
ε0 > 0 such that

Re〈h, Tmf〉Y ∗,Y ∗∗ ≥ ε0 + sup{Re〈z, h〉Y,Y ∗ | z ∈ Cf}. (4.1)

However, it is clear that Re〈Tgf, h〉Y,Y ∗ ≤ θ := sup{Re〈z, h〉Y,Y ∗ | z ∈ Cf} for all g ∈ G and
hence, since m is a mean,

Re〈h, Tm(f)〉Y ∗,Y ∗∗ = Re [m(〈T·f, h〉Y,Y ∗)]
= m(Re 〈T·f, h〉Y,Y ∗) ≤ θ ·m(1) = θ,

which contradicts inequality (4.1). Therefore, Tm(f) ∈ j(Cf ).
We still have to show that f∗ := j−1(Tm(f)) is a fixed point in Cf . Since m is left-invariant
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by assumption and by the fact that j is an isometry, we have for all g ∈ G and all h ∈ Y ∗
that

〈Tgf∗, h〉Y,Y ∗ = 〈f∗, T ∗g h〉Y,Y ∗ = 〈T ∗g h, Tm(f)〉Y ∗,Y ∗∗
Def.= m(〈T·f, T ∗g h〉Y,Y ∗)
= m(〈Tg·f, h〉Y,Y ∗)
= m(Lg−1Φf,h)

left-inv.= m(Φf,h)
Def.= 〈h, Tm(f)〉Y ∗,Y ∗∗
= 〈f∗, h〉Y,Y ∗ ,

where Φ is defined as above and T ∗g denotes the adjoint operator of Tg. In light of that, f∗
is a fixed point in Cf . �

Remark
The techniques of the proof have been used before; in 1961, Day considered a compact
subset K of a locally convex linear topological space Y and a semigroup H of continuous
affine transformations of K into itself. If this semigroup contains a left-invariant mean, then
there is some H-fixed point K (cf. [8], Theorem 1). With this result, abstract fixed-point
theorems for amenable semigroups of uniformly bounded linear operators on a Banach space
Y (amenable means here that there is some projection P ∈ coH (strong operator topology)
such that TP = PT = P for all T ∈ coH) can be proven. For a more detailed discussion,
see for example [31], Lemma 1.6 or [25], Section 6.4.1.

The following theorem shows that the existence of such a fixed point is equivalent to a mean
ergodic theorem for amenable (σ-compact) groups.

Theorem 4.3 (Abstract mean ergodicity)
Let G be a σ-compact amenable group and let (Y, ‖ · ‖Y ) be some Banach space. Assume
further that G acts weakly measurably as a uniformly bounded family {Tg} of continuous,
linear operators on Y with A := supg∈G ‖Tg‖ < ∞. For a Følner sequence {Fn} in G, we
define the ergodic averages Anf on Y as

Anf := |Fn|−1
∫
Fn
Tg−1f dmL(g).

Then the following statements are equivalent:

(i) For all f ∈ Y there is some f∗ ∈ Y such that Fix(TG) ∩ Cf = {f∗}, where
Cf := co{Tgf | g ∈ G}.

(ii) For all f ∈ Y there is some f∗ ∈ Fix(TG) ∩ Cf .

(iii) An → P in the strong operator topology and ran(P ) ⊆ Fix(TG).

(iv) There is a bounded projection P on Y with ran(P ) = Fix(TG) and ran(I − P ) =
ker(P ) = L0, where L0 := lin{f − Tgf | f ∈ Y, g ∈ G}.
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(v) Fix(TG) separates Fix(T ∗G), i.e. for every 0 6= h ∈ Fix(T ∗G) there exists f∗ ∈ Fix(TG)
such that 〈f∗, h〉Y,Y ∗ 6= 0.

(vi) Y = Fix(TG)⊕ L0.

Remark
Note that the ergodic averages are in the first instance only defined in the weak sense, that
is Anf ∈ Y ∗∗ for all n ∈ N and every f ∈ Y . However, we can identify them with elements
in Y which allows us to use the common calculating rules. Hence, without loss of generality,
we can assume that Anf ∈ Y .
To see this, recall that the Følner sequence {Fn} can be interpreted as a net {qn} in P (G)
converging strongly to left-invariance (see Corollary 2.12). So let q := |Fn|−1

1Fn for some
element of the given Følner sequence. By identification, q determines a mean on L∞(G)
and with the definition of Tm(f) as in Theorem 4.2, we observe that

〈h, Tm(f)〉Y ∗,Y ∗∗ = m(Φf,h) = 〈Φf,h, q〉L∞(G),L∞(G)∗

= 〈h, |Fn|−1
∫
G
1Fn(·)T·f dmL(·) 〉Y ∗,Y ∗∗ (4.2)

for all h ∈ Y ∗ and hence, we have Dnf := |Fn|−1 ∫
Fn
Tgf dmL(g) = Tm(f) weakly. Again

by Theorem 4.2, we obtain that D̃nf := j−1(Tm(f)) ∈ Y and that

〈h, Tm(f)〉Y ∗,Y ∗∗ = 〈D̃nf, h〉Y,Y ∗

for each h ∈ Y ∗, where j is the canonical isometry between Y and Y ∗∗. Thus, we conclude
with equality (4.2) that for each n ∈ N, the expression D̃nf is a representation in Y of
the weakly defined Dnf . Finally, note that if {Tg} acts weakly measurably as a family
of uniformly bounded operators on Y , then so does the family {Tg−1}. Therefore, we can
assume with no loss of generality that the ergodic averages Anf are defined in the strong
sense for all n ∈ N and all f ∈ Y .

Proof (of Theorem 4.3)
(i) ⇒ (ii) is trivial.

(ii)⇒ (iii) Let f ∈ Y and take f∗ ∈ Fix(TG)∩Cf , which exists by assumption. By definition
of Cf , for an arbitrary ε > 0 we can find a finite convex combination f ′ =

∑
i αiTgif with

gi ∈ G,
∑
i αi = 1 and ‖f∗ − f ′‖Y < ε. Then

Anf
′ = |Fn|−1

∫
Fn
Th−1

(∑
i

αiTgif
)
dmL(h)

= |Fn|−1∑
i

αi

∫
Fn
Th−1gif dmL(h)

=
∑
i

αi|Fn|−1
∫
g−1
i Fn

Th′−1f dmL(h′)

for every n ∈ N. By the Følner property, Theorem 3.5, we can choose n0 large enough such
that

|Fn4g−1
i Fn|

|Fn|
≤ ε
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for all (finitely many) i, whenever n ≥ n0. Thus, for n ≥ n0,

‖Anf −Anf
′‖Y =

∥∥∥∥∥∑
i

αi|Fn|−1
(∫

Fn
Th−1f dmL(h)−

∫
g−1
i Fn

Th′−1f dmL(h′)
)∥∥∥∥∥

Y

≤
∑
i

αi
|Fn4g−1

i Fn|
|Fn|

A‖f‖Y ≤ εA‖f‖Y . (4.3)

Moreover, since f∗ is a fixed point,

Anf
∗ = |Fn|−1

∫
Fn
Tg−1f∗ dmL(g) = |Fn|−1

∫
Fn
f∗ dmL(g) = f∗ (4.4)

for each n ∈ N. Hence, using (4.4), as well as the uniform boundedness of {Tg}, we compute

‖Anf
′ − f∗‖Y = ‖Anf

′ −Anf∗‖Y

=
∥∥∥∥|Fn|−1

∫
Fn
Th−1(f ′ − f∗) dmL(h)

∥∥∥∥
Y

≤ |Fn|−1
∫
Fn
‖Th−1(f ′ − f∗)‖Y dmL(h) ≤ εA (4.5)

for every n ∈ N. Combining the inequalities (4.3) and (4.5), we conclude that ‖Anf−f∗‖Y ≤
εA(‖f‖Y + 1) for n ≥ n0. Since ε was arbitrary, the ergodic averages Anf converge to f∗
in norm. Note that this also shows that the fixed point in Cf is unique. Further, defining
Pf := f∗ we observe that P is a linear operator on Y and since ‖P‖ ≤ supn∈N ‖An‖ ≤ A
we see that An

n→∞→ P in the strong operator topology. Since Pf is a fixed point for each
f ∈ Y , we conclude that ran(P ) ⊆ Fix(TG).

(iii)⇒ (iv) If P is the strong limit of the sequence An, then ‖P‖ ≤ supn∈N ‖An‖ ≤ A which
implies that P is bounded. Let f ∈ Y be arbitrary. Since Pf is a fixed point we observe
by repeating calculation (4.4), that An(Pf) = Pf for all n ∈ N. By the strong convergence
An → P , we conclude P 2 = P . Hence P is a bounded projection with ran(P ) ⊆ Fix(TG).
Further, if f∗ ∈ Fix(TG), then Anf∗ = f∗ for all n ∈ N by the same calculation as in (4.4).
By convergence in the strong operator topology, Pf∗ = f∗ and thus, Fix(TG) ⊆ ran(P ). It
follows that ran(P ) = Fix(TG).
Moreover, with An → P (strong operator topology), we obtain for all g ∈ G and all f ∈ Y

‖P (f − Tgf)‖Y ≤ lim sup
n→∞

‖An(f − Tgf)‖Y

≤ lim sup
n→∞

|Fn|−1
∥∥∥∥∫

Fn
Th−1f dmL(h)−

∫
Fn
Th−1gf dmL(h)

∥∥∥∥
Y

= lim sup
n→∞

|Fn|−1
∥∥∥∥∫

Fn
Th−1f dmL(h)−

∫
g−1Fn

Th′−1f dmL(h′)
∥∥∥∥
Y

≤ lim sup
n→∞

A
|Fn4g−1Fn|
|Fn|

· ‖f‖Y = 0.

Therefore, by considering linear combinations of elements f −Lgf and using the continuity
of P , one observes that L0 ⊆ ker(P ). If, on the other hand, Pf = 0, then by the strong
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convergence An → P , the zero element of Y must be contained in Cf and thus, there are
finite convex sums sm =

∑Km
i=1 α

(m)
i T

g
(m)
i

f such that ‖sm‖Y
m→∞→ 0. Therefore,

lim
m→∞

∥∥∥∥∥
Km∑
i=1

α
(m)
i (f − T

g
(m)
i

f)− f
∥∥∥∥∥
Y

= lim
m→∞

∥∥∥∥∥
Km∑
i=1

αmi Tg(m)
i

f

∥∥∥∥∥
Y

= 0.

We conclude that f ∈ L0, thus ker(P ) = L0 and the proof of statement (iv) is finished.

(iv) ⇒ (v) Assume that 0 6= h ∈ Fix(T ∗G). Then for all g ∈ G and all f ∈ Y

〈f, h〉Y,Y ∗ = 〈f, T ∗g h〉Y,Y ∗ = 〈Tgf, h〉Y,Y ∗ ,

so that 〈f − Tgf, h〉Y,Y ∗ = 0. Hence, for all f ′ ∈ ker(P ) = L0, we must have

〈f ′ , h〉Y,Y ∗ = 0. (4.6)

Since h 6= 0, there must be some f∗ ∈ Y such that 〈f∗, h〉Y,Y ∗ 6= 0. But P is a bounded
projection which implies that we can write Y = ran(P ) + ker(P ). So with (4.6) we can
assume without loss of generality that f∗ ∈ ran(P ) = Fix(TG).

(v) ⇒ (vi) Define Z := Fix(TG) + L0. We claim first that this sum is direct. So let
z :=

∑
i αi(fi−Tgifi), where the sum is finite, the αi are scalar coefficients and fi ∈ Y, gi ∈ G

for all i. Then

‖Anz‖Y =
∥∥∥∥∥|Fn|−1

[∫
Fn
Th−1

(∑
i

αifi
)
dmL(h)−

∫
Fn
Th−1

(∑
i

αiTgifi
)
dmL(h)

]∥∥∥∥∥
Y

≤
∑
i

|αi||Fn|−1
∥∥∥∥∥
∫
Fn
Th−1fi dmL(h)−

∫
g−1
i Fn

Th′−1fi dmL(h′)
∥∥∥∥∥
Y

≤ A
∑
i

|αi|
|Fn4g−1

i Fn|
|Fn|

‖fi‖Y → 0

as n → ∞ by the Følner property. Since the operators Tg are uniformly bounded, we
conclude that Anz → 0 in norm for all z ∈ L0. If z is also in Fix(TG), we have Anz = z for
all n ∈ N such that Anz → z in norm as n → ∞. By uniqueness of the limit, we conclude
that z = 0.
With this direct sum, as well as with the closedness of the spaces Fix(TG) and L0, it is not
hard to see that Z is closed.
Assume now that there is some h ∈ Y ∗ vanishing on Z, i.e. 〈z, h〉Y,Y ∗ = 0 for all z ∈ Z. In
particular, this then holds for all z′ ∈ L0, which is equivalent to

〈f − Tgf, h〉Y,Y ∗ = 0 ∀ f ∈ Y, g ∈ G
⇔ 〈f, (I − T ∗g )h〉Y,Y ∗ = 0 ∀ f ∈ Y, g ∈ G
⇔ (I − T ∗g )h = 0 ∀ g ∈ G
⇔ h ∈ Fix(T ∗G).
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Moreover, h has to vanish on Fix(TG) which - by assumption - separates Fix(T ∗G). Since
h ∈ Fix(T ∗G), we must have h = 0 on the whole space Y . By the Hahn-Banach Theorem
([44], Corollary III.1.9), this implies that Z is dense in Y . But Z was closed, so we finally
arrive at Z = Y .

(vi) ⇒ (i) By assumption, we can rewrite each f ∈ Y uniquely as f = u + v, where
u ∈ Fix(TG) and v ∈ L0. We have to show that u ∈ Cf .
To do so, we define first the functions Φf,h(g) := 〈Tg−1f, h〉Y,Y ∗ for f ∈ Y and h ∈ Y ∗.
Since for all g ∈ G,

|Φf,h(g)| ≤ ‖Tg−1f‖Y · ‖h‖Y ∗ ≤ A‖f‖Y · ‖h‖Y ∗ ,

we obtain that Φf,h ∈ L∞(G). Furthermore, for all f ∈ Y , h ∈ Y ∗ and every g0 ∈ G,

Φf−Tg0f,h
(g) = 〈Tg−1f, h〉Y,Y ∗ − 〈Tg−1g0f, h〉Y,Y ∗

= Φf,h(g)− Φf,h(g−1
0 g)

= Φf,h(g)− Lg0Φf,h(g). (4.7)

Take now some left-invariant mean m on L∞(G). We claim that m(Φv,h) = 0 for each
h ∈ Y ∗. Since v ∈ L0, for an arbitrary ε > 0, there are finitely many fi ∈ Y, αi ∈ C, gi ∈ G
so that with

ψ :=
∑
i

αi(fi − Tgifi),

we have ‖v − ψ‖Y < ε. It follows then from (4.7) that m(Φψ,h) = 0. Hence, for all h ∈ Y ∗,

|m(Φv,h)| ≤ ‖Φv,h − Φψ,h‖L∞(G)

≤ A ‖v − ψ‖Y · ‖h‖Y ∗ < εA ‖h‖Y ∗ .

With ε → 0 we conclude that indeed, m(Φv,h) = 0. Assume now that u /∈ Cf . Since the
latter set is closed and convex, by the Hahn-Banach-Theorem (cf. [44], VIII 2.12), we can
find some h ∈ Y ∗ as well as some ε0 > 0 such that for all f ′ ∈ Cf

Re 〈u, h〉Y,Y ∗ ≥ ε0 + Re 〈f ′ , h〉Y,Y ∗ .

Using m(Φu,h) = 〈u, h〉 and m(Φv,h) = 0, we thus obtain

Rem(Φf,h) = Rem(Φu,h) + Rem(Φv,h)
= Rem(〈u, h〉Y,Y ∗ · 1)
= m(Re 〈u, h〉Y,Y ∗ · 1)

pos. of m
> m(ReΦf,h)
= Rem(Φf,h),

which is a contradiction. Hence, u ∈ Cf as claimed.
To see uniqueness, take some u 6= u

′ ∈ Fix(TG). Since Y can be written as a direct sum of
Fix(TG) and L0, the decomposition f = u + v is unique, which implies that f − u′ /∈ L0.
If we assume that u′ ∈ Cf , then it could be approximated in norm by finite convex sums∑
i αiTgif , where gi ∈ G. But this would imply that f − u′ can be approximated by some

expression
∑
i αi(f − Tgif) and hence f − u′ ∈ L0. This is a contradiction and there is only

one element (namely u) in Fix(TG) ∩ Cf . �
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In the following, we assume that a σ-compact, amenable group acts on a σ-finite measure
space (X,B, µ) by measure preserving transformations and Y will be chosen to be some
Lp-space over X, where 1 ≤ p < ∞. To see that this is a special case of the situation in
Theorem 4.3, we prove the following.

Proposition 4.4
Assume that a σ-compact group G acts on a σ-finite measure space (X,B, µ) by measure
preserving transformations. Then G acts on Lp(X) (1 ≤ p < ∞) weakly measurably as a
uniformly bounded family {Tg} of linear operators defined by

Tg : Lp(X,B, µ)→ Lp(X,B, µ) : (Tgf)(x) := f(π(g−1, x)) = f(g−1 · x),

where π denotes the action of G on X as in Definition 3.11.

Proof
We have to check (i)-(iv) from Definition 4.1. For (i), note that it is clear that the Tg are
linear operators on Lp(X) and by the fact that G preserves µ,

‖Tgf‖pLp(X) =
∫
X
|f(g−1x)|p dµ(x) =

∫
X
|f(x)|p dµ(x) = ‖f‖pLp(X),

so that ‖Tg‖ = 1 for all g ∈ G. Furthermore, it is a straightforward calculation to verify the
validity of (ii) and (iii).
We denote the Borel σ-algebra on C by B(C). To prove (iv), note that by the measurability
of π and the continuity of the inversion, the function g 7→

∫
X F (g−1, x) dµ(x) is J -B(C)

measurable if F (g, x) is of the form F (g, x) := f(π(g, x0))h(x) for fixed f ∈ Lp(X), h ∈
Lp(X)∗ and x0 ∈ X. A simple approximation argument shows that this is also true for
F (g, x) := f(gx)h(x) with f ∈ Lp(X) and h ∈ Lp(X)∗. In light of that, we conclude that
for each f ∈ Lp(X) and every h ∈ Lp(X)∗, the function

Φf,h(g) := 〈Tgf, h〉Lp,(Lp)∗

is J -B(C) measurable as claimed. �

We now establish the mean ergodic theorem in the situation described in the above Propo-
sition 4.4. The key step is the following lemma.

Lemma 4.5
Let (X,B, µ) be a σ-finite measure space and f ∈ Lp(X,B, µ) for some 1 < p < ∞. As
usual, a σ-compact, amenable group G acts on X by measure preserving transformations.
For g ∈ G, we define the operators Tg as described in Proposition 4.4.
Then the set

Cf := co{Tgf | g ∈ G}

is weakly compact.
The analogous statement for p = 1 is true if µ(X) <∞.

Proof
We prove first that for all p ≥ 1, the set Cf is bounded. Indeed, by the fact that G preserves
the measure µ, one obtains that ‖Tgf‖Lp(X) = ‖f‖Lp(X) for all g ∈ G. Hence, if h is a convex



4 A mean ergodic theorem 37

combination of translates Tgf , we have ‖h‖Lp(X) ≤ ‖f‖Lp(X) and this property also holds if
h is the (strong) limit of such convex combinations. So ‖h‖Lp(X) ≤ ‖f‖Lp(X) for all h ∈ Cf .
By the reflexivity of the Lp-spaces and the Banach-Alaoglu Theorem, the statement of the
lemma follows for the cases 1 < p <∞.
Now, if p = 1, we will use the fact that a subset K ⊆ L1(X) is weakly compact if and only
if it is bounded and if for any non-increasing sequence {En} of sets in B with ∩nEn = ∅ one
obtains

lim
n→∞

∫
En
f(x) dµ(x) = 0

uniformly for f ∈ K (cf e.g. [10], Proposition IV.8.9). We have already seen that Cf is
bounded for f ∈ L1(X).
Moreover, note that for any ε > 0, there is some δ > 0 such that∫

A
|f(x)| dµ(x) < ε

whenever A ∈ B with µ(A) < δ. To see this, take some f̃ ∈ L1(X)∩L∞(X) with ‖f−f̃‖L1 <
ε/2. We now put δ := ε/2‖f̃‖L∞ and compute∫

A
|f(x)| dµ(x) ≤

∫
X
|f(x)− f̃(x)| dµ(x) +

∫
A
|f̃(x)| dµ(x) < ε

2 + ε

2 = ε

for all A ∈ B with µ(A) < δ.
So if {En} is a non-increasing sequence of measurable sets with ∩nEn = ∅, we have with
µ(X) < ∞ that limn→∞ µ(En) = 0. By the above criterion and the fact that µ(g−1En) =
µ(En) for every n ∈ N and each g ∈ G, we conclude that indeed

lim
n→∞

∫
En
Tgf(x) dµ(x) = lim

n→∞

∫
En
f(g−1x) dµ(x)

= lim
n→∞

∫
g−1En

f(x) dµ(x)

= 0

uniformly in g. So by the linearity of the limit, the same is true for convex combinations
of elements Tgf , g ∈ G. Again, by simple approximation of an arbitrary h ∈ Cf by convex
combinations of left translates Tgf we conclude that

lim
n→∞

∫
En
h(x) dµ(x) = 0

uniformly in h ∈ Cf . Thus, the set Cf ⊆ L1(X) is weakly compact. �

Remark
For p =∞ on an infinite measure space, there is no similar statement.

Putting all our results together, we finally arrive at the following corollary.
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Corollary 4.6 (Mean ergodic theorem)
Let G be a σ-compact, amenable group acting on a σ-finite measure space (X,B, µ) by mea-
sure preserving transformations. Further, let {Fn} be a Følner sequence in G and assume
that 1 < p < ∞. Then, for every f ∈ Lp(X), there is a G-invariant f∗ ∈ Lp(X) such that
the ergodic averages Anf , defined as

(Anf)(x) := |Fn|−1
∫
Fn
f(gx) dmL(g)

converge to f∗ in Lp(X) as n → ∞. In the case p = 1, the same statement holds true if
µ(X) <∞.

Proof
Let f ∈ Lp(X) be given. By Proposition 4.4, G acts on Lp(X) weakly measurably as a
uniformly bounded family {Tg} of linear operators and we have seen in Lemma 4.5 that the
set Cf := co{Tgf | g ∈ G} with

Tg : Lp(X)→ Lp(X) : (Tgf)(x) := f(g−1x) (g ∈ G)

is weakly compact. This allows us to apply Theorem 4.2 to derive that there is some
f∗ ∈ Fix(TG) ∩ Cf . By the Abstract Mean Ergodic Theorem 4.3, this is equivalent to the
fact that An → P (strong operator topology), where P is a bounded projection on Fix(TG).
By uniqueness of the fixed point (again Theorem 4.3), we have Pf = f∗ and thus Anf → f∗

in norm. Since f∗ is a fixed point in Cf , it is indeed G-invariant. �

Remark
In his work (cf. [31]), Nagel follows the same path in order to establish the mean ergodic
theorem in the more abstract setting of operator semigroups acting on some Banach space
Y . He proves analoga (Theorems 1.2 and 1.7) to Theorem 4.3 and concludes by a fixed
point argument (cf. [8], Theorem 1) that each amenable semigroup H of uniformly bounded
linear operators on Y with the property that for each ξ ∈ Y , the set Hξ is weakly relatively
compact (σ(Y, Y ∗)-topology), must be mean ergodic. A similar result, dealing with the
convergence of ergodic averages as topological nets can be found in [25], Theorem 6.4.1.

One might raise the question whether the mean ergodicity can be established on an infinite
measure space also in the case p = 1. The answer is negative, as the following example
shows.
Example 4.7
Consider the space X = R, endowed with the Borel σ-algebra B(R) and the Lebesgue
measure L. Furthermore, let G = Z, i.e. G acts on L1(R,B(R),L) by the measure preserving
transformations (Tkf)(x) := f(x−k). We take f := 1[0,1] as the characteristic function of the
unit interval and use the Følner sequence {Fn} defined by Fn := {−(n−1),−(n−2), . . . , 0}
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for n ∈ N. Then, since mL is the counting measure,

Anf(x) := |Fn|−1
∫
Fn

(Tk−1f)(x) dmL(k) = 1
n
·
n−1∑
k=0

1[0,1](x− k)

= 1
n
·
n−1∑
k=0

1[k,k+1](x)

= 1
n
· 1[0,n](x).

It is clear that Anf → 0 pointwise, but

‖Anf‖L1(R) = 1
n

∫
R
1[0,n](x) dx = 1

for every n ∈ N and thus it is not possible that Anf → 0 in norm. It follows from this that
without weak compactness of the set Cf , we cannot expect mean ergodicity of the action of
G on X.
One could also argue as follows: the space Fix(TG) consists of all periodic (length of period
equal to one) equivalence classes in L1(R) and thus, Fix(TG) = {0}. So, it is clear that
Fix(TG) cannot separate Fix(T ∗G) which contains all constant functions on R and hence has
dimension greater or equal than one. By Theorem 4.3, this is equivalent to the fact that An
does not converge in the strong operator topology.

Although most of the results presented in this chapter have been well-known for several
years, there are also recent developments in this area. We mention the work of Ghaffari
(cf. [16], Theorem 1) who proved a mean ergodic theorem in the following setting. Take a
locally compact Hausdorff semitopological semigroup S which acts as a family of uniformly
bounded linear operators on some complex Banach space Y . Assume further that for each
ξ ∈ Y , the map s 7→ ξs is continuous (with respect to the natural topologies on S and
on Y ). Denote by M(S) the Banach algebra of all bounded, regular Borel measures on
S with total variation norm and convolution ∗ as multiplication and let M0(S) be the
semigroup of all probability measures in M(S). In this context, amenability means that
there is some asymptoticallyM0(S)-invariant net µα inM0(S), i.e. ‖µ ∗ µα − µα‖

α→ 0 for
every µ ∈M0(S). Now define for each α the averages (expectations)

Eα(ξ) =
∫
S
ξs dµα(s),

where ξ ∈ Y . Then the following theorem holds.
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Theorem 4.8 (Ghaffari, 2007)
Assume the situation outlined above. If one takes ξ ∈ Y such that the set Cξ := co{ξs | s ∈ S}
is weakly compact, then Eα(ξ) converges to a S-fixed point in Cξ; this fixed point is unique
in Cξ and therefore it is independent of the choice of the net µα.
If Cξ is weakly compact for all ξ ∈ Y , then with Y1 := Fix(S) := {ξ ∈ Y | ξs = ξ for all s}
and Y2 := lin{ξ − ξs | s ∈ S, ξ ∈ Y }, one obtains Y = Y1 ⊕ Y2 and Eα converges strongly to
the projection of Y onto Y1.

Proof
See [16], Theorem 1. �



5 From the maximal inequality to
pointwise convergence

We now explain the idea of a so called maximal ergodic theorem which describes a well
trodden path in the world of individual ergodic theorems. Indeed, the proofs of all pointwise
results mentioned in the introduction of this thesis (Chapter 1) are based on that conception.
The crux is the verification of a so-called Lp-maximal inequality (cf. Definition 5.2) for the
maximal function as determined by Definition 5.1. The main Theorem 5.3 of this chapter
shows that in the usual setting, the validity of an Lp-maximal inequality for the maximal
function is sufficient for pointwise almost everywhere convergence of the abstract ergodic
averages along a Følner sequence. Using the Mean Ergodic Theorem 4.6, the pointwise
almost everywhere convergence can be verified by elementary methods on a dense subspace
of Lp(X) in the case p > 1. The Banach principle (Lemma 5.4) shows that given an Lp-
maximal inequality, the set of all functions with pointwise almost everywhere convergent
ergodic averages is closed, such that the Pointwise Convergence Theorem 5.3 must hold on
the whole space Lp(X).
As in the proof of the Mean Ergodic Theorem 4.6, the case p = 1 requires some special
treatment. Assuming here that the maximal function satisfies an L1- and an L2-maximal
inequality, we can prove the Individual Ergodic Theorem 5.3 by means of an interpolation
argument.

Definition 5.1
Let (X,B, µ) be a σ-finite measure space, 1 ≤ p < ∞ and {An} be a bounded sequence of
linear operators on Lp(X). For n ∈ N and f ∈ Lp(X), define the function Mnf as

(Mnf)(x) := max
1≤j≤n

∣∣∣(Ajf)(x)
∣∣∣, x ∈ X.

The maximal function Mf w.r.t. {Tn} is then defined by

(Mf)(x) := sup
n∈N

∣∣∣(Anf)(x)
∣∣∣, x ∈ X.

Remark
We will also call M a maximal operator on Lp(X) with respect to {An}. Note that M is
sublinear, but not necessarily linear. Also, for f ∈ Lp(X), Mf might not be p-integrable:
turning back to our Example 4.7 with p = 1, X = R and f = 1[0,1], note that Mnf :=∑n
j=1 j

−1
1[j−1,j]. Thus, we have Mf =

∑∞
j=1 j

−1
1[j−1,j] and one obtains

‖Mf‖L1(X) =
∞∑
j=1

1
j

=∞.

41
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In the following, we will always consider M as the maximal operator with respect to the
sequence {An} of the ergodic averages, interpreted as contractions on Lp(X). To see that
this makes sense, use Propostition 4.4 and note that since Tg preserves µ for every g ∈ G,

‖Anf‖Lp(X) ≤ |Fn|−1
∫
Fn
‖Th−1f‖Lp(X) dmL(h)

= ‖f‖Lp(X).

Definition 5.2 (Lp-maximal inequality)
Let G be some σ-compact amenable group which acts on a σ-finite measure space by measure
preserving transformations. Further, let 1 ≤ p <∞ be given. For a Følner sequence {Fn},
consider the ergodic averages {An} as a sequence of contractions on Lp(X). We say that
the corresponding maximal operator M satisfies an Lp-maximal inequality resp. is of weak
type (p, p) if there is a constant C > 0 such that for all f ∈ Lp(X) and every λ > 0

µ({x | (Mf)(x) > λ}) ≤ C

λp
‖f‖pLp(X).

Remark
If we can show an Lp-maximal inequality, we also say that the sequence {An} satisfies a
so-called dominated ergodic theorem.

We now prove the main theorem of this section stating that the validity of an Lp-maximal
inequality implies the pointwise ergodic theorem.

Theorem 5.3
Let (X,B, µ) be some σ-finite measure space and let G be some σ-compact amenable group
acting on it by measure preserving transformations. Further, let f ∈ Lp(X,B, µ) for some
1 < p <∞. For a Følner sequence {Fn}, define the maximal functions Mnf and Mf with
respect to the ergodic averages {An} as in Definition 5.1.
If there is some constant C > 0 which only depends on p and the sequence {Fn} such that
for any λ > 0, the inequality

µ({x |Mf(x) > λ}) ≤ C

λp
‖f‖pLp(X)

holds, then there is some G-invariant f∗ ∈ Lp(X) such that

Anf(x) = |Fn|−1
∫
Fn

f(gx) dmL(g)→ f∗(x) for n→∞ and a.e. x ∈ X.

In particular, if the maximal operator M is of weak type (p, p), then the individual ergodic
theorem holds for the whole space Lp(X).
In the case p = 1, the individual ergodic theorem holds on L1(X) if M is of weak type (1, 1)
and of weak type (2, 2).

It turns out that the conclusion of Theorem 5.3 can be proven by rather standard methods
on a dense subspace of Lp(X). Since the pointwise almost everywhere convergence is not
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induced by some topology, we will need an additional tool to pass from the dense space to
its closure (which is of course the whole space Lp(X)). Here, the maximum inequality will
be used.
Lemma 5.4 (Banach’s principle)
With the same assumptions as in Theorem 5.3, the set

K := {f ∈ Lp(X) | (Anf)n∈N is a.e. convergent}

is a closed subspace of Lp(X,B, µ).

Proof (of Lemma 5.4)
We follow the path of [14], Proposition 10.9. For every n ∈ N, the operator An is linear
on Lp(X) and by linearity of the (a.e.)-limit, K is a subspace. To see that it is closed, we
choose f ∈ Lp(X) and g ∈ K. Note that for each k, l ∈ N, we have by the triangle inequality

|Akf −Alf | ≤ |Ak(f − g)|+ |Akg −Alg|+ |Al(g − f)| ≤ 2 ·M(f − g) + |Akg −Alg| (5.1)

in the pointwise sense. The fact that g ∈ K implies that (Ang) converges almost everywhere.
By a simple calculation, this can be reformulated as

lim sup
k,l→∞

|Akg(x)−Alg(x)| = inf
n∈N

sup
k,l≥n

|Akg(x)−Alg(x)| = 0

for almost every x ∈ X. So taking the limsup in (5.1), we derive

h := lim sup
k,l→∞

|Akf −Alf | ≤ 2 ·M(f − g)

almost everywhere. In light of that, the set of all x ∈ X with h(x) > 2λ is contained in the
set of all x ∈ X with M(f − g)(x) > λ and by the maximal inequality

µ({x |h(x) > 2λ}) ≤ µ({x |M(f − g)(x) > λ}) ≤ C

λp
‖f − g‖pLp(X). (5.2)

Now we choose f ∈ K. Then for any ε > 0 we can find some g ∈ K such that ‖f−g‖Lp(X) <
ε. Using (5.2) and sending ε → 0, we conclude that µ({x |h(x) > 2λ}) = 0 for all λ > 0.
But this implies that h = 0 a.e., which in turn means by the definition of h that (Anf) is
a.e. convergent. Thus, f ∈ K and the lemma is proven. �

We now turn to the proof of Theorem 5.3. It will be necessary to treat the cases p > 1 and
p = 1 separately.

Proof (of Theorem 5.3)
Case p > 1: Let f ∈ Lp(X) be given. As we have shown in the general Mean Ergodic
Theorem 4.6, the averages (Anf) converge in norm to some G-invariant f∗ ∈ Lp(X). So if
this convergence holds also pointwise almost everywhere, the limit must be the same f∗. So
define the operator Pf := f∗ on Lp(X). It follows from Theorem 4.3 that P is a projection
on the fixed space Fix(TG) and that we can write

Lp = ran(P )⊕ ran(I − P ) = Fix(TG)⊕ L0,
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where I is the identity operator and L0 denotes the (strong) closure of the linear hull of
linear combinations f − Lgf with f ∈ Lp(X) and g ∈ G.
For f ∈ Fix(TG), we note that Tgf = f for all g ∈ G such that fixing g and taking a
representant of f , we have f(g−1x) = f(x) except for a null set N ⊆ X. It then follows
from Fubini’s Theorem that for each x ∈ X \ N , we must have f(g−1x) = f(x) for mL-
almost every g ∈ G and this shows that Anf = f µ-almost everywhere. Consequently, for
f ∈ Fix(TG) the ergodic averages converge trivially since they µ-essentially reproduce f .

In light of that, it is sufficient to consider the case when f ∈ L0, i.e. Pf = 0. Moreover, by
Banach’s principle (5.4), we can restrict our attention to the norm dense subspace (cf. [44],
Lemma II.4.1)

L∗0 := lin{f − Tgf | f ∈ Lp(X) ∩ L∞(X) , g ∈ G}

of L0. So let h ∈ L∗0 be of the form f −Tg0f for some f ∈ Lp(X)∩L∞(X) and some g0 ∈ G.
Then by the left invariance of the Haar measure

(Anh)(x) = |Fn|−1
∫
Fn
h(gx) dmL(g) = |Fn|−1

∫
Fn

[f(gx)− f(g−1
0 gx)] dmL(g)

= |Fn|−1
( ∫

Fn
f(gx) dmL(g)−

∫
g−1

0 Fn
f(gx) dmL(g)

)
.

Taking absolute values, this reduces to

|(Anh)(x)| ≤ |Fn|−1
∫
g−1

0 Fn4Fn
|f(gx)| dmL(g) ≤ |Fn|−1|Fn4g−1

0 Fn| · ‖f‖L∞(X),

and this expression converges to 0 uniformly in x since {Fn} is a Følner sequence. Clearly,
the same holds true for linear combinations of such functions. Hence, putting our results
together, we have shown that for every f ∈ Lp(X) with p > 1, the ergodic averages (Anf)n
converge to f∗ := Pf µ-almost everywhere.

Case p = 1: We start by showing that the operator P on L2(X), defined as in the first
case above is also a well-defined positive contraction on L1(X). To do this, consider first
some f ∈ L1(X)∩L∞(X). It follows that then also f ∈ L2(X). Thus, by the general Mean
Ergodic Theorem 4.6, Anf → f∗ in L2-norm and Pf := f∗ is well defined on L2(X) (see the
case p > 1 above). Moreover, it follows from Hölder’s inequality that for every measurable
set B ⊆ X with finite µ-measure,

lim
n→∞

∣∣∣ ∫
B

(
Anf(x)− Pf(x)

)
dµ(x)

∣∣∣ ≤ lim
n→∞

∫
B

∣∣∣Anf(x)− Pf(x)
∣∣∣ dµ(x)

≤ µ(B)1/2 lim
n→∞

‖Anf − Pf‖L2(X) = 0.

Hence, for all B ∈ B with µ(B) <∞, one obtains that for any sequence εk → 0, there is a
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sequence (nk)k ⊆ N with∣∣∣ ∫
B
Pf(x) dµ(x)

∣∣∣ ≤ εk +
∫
B
|Ankf(x)| dµ(x)

= εk + |Fnk |
−1
∫
B

∣∣∣ ∫
Fnk

f(gx) dmL(g)
∣∣∣ dµ(x)

Fubini
≤ εk + |Fnk |

−1
∫
Fnk

∫
B
|f(gx)| dµ(x) dmL(g)

≤ εk + |Fnk |
−1
∫
Fnk

∫
X
|f(gx)| dµ(x) dmL(g) = εk + ‖f‖L1(X),

where the last equality is due to the fact that the action of G on (X,B, µ) preserves the
measure. So, in particular, the latter inequality holds for non-negative equivalence classes
f ∈ L1(X) ∩ L∞(X), which with εk → 0 implies∫

B
P |f |(x) dµ(x) ≤ ‖f‖L1(X) (5.3)

for each measurable B ⊆ X of finite measure. Note that by the positivity of the operators
An, P is also positive and thus |Pf | ≤ P |f | for f ∈ L1(X) ∩ L∞(X). Using this fact
and applying inequality (5.3) to an increasing sequence of measurable sets {Bn} of finite
measure such that ∪nBn = X (which exists by the σ-finiteness of µ), we yield by the
monotone convergence theorem

‖Pf‖L1(X) =
∫
X
|Pf | dµ ≤

∫
X
P |f | dµ

(5.3)
≤ ‖f‖L1(X) (5.4)

for all f ∈ L1(X)∩L∞(X). But the latter space is dense in L1(X) (cf. [44], Lemma II.4.1)
so that by (5.4) the definition of P can be extended to a contraction on the whole space
L1(X). Since the L1-convergence preserves the sign, P is a positive contraction on L1(X).
We claim further that the following statements hold true even for p = 1.

(i) P is a projection on L1(X),

(ii) ran(P ) ⊆ Fix(TG),

(iii) Define L∗0 := lin‖·‖L2{h− Tgh |h ∈ L2(X), g ∈ G} and L∗1 := L∗0 ∩ L1(X). Then L∗1 is
L1-dense in ker(P ).

Note that if we can verify the claims (i)-(iii), similar arguments as in the case p > 1 can be
used to prove the individual ergodic theorem. Since P is a projection by (i), we can write
each f ∈ L1(X) as f = f1 + f2 with f1 := Pf ∈ ran(P ) and f2 := f − Pf ∈ ker(P ). By
claim (ii), f1 is a fixed function and therefore, Anf1 = f1 for all n ∈ N (see above) and
this implies that Anf1 converges pointwise almost everywhere to Pf . Claim (iii) shows that
f2 can be approximated in L1(X) by representants in L∗1. Since we assumed the maximal
operator M to be of weak type (2, 2), we conclude from the case p = 2 (see above) that the
ergodic averages Anh converge to zero almost everywhere for every h ∈ L∗1. But this space
is L1-dense in ker(P ) and therefore, Fix(TG)+L∗1 is dense in L1(X). The fact that the max-
imal operator is also of weak type (1, 1) allows us to apply Banach’s Principle, Lemma 5.4,
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which implies that the pointwise ergodic theorem is valid on the whole space L1(X).

So let us prove the claims (i)-(iii).

To see (i), pick a function f ∈ L1(X) and find some sequence {fn} ⊆ L1(X) ∩ L∞(X) ⊆
L2(X) such that fn

n→ f in L1(X). It follows from the Mean Ergodic Theorem 4.3 and
Proposition 4.4 for p = 2 that P 2fn = Pfn for all n ∈ N. Since P is a contraction this
implies P 2f = Pf and since f was arbitrary, P is a projection on L1(X).

For (ii), assume first that f ∈ ran(P ), i.e. there is some h ∈ L1(X) such that Ph = f .
Approximating h in L1(X) by some sequence {hn} ⊆ L1(X) ∩ L∞(X) we have by the
Abstract Mean Ergodic Theorem 4.3 and Proposition 4.4 in the case p = 2 that Tg(Phn) =
Phn and using the continuity of P and Tg we observe that

‖Tgf − f‖L1(X) = ‖TgPh− Ph‖L1(X)

≤ lim sup
n→∞

‖TgPh− TgPhn‖L1(X) + lim sup
n→∞

‖Phn − Ph‖L1(X) = 0

for all g ∈ G, which means that f ∈ Fix(TG).

We finally prove (iii). To do so, assume that Pf = 0 for f ∈ L1(X). As usual, we choose
some sequence {fn} ⊆ L1(X) ∩ L∞(X) converging to f in L1(X). By the Mean Ergodic
Theorem 4.3 and Proposition 4.4 in the case p = 2 we have L∗1 ⊆ ker(P ). By the same
arguments, we can write

fn = f (1)
n + f (2)

n

with f (1)
n , f

(2)
n ∈ L2(X) for all n ∈ N. Noting that Pf (2)

n = 0 we see that f (2)
n ∈ L∗0 for all

n ∈ N. Moreover, f (1)
n = Pfn and by continuity of P we have f (1)

n ∈ L1(X) for every n ∈ N.
But this implies that f (2)

n ∈ L1(X) as well such that f (2)
n ∈ L∗1 for every n ∈ N. Since P is

a contraction and Pf = 0, we see that f (1)
n

n→ 0 in L1(X) and therefore, the expression

‖f − f (2)
n ‖L1(X) ≤ ‖f − fn‖L1(X) + ‖f (1)

n ‖L1(X)

tends to zero as n tends to infinity. We conclude that each f ∈ ker(P ) can be approximated
in L1(X) by some sequence in L∗1. This finishes the proof. �



6 The transfer principle

We have seen in the previous chapter that for establishing a pointwise ergodic theorem, it
is sufficient to verify the validity of an Lp-maximal inequality, see Theorem 5.3. To do so,
we use the transfer principle and prove a so-called transfer inequality (see Theorem 6.4).
This method is a well developed technique allowing us to restrict our attention to the
natural action G × G → G of group multiplication instead of considering the action of G
on the σ-finite measure space (X,B, µ). Thus, the information whether an action of some
amenable group G with Følner sequence {Fn} on a measure space gives rise to pointwise a.e.
convergence of the corresponding ergodic averages Anf is encoded in the intrinsic structures
of the group and the sequence. This idea dates back to the first proofs of the classic
pointwise ergodic theorem and was explicitly formulized by Calderon in [5]. Few years
later, Emerson extended and generalized these results in [11] by proving the following
theorem.
Theorem 6.1 (Transfer principle, Emerson 1974)
Let G be a σ-compact amenable group. Then for every Følner sequence {Fn}, the expression

(Sf)(g0) := sup
n∈N

∣∣∣∣|Fn|−1
∫
Fn
f(gg0) dmL(g)

∣∣∣∣
is a well defined sublinear operator S on L1

loc(G).
Suppose further that G acts on a σ-finite measure space (X,B, µ) by measure preserving
transformations. If S is of weak type (p, p) for some 1 ≤ p <∞, then so is also the operator
M on Lp(X), defined as

(Mf)(x) := sup
n∈N

∣∣∣∣|Fn|−1
∫
Fn
f(gx) dmL(g)

∣∣∣∣ .
Proof
See [11], Corollary 1. �

Hence, with the transfer principle, we can derive an Lp-maximal inequality by checking if the
operator S on L1

loc(G) is of weak type (p, p); no information about the action G×X → X is
necessary. In the same paper, Emerson used this technique to derive the individual ergodic
theorem along Følner sequences satisfying the Tempelman condition (3.2).

Theorem 6.2 (Individual ergodic theorem, Emerson 1974)
Let G be a σ-compact group acting on a σ-finite measure space (X,B, µ) by measure pre-
serving transformations. Further, let {Fn} be a Følner sequence satisfying the Tempelman
condition. If now 1 < p < ∞ and if f ∈ Lp(X), then there is a G-invariant f∗ ∈ Lp(X)
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48 6 The transfer principle

such that the ergodic averages Anf , defined as in Theorem 4.3, converge to f∗ pointwise
µ-almost everywhere. In addition to that we have f∗ = Pf , where P is the mean ergodic
projection on Lp(X).
In the case p = 1 this result also holds if µ(X) <∞.

Proof
See [11], Theorem 4’. �

Remark
Combining Emerson’s results (see Theorem 6.1) with the elaborations in Chapter 5, one
can observe easily that the pointwise ergodic theorem must be valid on a (possibly non-finite)
measure space also in the case p = 1.

However, the machinery given by Theorem 6.1 is based on quite involved ideas and is estab-
lished by very sophisticated and technical calculations. In his work, Lindenstrauss uses
the transfer principle in a more subtle way, showing only the things which are indispensable
for the proof of the individual ergodic theorem. None the less, one can use Lindenstrauss’
results in [29] to verify the conditions in Theorem 6.1, which provides a slightly (but not
really) different proof of the pointwise ergodic theorem. We will do this in Corollary 8.8.
So let us describe Lindenstrauss’ version of the transfer principle. He only consideres the
case p = 1 in [29]; we provide an extension to the cases 1 < p < ∞ on a σ-finite measure
space. We start with the following lemma:

Lemma 6.3
Let G be a σ-compact amenable group with a Følner sequence {Fn}. Let k ∈ N and choose
ε > 0. Then, for F̃k := ∪ki=1Fi there is some nk ∈ N such that for F k := F̃kFnk we have

|F k| ≤ (1 + ε)|Fnk |.

Proof
Let ε > 0 and k ∈ N. As a finite union of compact sets, the set F̃k is compact as well.
Hence, by the Følner property (3.5) there must be some element Fnk of the Følner sequence
such that

|F k| − |Fnk | ≤ |Fnk4F̃kFnk | ≤ ε|Fnk |,

which proves the lemma. �

The key step to establish a sufficient condition for the validity of an Lp-maximal inequality
is the following theorem.

Theorem 6.4 (Transfer principle, Lindenstrauss 2001)
Let G be a σ-compact, amenable group acting on a σ-finite measure space (X,B, µ) by
measure preserving transformations. Further, let ε = 1 and for each k ∈ N, choose the sets
F̃k, Fnk and F k as in Lemma 6.3, where {Fn} is a Følner sequence of G.
Then the maximal operator M = supn∈NAn satisfies an Lp-maximal inequality for



6 The transfer principle 49

1 ≤ p < ∞ if there is a constant c > 0 such that for any f ∈ Lp(X), for each k ∈ N, for
every λ > 0 and for almost every x ∈ X, we have the transfer inequality∣∣∣∣∣∣

k⋃
j=1

Bj

∣∣∣∣∣∣ ≤ cλ−p
∫
Fk

|f(gx)|p dmL(g), (6.1)

where Bj := Bj(x) := {g ∈ Fnk | |(Ajf)(gx)| ≥ λ} for 1 ≤ j ≤ k.

Proof
Let c > 0 be such a constant and take f ∈ Lp(X). We first fix k ∈ N, λ > 0 as well as some
x ∈ X for which the function fx(g) := f(gx) is p-integrable over F k (Note that by Fubini’s
theorem, the function fx(·) is locally p-integrable on G for almost every x ∈ X). Then set

(Mkf)(x) := max
1≤j≤k

|(Ajf)(x)|

as in Definition 5.1 and
Dk := {x ∈ X | (Mkf)(x) ≥ λ}.

We see that

a ∈
k⋃
j=1

Bj ⇔ a ∈ Fnk ∧
(
∃ 1 ≤ j ≤ k : |(Ajf)(ax)| ≥ λ

)
⇔ a ∈ Fnk ∧ (Mkf)(ax) ≥ λ
⇔ a ∈ Fnk ∧ ax ∈ Dk,

so that ∣∣∣∣∣∣
k⋃
j=1

Bj

∣∣∣∣∣∣ =
∫
Fnk

1Dk(gx) dmL(g). (6.2)

Note further that µ(Dk) < ∞ since otherwise, we could find some 1 ≤ j0 ≤ k such that
‖Aj0f‖Lp =∞, which clearly is a contradiction.
Hence, we can apply Fubini’s Theorem and by using the fact that the action of G on X is
measure preserving, we compute

µ(Dk) =
∫
X
1Dk(x) dµ(x)

=
∫
Fnk

|Fnk |
−1
∫
X
1Dk(gx) dµ(x) dmL(g)

Fubini=
∫
X
|Fnk |

−1
∫
Fnk

1Dk(gx) dmL(g) dµ(x).

Using equality (6.2) and the assumption (6.1), one obtains further

µ(Dk) ≤ |Fnk |
−1
∫
X
cλ−p

∫
Fk

|f(gx)|p dmL(g) dµ(x)

Fubini= cλ−p|Fnk |
−1
∫
Fk

∫
X
|f(gx)|p dµ(x) dmL(g)

≤ cλ−p
|F k|
|Fnk |

‖f‖pLp(X). (6.3)
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As we have chosen the sets Fnk and F k according to Lemma 6.3 with ε = 1, it holds true
that

|F k|
|Fnk |

≤ 2,

which with inequality (6.3) yields

µ(Dk) ≤ 2cλ−p‖f‖pLp(X). (6.4)

Finally, we note that the inequality (Mf)(x) > λ implies that there must be some k ∈ N
such that (Akf)(x) ≥ λ which means that

µ({x | (Mf)(x) > λ}) ≤ µ(∪∞k=1Dk). (6.5)

Now k was arbitrarily chosen and the sets {Dk} are increasing, hence by taking the limit in
(6.4) one finally obtains with inequality (6.5)

µ({x | (Mf)(x) > λ}) ≤ lim
k→∞

µ(Dk)

≤ 2c
λp
‖f‖pLp(X),

which gives the desired Lp-maximal inequality. �



7 Decomposition of the group -
deterministic case

By the previous two chapters, in order to prove a general pointwise ergodic theorem for
σ-compact amenable groups one can make use of the transfer principle and verify inequality
(6.1). We will do this for countable amenable groups in Theorem 7.1 by deterministic
methods which are due to Weiss (see [43]). The key step is the proof of an abstract
combinatorial lemma (7.2).

We approach the verification of the transfer inequality by the following simple observation:
fix f ∈ Lp(X) (1 ≤ p <∞), λ > 0 and x ∈ X as in Theorem 6.4. Moreover, recall that the
transfer inequality (6.1) involves sets Bj ⊆ G of specific b ∈ G such that |Ajf(bx)| ≥ λ (as
usual Aj denotes the jth ergodic average). So if {Fn} is the corresponding Følner sequence
in G, then by definition of Bj and Hölder’s inequality (q := p/(p − 1), i.e. p − p/q = 1 for
1 < p <∞) we obtain for each b ∈ Bj∫

Fjb
|f(gx)|p dmL(g) ≥ |Fjb|−p/q

(∫
Fjb
|f(gx)| dmL(g)

)p

= |Fjb|−p/q
(

∆(b)
∫
Fj

|f(g(bx))| dmL(g)
)p

= |Fjb|−p/q · [∆(b)]p · [|Fj | · (Aj |f |)(bx)]p

≥ |Fjb|−p/q · [∆(b) · |Fj |]p · λp

= λp · |Fjb|p−p/q

= λp · |Fjb|, (7.1)

where ∆ stands for the modular function ∆ : G→ (0,∞), defined so that for g ∈ G,

mL(B · g) = ∆(g) ·mL(B)

for all measurable sets B ⊆ G (cf. [9], Section 1.4). As ∆ is also a group homomorphism,
this implies for all integrable functions f that∫

X
f(hg) dmL(h) = ∆(g)−1 ·

∫
X
f(h) dmL(h).

Note that (7.1) is trivial if p = 1. Thus, to verify the condition of Theorem 6.4, one might
try to cover the set F k by right-translates Fjb of Følner elements Fj with b ∈ Bj . Then, if
we assure that
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52 7 Decomposition of the group - deterministic case

(1) two distinct translates have small overlaps (where the word ’small’ has to be specified)
and

(2) the total mass of these translates exceeds the left-hand side of (6.1),

we can use inequality (7.1) in an obvious manner to derive the transfer inequality (6.1). The
classical covering lemmas of this kind show the existence of a countable maximal collection
of pairwise disjoint translates Fjb, b ∈ Bj which satisfies the above properties (1)(clear) and
(2). Recall that pointwise ergodic theorems do in general not hold along arbitrary Følner
sequences {Fn} (cf. Theorem 3.13) and so far, we have not considered any restrictions
on {Fn}. Indeed, one needs the growth condition on {Fn} exactly at this point of our
argumentation. Therefore, an additional requirement on the considered Følner sequence
is indispensable for the validity of a general covering (resp. disjointification-)lemma. The
most popular approach is the use of the Tempelman condition (3.2), as demonstrated e.g.
in [11], [33], [34] and [43]. While Wiener applies a disjointification lemma in his proof of
the classical Z-case (cf. [45]), Calderon uses assumptions on the Følner sequence which
are stronger than amenability (see [4]).
Moreover, all these covering results can be obtained for arbitrary sequences of sets obeying
some growth restriction; the sequence does not have to be a Følner sequence, i.e. as long as
we work with some well-conditioned sequence, the statements in this and the next chapter
may even hold true for non-amenable groups.

As pointed out in Chapter 3, Følner sequences with Tempelman condition do not necessar-
ily exist in amenable groups. This is different for the Shulman condition (cf. Lemma 3.10).
Hence, it is more appropriate to work with tempered sequences. A first result involving
a Følner sequence with Shulman condition is due to eponym Shulman who managed to
prove the pointwise convergence theorem in the L2-case (cf. [39]). An elementary proof of
the transfer inequality for discrete, σ-compact (and hence countable) groups, which we will
present below, was given by Weiss (cf. [43], p. 251-254). The case for second countable,
σ-compact amenable groups had been open for almost three decades, until one of Weiss’
graduate students, Lindenstrauss, solved the problem in 2001 by treating possible cover-
ings as outcome of random variables (cf. [29], Lemma 2.1).
We now describe Weiss’ proof of inequality (6.1) for a countable (discrete) amenable group
G. In contrast to the techniques developed by Lindenstrauss (see next chapter below),
he builds his line of argumentation on deterministic and combinatorial arguments; no ran-
domness is involved.
Theorem 7.1 (Transfer inequality in the countable case, cf. [43])
Let G be a countable (|G| > 10), discrete group with a tempered sequence {Fn} (with constant
C) of finite subsets of G. Further, G acts on a σ-finite measure space (X,B, µ) by measure
preserving transformations. For 1 ≤ p < ∞, let f ∈ Lp(X) be given. Moreover, we fix
N ∈ N, λ > 0 and choose x ∈ X as in the proof of Theorem 6.4.
Then, if F is some compact (finite) subset of G and if {Bj}Nj=1 is a finite sequence of finite,
pairwise disjoint subsets in G such that FjBj ⊆ F and Bj ⊆ {g ∈ G | |(Ajf)(gx)| ≥ λ} for
all 1 ≤ j ≤ N , then ∣∣∣∣∣∣

N⋃
j=1

Bj

∣∣∣∣∣∣ =
N∑
j=1
|Bj | ≤

6(C + 1)
λp

·
∑
g∈F
|f(gx)|p. (7.2)
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The proof of this theorem is mainly based on the following abstract combinatorial lemma.

Lemma 7.2 (Abstract combinatorial lemma, cf. [43])
Let F be a finite set. Furthermore, let a finite sequence {Vi}mi=1 of subsets of F be given
which all have the same size, i.e. |Vi| = |V1| =: v < ∞ for all 1 ≤ j ≤ m. We further
assume that v ≥ 10 and that a positive measure φ is defined on F such that

(i) there exists some θ > 0, such that φ(Vi) ≥ θv for all 1 ≤ i ≤ m,

(ii)
∑m
i=1 1Vi(g) ≤ v for all g ∈ F .

Then there is a subcollection {Vi | i ∈ I ⊆ {1, . . . ,m} } satisfying

(a) φ(
⋃
i∈I Vi) ≥ 1

3θ ·m,

(b) |I| · v ≤ 3
θφ(

⋃
i∈I Vi).

Proof
We give a proof in form of an algorithm. As a first step, we set i(1) = 1. Assume further
that i(1), . . . , i(k) (k ≥ 1) are chosen and define Ik := {i(1), . . . , i(k)}. If for all l > i(k),

φ

Vl \ k⋃
j=1

Vi(j)

 <
1
2φ(Vl), (case A)

then set I := Ik = {i(1), . . . , i(k)}. Otherwise choose i(k) < l ≤ m as the least integer
between i(k) and m such that

φ

Vl \ k⋃
j=1

Vi(j)

 ≥ 1
2φ(Vl), (case B)

set Ik+1 := Ik ∪ {l} and repeat this procedure until we arrive in case (A) which returns the
resulting set I.
Again, we distinguish two cases.

(I) k = |I| ≥ m/v;
For claim (b), note that

φ

 k⋃
j=1

Vi(j)

 = φ

 k⋃
j=1

(
Vi(j) \

j−1⋃
s=1

Vi(s)
)

=
k∑
j=1

φ

Vi(j) \ j−1⋃
s=1

Vi(s)


Def. I
≥ 1

2

k∑
j=1

φ(Vi(j))

(i)
≥ 1

2kθv ≥
θ

3 |I| · v.
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Continuing this calculation and using the fact that |I| ≥ m/v, we arrive at

φ

 k⋃
j=1

Vi(j)

 ≥ θ

3 ·m,

which is claim (a).

(II) k < m/v;
We set I := {1, . . . ,m} \ I and U := ∪i∈IVi. Then all Vi corresponding to elements
in I have most of their mass in U , i.e. for i0 ∈ I, one has

φ(Vi0)− φ(Vi0 ∩ U) = φ (Vi0 \ U)

≤ φ

Vi0 \ ⋃
j:i(j)<i0

Vi(j)


Def. I
<

1
2φ(Vi0),

so that
1
2φ(Vi0) < φ(Vi0 ∩ U).

By summation over all i ∈ I and by property (ii),

1
2
∑
i∈I

φ(Vi) ≤
m∑
i=1

∫
F
1Vi(g) · 1U (g) dφ(g)

(ii)
≤ v ·

∫
F
1U (g) dφ(g)

= v · φ(U).

Therefore,

φ

(⋃
i∈I

Vi

)
= φ(U) ≥ 1

2v
∑
i∈I

φ(Vi)

(i)
≥ 1

2v |I|θv

= θ

2 · (m− k) = θ

2m · (1−
k

m
)

(II)
>

1
2(1− 1

v
) · θm

v≥10
≥ 9

20θm ≥
θ

3m,

which gives (a). By assumption, m > |I| · v and thus, claim (b) is proven as well.

To conclude, the statements (a) and (b) hold in each case and the proof of the lemma is
finished. �
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Proof (of Theorem 7.1)
As in the case of Lemma 7.2, we give an algorithm as a proof. Note first that φ(A) :=∑
g∈A |f(gx)|p defines a positive measure on Borel subsets of F . Since G is unimodular (i.e.

the modular function is the constant one function), we have |Fjg| = |Fj | for all g ∈ G and
each 1 ≤ j ≤ N . It follows also from the unimodularity of G that limn→∞ |Fn| = |G| > 10
such that without loss of generality, we can assume that vj := |Fj | ≥ 10 for all 1 ≤ j ≤ N .
Consider the collection {Fjb | b ∈ Bj} for some fixed 1 ≤ j ≤ N . So with mj := |Bj |,
Bj = {b(j)1 , . . . , b

(j)
mj}, we can define V (j)

i := Fjb
(j)
i for 1 ≤ i ≤ mj . It follows from inequality

(7.1) that φ(V (j)
i ) ≥ λp|V (j)

i | for all 1 ≤ i ≤ mj . In addition to that, since all the V (j)
i are

translates of the set Fj , each g ∈ F is contained in at most |Fj | different translates. Hence,∑mj
i=1 1V (j)

i

(g) ≤ vj for g ∈ F .

Therefore, for all 1 ≤ j ≤ N , Lemma 7.2 is applicable to (subcollections of) {V (j)
i }

mj
i=1 with

v = vj ≥ 10, m = mj , θ = λp and φ defined as above. We will make use of this fact in the
algorithm below.

(I) Set j = N ;
Set ϑN := 1 and apply Lemma 7.2 to the collection {FNb | b ∈ BN} = {V (N)

i }mNi=1 .
Hence we find IN ⊆ BN with

|BN | = mN ≤ 3
λp
φ

 ⋃
d∈IN

FNd

 = 3
λp
φ(FNIN );

|IN | · |FN | = |IN | · vN ≤ 3
λp
φ

 ⋃
d∈IN

FNd

 = 3
λp
φ(FNIN ).

(II) Replace j by (j − 1); if j = 0 then go to step (IV).

(III) Set Bj := {b ∈ Bj |Fjb ∩
⋃n
i=j+1 FiIi = ∅} and distinguish the following two cases

(A) and (B):

(A) |Bj | ≥ |Bj |/2;
Put ϑj := 1 and apply Lemma 7.2 to Bj to construct Ij ⊆ Bj ⊆ Bj such that

|Bj | ≤
3
λp
φ(FjIj);

|Bj | ≤
6
λp
φ(FjIj);

|Ij | · |Fj | ≤
3
λp
φ(FjIj).

Return to step (II).

(B) |Bj \Bj | ≥ |Bj |/2;
Put ϑj := 0 and note that b ∈ Bj \ Bj implies b ∈ F−1

j Fi0Ii0 for some i0 > j.
Thus,

Bj \Bj ⊆
⋃
i>j

F−1
j FiIi.

We simply record this fact, set Ij = ∅ and return to step (II).
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(IV) We summarize our results:
in the cases where ϑj = 1 occured, one obtains by disjointness of the sets FjIj∑

j:ϑj=1
|Bj |

step III (A)
≤ 6

λp

∑
j:ϑj=1

φ(FjIj)

≤ 6
λp
φ(F ).

For the cases ϑj = 0, using the disjointness of the sequence {Bj} and the fact that
the sequence {Fj}Nj=1 is tempered, we compute

∑
j:ϑj=0

|Bj | ≤ 2

∣∣∣∣∣∣
⋃

j:ϑj=0
Bj \Bj

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
N−1⋃
j=1

⋃
i>j

F−1
j FiIi

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
N⋃
i=2

⋃
j<i

F−1
j FiIi

∣∣∣∣∣∣ ≤ 2
N∑

i=2,ϑi=1

∣∣∣∣∣∣
⋃
j<i

F−1
j FiIi

∣∣∣∣∣∣
≤ 2

N∑
i=2,ϑi=1

∣∣∣ ⋃
j<i

F−1
j Fi

∣∣∣ · |Ii| ≤ 2
N∑

i=2,ϑi=1
C|Fi| · |Ii|

step III (A)
≤ 2

N∑
i=2,ϑi=1

3C
λp
φ(FiIi) ≤

6C
λp
φ(F ),

where in the last inequality, we exploited the disjointness of the sets FiIi.

We conclude that
N∑
j=1
|Bj | =

N∑
j=1,ϑj=0

|Bj |+
N∑

j=1,ϑj=1
|Bj |

≤ 6C
λp
φ(F ) + 6

λp
φ(F )

= 6(C + 1)
λp

∑
g∈F
|f(gx)|p,

which proves the transfer inequality (7.2). �

With this result, the individual ergodic theorem for countable, discrete groups along tem-
pered Følner sequences is easily established.

Corollary 7.3 (Pointwise ergodic theorem for countable, discrete groups)
Let G be a countable, discrete group which acts on a σ-finite measure space (X,B, µ) by
measure preserving transformations. Further, let {Fn} be a tempered Følner sequence with
constant C. Then for any f ∈ Lp(X), 1 ≤ p <∞, the ergodic averages

(Anf)(x) := 1
|Fn|

∑
g∈Fn

f(gx)

converge pointwise a.e. to some G-invariant f∗ ∈ Lp(X).
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Proof
The proof is an application of the transfer principle, Chapter 6. For finite groups, the
ergodic theorem is trivial, hence assume |G| ≥ 10. By the amenability of G, we find for
each k ∈ N finite sets F̃k, Fnk and F k as in Lemma 6.3 with ε = 1. Further, take some
f ∈ Lp(X) as well as some λ > 0 and fix x ∈ X as in the proof of Theorem 6.4. We define
Bj := {g ∈ Fnk | |(Ajf)(gx)| ≥ λ} for 1 ≤ j ≤ k, as well as

Bk := Bk,

Bj := {g ∈ Fnk \ (∪i>jBi) | |(Ajf)(gx)| ≥ λ}, (k − 1 ≥ j ≥ 1).

Then Bj ⊆ Bj ⊆ {g ∈ G | |(Ajf)(gx)| ≥ λ} and FjBj ⊆ FjBj ⊆ F k for every 1 ≤ j ≤ k.
Note further that the sets Bj are pairwise disjoint and∣∣∣∣∣∣

k⋃
j=1

Bj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k⋃
j=1

Bj

∣∣∣∣∣∣ =
k∑
j=1
|Bj |. (7.3)

Hence we apply Theorem 7.1 with F = F k to obtain with equality (7.3)∣∣∣∣∣∣
k⋃
j=1

Bj

∣∣∣∣∣∣ ≤ 6(C + 1)
λp

∫
Fk

|f(gx)|p dmL(g),

where mL(·) is the counting measure on G. Since C depends only on the Følner sequence,
it follows from the transfer principle (Theorem 6.4) that the maximal operator M is of
weak type (p, p), hence satisfies an Lp-maximal inequality. The pointwise convergence now
follows from Theorem 5.3. �
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8 Lindenstrauss’ decompositions

This section is devoted to the presentation of Elon Lindenstrauss’ celebrated proof of the
transfer inequality (6.1) for most σ-compact amenable groups (cf. [29]). The argumentation
is built on the Decomposition Lemma (Theorem 8.1) which is valid for all second countable
groups. Note that amenability of the group is not required. In the proof, it will be necessary
to distinguish the cases (’G is discrete’) and (’G is not discrete’). The latter situation
is more involved because one has to work with the theory of Poisson point processes on
locally compact groups (see Definition 8.4). However, the differences are rather technical
(compare e.g. the technical Lemmas 8.2 and 8.7), i.e. the random algorithms determining
the subcollection Z(ω) of F are nearly identical in both cases. Note that a priori, it is not
clear that Poisson point processes exist on locally compact groups. As Theorem 8.5 shows,
this is indeed the case. We will not present the proof of the existence theorem in whole
detail, but give an outline of the main ideas.
Finally, we present proofs of the pointwise ergodic theorems for σ-compact amenable groups
in Corollary 8.8, where we use Lindenstrauss’ and Emerson’s versions of the transfer
principle (cf. Theorems 6.4 and 6.1) respectively.

We proceed as follows. Assume as above that we are given some compact set F ⊆ G, a
tempered sequence {Fj}Nj=1 of compact sets and sets {Bj}Nj=1 such that FjBj ⊆ F for all
1 ≤ j ≤ N . Unlike before, the selection of the right-translates Fjb is now based on the
outcome of some random variable Z which will be defined on a carefully chosen probability
space (Ω,H,P). We will see that on average, the resulting subcollections of F := {Fjb | 1 ≤
j ≤ N, b ∈ Bj} satisfy the ’nice’ properties leading to the transfer inequality in a similar
way as in Chapter 7.

Theorem 8.1 (Decomposition Lemma, Lindenstrauss 2001)
Let G be a second countable group, N ∈ N and assume that {Fj}Nj=1 is a finite sequence of
tempered compact sets in G with constant C > 0. Further, let 0 < δ ≤ 1 be an arbitrary
positive number.
If F ⊆ G is a compact set and if there are Borel-measurable sets {Bj}Nj=1 such that FjBj ⊆ F
for all 1 ≤ j ≤ N , then there is some probability space (Ω,H,P) as well as a random variable
Z on Ω taking values Z(ω) in the set of all subcollections of F := {Fjb | 1 ≤ j ≤ N, b ∈ Bj}
such that the counting function

Λ : Ω× F → N0 : Λ(ω, g) :=
∑

B∈Z(ω)
1B(g)

has the following properties:

(1) Z(ω) is a finite set almost surely and Λ is a measurable function on Ω× F .

59
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(2) For all g ∈ F ,

E(Λg(·) |Λg(·) ≥ 1) ≤ (1 + δ),

where E(Λ(·, g) |L) with L ∈ H stands for the expectation of the counting function
Λg := Λ(·, g) : Ω → N0 with respect to the probability measure P under the condition
that the event L has been realized.

(3) Moreover, if we define γ(δ, C) := δ(1 + Cδ)−1, then

E
(∫

F
Λg(·) dmL(g)

)
= E

 ∑
B∈Z(·)

|B|

 ≥ γ(δ, C)

∣∣∣∣∣∣
N⋃
j=1

Bj

∣∣∣∣∣∣ .
Remark
Statement (2) stands for the almost disjointness of the outcomes Z(ω) on average. We
emphasize that this property does not only mean that the expectation of the counting
function Λg is controlled by some bound which is slightly greater than one. It also says that
even if we know already that Λ(ω, g) ≥ 1, we can still expect that Λ(ω, g) ≤ (1 + δ). In
light of that, there cannot exist ’significantly’ many ω ∈ Ω with Λ(ω, g) > 1 for some fixed
g ∈ F . Hence, for every g ∈ F and for ’most’ subcollections Z(ω) (ω ∈ Ω), there is at most
one translate Fjb in Z(ω) containing g.
The inequality in (3) makes sure that the total mass of right translates Fjb in the collections
Z(ω) is on average big enough to beat the left-hand side of inequality (6.1).
As already pointed out in Chapter 7, these two properties are the crucial ingredients for the
proof of the transfer inequality.

We start with the case that G is discrete. In the proof, we will need the following elementary
probabilistic lemma.

Lemma 8.2
Let {Zi} be a sequence of independent, identically distributed random variables which take
the value 1 with probability p and the value 0 with probability (1 − p) (we say that the
Zi have Bernoulli distribution with parameter p). For n ∈ N, define the random variable
Sn :=

∑n
i=1 Zi. Then

E(Sn |Sn ≥ 1) ≤ 1 + (n− 1)p

for every n ∈ N.

Proof
Note that the claim is trivial for p ∈ {0, 1}. Hence we can assume that 0 < p < 1. Then

(1− p)−n+1 =
( 1

1− p

)n−1
=

( ∞∑
k=0

pk
)n−1

≥ (1 + p)n−1 ≥ 1 + (n− 1)p,



8 Lindenstrauss’ decompositions 61

where the last inequality is the Bernoulli inequality. Multiplying by (1− p)n gives

(1− p) ≥ (1− p)n(1 + (n− 1)p);
1 + (n− 1)p− (1− p)n(1 + (n− 1)p) ≥ np;

(1 + (n− 1)p)(1− (1− p)n) ≥ np.

We divide by (1− (1− p)n) to obtain

1 + (n− 1)p ≥ np

1− (1− p)n = E(Sn)
1− P[Sn = 0]

=
∑n
k=0 k · P[Sn = k]

P[Sn ≥ 1] =
n∑
k=1

k · P[Sn = k, Sn ≥ 1]
P[Sn ≥ 1]

=
n∑
k=0

k · P[Sn = k |Sn ≥ 1] = E(Sn |Sn ≥ 1).

We now prove the Decomposition Lemma for discrete groups. �

Proof (of Theorem 8.1, G discrete )
Since G is second countable and discrete, it must also be at most countable. Hence, we can
put

Ω := {0, 1}N×|G|

as the set of all (N ×|G|)-matrices with entries 0 or 1. With its powerset H, we extend Ω to
a measurable space. For every pair (j, b), 1 ≤ j ≤ N, b ∈ G we define pairwise independent
Bernoulli random variables Zj,b with parameter pj,b := pj := δ/|Fj |. These random variables
induce the product measure P on Ω, i.e. for a setM ⊆ {1, . . . , N} and some finite set F ⊆ G,
we have for (lj,b)j∈M,b∈F ∈ {0, 1}|M |×|F | that

P[{Zj,b = lj,b}, j ∈M, b ∈ F ] =
∏
j∈M

∏
b∈F

(
χ[lj,b=1] · pj + χ[lj,b=0] · (1− pj)

)
.

We now construct the random variable Z(·) by the following algorithm. Let ω ∈ Ω be given.

1. Put j := N and B(N+1)
i (ω) := Bi for 1 ≤ i ≤ N .

2. Set

Σj(ω) := {b ∈ B(j+1)
j (ω) |ωj,b = 1}

and

Zj(ω) := {Fjb | b ∈ Σj(ω)}.

3. For all i < j, remove from B
(j+1)
i (ω) those elements b with Fib∩ (∪k≥jZk(ω)) 6= ∅ and

obtain the sets B(j)
i (ω) for i < j.

4. As long as j 6= 1, replace j by (j − 1) and return to Step 2.



62 8 Lindenstrauss’ decompositions

5. Put

Z(ω) :=
N⋃
j=1
Zj(ω).

The randomness of the algorithm comes into play in Step 2. Every right-translate Fjb in F
corresponds to a pair (j, b) with 1 ≤ j ≤ N and b ∈ Bj ⊆ G which means that for each such
set, we flip some coin showing ’head’ with probability pj . Hence if ωj,b = 1 (i.e. the coin
shows ’head’), the corresponding translate becomes an element of the resulting subcollection
Z(ω) unless it does not intersect translates Fkb (k > j) which have been chosen as an element
of Z(ω) in a previous step.
Note also that the random variables B(j)

i for 1 ≤ i < j ≤ N can be interpreted as the set of
all b ∈ Bi for which Fib ∈ Z(ω) is still possible given (Σi(ω))i≥j and steps N,N − 1, . . . , j.
Furthermore, the outcomes of the B(j)

i as well as of the random variables Σj (1 ≤ j ≤ N)
depend on Φj , the smallest σ-algebra of subsets of Ω generated by the pairwise independent
random variables Zk,a for k ≥ j and all a ∈ G. Thus we observe by stochastic independence
that if for 2 ≤ j ≤ N , the ’value’ of the information function

Φj(ω) := (Σk(ω), B(k)
i (ω),Zk(ω))j≤k≤N, 1≤i<k

on Ω (which is based on sets in Φj) has been determined, the random collection
⋃j−1
i=1 Zi(ω)

has exactly the same distribution as the distribution one obtains by applying the algorithm
on the tempered sequence {Fi}j−1

i=1 and the translation sets {B(j)
i (ω)}j−1

i=1 . In the following,
we will refer to this essential fact as the so-called recursive property of the algorithm. For
the sake of completeness, we define the value ΦN+1(ω) for all ω ∈ Ω as

ΦN+1(ω) = (Bj)1≤j≤N .

To prove properties (1) - (3), we work with the counting functions of the Zj(ω) defined as

Λ(j)(ω, g) =
∑

B∈Zj(ω)
1B(g)

on Ω × F . Since H is the powerset of Ω and since G is discrete, the functions Λ(j) are
measurable for 1 ≤ j ≤ N . By disjointness of the collections Zj(ω) and Zk(ω) for j 6= k,
the events Ij := [Λ(j)(·, g) ≥ 1] and Ik := [Λ(k)(·, g) ≥ 1] are mutually exclusive for g ∈ F .
It follows that the supports of the functions Λ(j)

g (ω) := Λ(j)(ω, g) on Ω are pairwise disjoint
for fixed g ∈ F . Therefore,

Λg(ω) =
N∑
j=1

Λ(j)
g (ω)
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for all ω ∈ Ω and

E(Λg |Λg ≥ 1) =
N∑
j=1

E(Λ(j)
g |Λg ≥ 1)

=
N∑
j=1

(
P[Λg ≥ 1]

)−1 ∫
[Λg≥1]

Λ(j)
g (ω) dP(ω)

=
N∑
j=1

P[Λ(j)
g ≥ 1]

P[Λg ≥ 1] ·

∫
[Λ(j)
g ≥1] Λ(j)

g (ω) dP(ω)

P[Λ(j)
g ≥ 1]

=
N∑
j=1

αj · E(Λ(j)
g |Λ(j)

g ≥ 1),

where αj := P [Λ(j)
g ≥ 1]/P [Λg ≥ 1] and

∑N
j=1 αj = 1. In light of that, to prove (2), it is

sufficient to show

E(Λ(j)
g |Λ(j)

g ≥ 1) ≤ (1 + δ)

for 1 ≤ j ≤ N . So take an arbitrary j and assume that the information Φj+1(ω) is given for
ω ∈ Ω. This implies that we know B

(j+1)
j (ω), i.e. the translation set for the (N − j + 1)th

run of the algorithm and we obtain

Λ(j)
g (ω) =

∑
b∈B(j+1)

j (ω), g∈Fjb

Zj,b(ω) =
∑

b∈B(j+1)
j (ω)∩F−1

j g

Zj,b(ω).

Hence, Λ(j)
g is a sum of |B(j+1)

j (ω)∩F−1
j g| ≤ |Fj | independent random variables with values

in {0, 1} and with parameter pj . By the tower property of the conditional expectation, we
have

E(Λ(j)
g |Λ(j)

g ≥ 1) = E
(
E(Λ(j)

g |Λ(j)
g ≥ 1, Φj+1)(·)

∣∣∣Λ(j)
g ≥ 1

)
.

The fact that we condition on the σ-algebra Φj+1 determining the information Φj+1(ω)
allows us to consider the set B(j+1)

j (ω) as fixed and with Lemma 8.2, we can estimate the
inner expectation as

E(Λ(j)
g |Λ(j)

g ≥ 1 : Φj+1)(ω) ≤ 1 + |B(j+1)
j (ω) ∩ F−1

j g| · pj
≤ 1 + |Fj | · pj = 1 + δ.

This proves (2) and also shows with Fubini’s Theorem that

E
( ∑
B∈Z(·)

|B|
)

=
∫
F

E(Λg(·)) dmL(g)

≤ (1 + δ) |F | <∞.

Since we have |Fjb| ≥ γ := min1≤j≤N |Fj | > 0 for 1 ≤ j ≤ N and b ∈ Bj , this inequality can
only hold true if Z(ω) is finite almost surely. Thus the proof of statement (1) is completed
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as well.
We show claim (3) for some constant γ = γ(δ, C) satisfying also γ < min{δ, C−1}. The
recursive property of the algorithm as well as the tempered condition on the sequence
{Fj}Nj=1 allow us to use induction on N .
For N = 1, we obtain

E
(∑
g∈F

Λg
)

= E
( ∑
B∈ZN (·)

|B|
)

=
∑
b∈BN

|FNb|E(ZN,b)

= |FN | |BN | pN = δ |BN |. (8.1)

Now assume that N > 1. With the recursive property of the algorithm we apply the method
on {Fj}N−1

j=1 as well as on {B(N)
j (ω)}N−1

j=1 determined by the σ-algebra ΦN . As before, we
have to condition the expectation on ΦN to consider the input information ΦN (ω) as fixed
for ω ∈ Ω. By the disjointness of the subcollections Zj(ω) for 1 ≤ j ≤ N , we obtain

E
( ∑
B∈Z(·)

|B|
∣∣∣ΦN

)
(ω) =

∑
B∈ZN (ω)

|B|+ E
( ∑
B∈∪N−1

j=1 Zj(·)

|B|
∣∣∣ΦN

)
(ω). (8.2)

The induction hypothesis and the recursive property of the algorithm make sure that

E
( ∑
B∈∪N−1

j=1 Zj(·)

|B|
∣∣∣ΦN

)
(ω) ≥ γ

∣∣∣N−1⋃
j=1

B
(N)
j (ω)

∣∣∣ (8.3)

with γ < min{δ, C−1}. We know from the third step of the algorithm that the sets B(N)
j (ω)

arise from the sets Bj from which we remove those elements b with Fjb ∩ FNΣN (ω) 6= ∅.
Thus, for j < N , one obtains B(N)

j (ω) = Bj \ F−1
j FNΣN (ω) such that

N−1⋃
j=1

B
(N)
j (ω) ⊇

N−1⋃
j=1

Bj \

N−1⋃
j=1

F−1
j FN

ΣN (ω). (8.4)

Since
∑
B∈ZN (ω) |B| = |FN | · |ΣN (ω)| and by the fact that the sequence {Fj}Nj=1 is tempered,

we obtain from the inequalities (8.2), (8.3) and (8.4) that

E
( ∑
B∈Z(·)

|B|
∣∣∣ΦN

)
(ω) ≥ |FN | · |ΣN (ω)|+ γ

∣∣∣∣∣∣
N−1⋃
j=1

Bj

∣∣∣∣∣∣− C|FN ||ΣN (ω)|

 .
Taking expectations and using that Cγ < 1, we have with (8.1) that

E
( ∑
B∈Z(·)

|B|
)
≥ δ|BN |+ γ

∣∣∣∣∣∣
N−1⋃
j=1

Bj

∣∣∣∣∣∣− Cδ|BN |
 .

One readily verifies that

δ − Cδ · γ = γ ⇔ γ = δ

1 + Cδ
.
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It follows that

E
( ∑
B∈Z(·)

|B|
)
≥ γ

∣∣∣∣∣∣
N−1⋃
j=1

Bj

∣∣∣∣∣∣+ |BN |


with the explicit constant γ(δ, C) = δ (1 + Cδ)−1 < min{δ, C−1}.
This finishes the proof. �

Example 8.3
To illustrate the method presented in the proof of the Decomposition Lemma, we give
a concrete example for N = 3. Figure 8.1 shows the group G as well as the compact
set F ⊆ G. The (tempered) sequence {Fj}3j=1 is displayed by a square F1, a triangle
F2 and a circle F3 respectively. Further, we are given translation sets B1 := {b(1)

k }4k=1,
B2 := {b(2)

l }4l=1 and B3 := {b(3)
m }3m=1 such that the squares Sk := F1b

(1)
k , 1 ≤ k ≤ 4, the

triangles Tl := F2b
(2)
l , 1 ≤ l ≤ 4 as well as the circles Cm := F3b

(3)
m , 1 ≤ m ≤ 3 are all

contained in F and form the collection F . Assume now for the corresponding random
variables Zj,b, we obtain the realizations

{Zj,b(j)(ω)}1≤j≤3, b(j)∈Bj =

1 1 0 1
1 1 1 0
1 0 0

 .

Figure 8.1: Decomposition Algorithm for N = 3
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The shaded elements in Figure 8.1 are those Fjb with Zj,b(ω) = 1, i.e. the (unfair) coin
shows ’head’ for the realization ω ∈ Ω. In our concrete case, these are the squares S1, S2, S4
as well as the triangles T1, T2, T3 and the circle C1.
Now we can construct the subcollection Z(ω) of F . We start with j = N = 3 which means
that we consider circles. Since C1 is the only shaded circle, we obtain Z3(ω) = {C1} by
Step 2 of the algorithm. We see further that C1 ∩ S1 6= ∅ which means that the square S1
will not be contained in the final collection Z(ω) by Step 3.
In the second run of the algorithm, we have j = 2 and we draw our attention to the shaded
triangles. None of those intersects ∪Z3(ω) = C1 non-trivially which means by Step 2 that
Z2(ω) = {T1, T2, T3}. Since T2 ∩S2 6= ∅, the square S2 is removed from the cadidate list for
the final collection Z(ω) by Step 3 of our method.
Finally, we turn to the shaded squares in the third run (j = 1). The squares S1 and S2 are
marked but have already been excluded from the final collection in the previous runs. In
light of that, we arrive at Z1(ω) = S4 again by Step 2 of the algorithm. Since j = 1, we miss
out the Steps 3 and 4 and Step 5 returns Z(ω) = Z1(ω)∪Z2(ω)∪Z3(ω) = {S4, T1, T2, T3, C1}
as final collection (see elements marked in bold face in Figure 8.1).

We now turn to the case that G is not discrete. As mentioned above, we will make use of
Poisson point processes on locally compact groups. For that, one considers the measurable
space (G,J ), where J is the Borel σ-algebra on G. Further, we denote by Ω the collection
of all locally finite subsets of G (i.e. subsets such that their intersection with each compact
set in G is a finite set) and we endow this set with the smallest σ-algebra H such that for
all B ∈ J , the function

N(·)[B] : (Ω,H)→ (N0 ∪ {∞},P(N0 ∪ {∞})) : N(Υ)[B] := #(Υ ∩B)

is measurable, where #A stands for the number of elements contained in A and P denotes
the power set. Hence, for each B ∈ J we have found a random variable mapping locally
finite subsets Υ of G to the cardinality of Υ ∩B.
With that, we can introduce the notion of a Poisson point process.

Definition 8.4
Let ν be a σ-finite, non-atomic measure on the measurable space (G,J ), i.e. ν({g}) = 0 for
all g ∈ G. A probability measure P on the measurable space (Ω,H) defined above is called a
Poisson point process with intensity (measure) ν if

(i) for all B ∈ J with 0 < ν(B) < ∞, the random variable N(·)[B] (on Ω) has Poisson
distribution with parameter ν(B), i.e.

P[N(·)[B] = k] = e−ν(B) ν(B)k

k!
for all k ∈ N;

(ii) the fact that for some n ∈ N, {Bj}nj=1 is a family of pairwise disjoint elements in J
implies that the random variables {N(·)[Bj ]}nj=1 are independent, i.e.

P[N(·)[Bj ] = kj , 1 ≤ j ≤ n] =
n∏
j=1

P[N(·)[Bj ] = kj ]
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for all k = {kj}nj=1 ∈ (N0 ∪ {∞})n.

Remark
By definition of the random variables N(·)[B] for B ∈ J , the assumption on ν to be non-
atomic is inevitable. Namely, if we assume that there is some g ∈ G such that ν({g}) > 0,
then property (i) of the Poisson point process implies that N(·)[{g}] has Poisson distribution
with parameter ν({g}). But then we arrive at

0 < P[N(·)[{g}] ≥ 2] = P[{Υ |#(Υ ∩ {g}) ≥ 2}] = 0,

which is a contradiction.

Note that so far, it is not clear whether such a probability measure P exists on the measurable
space (Ω,H). However, if it exists, then the probability measure is (up to distribution)
uniquely defined by the Poisson random variables N(·)[B] for B ∈ J . The reason for this
is that the intensity measure ν can be written as

ν : J → [0,∞] : B 7→ ν(B) = E[N(·)[B]] =
∫

Ω
N(·)[B] dP

and that the Poisson point process is determined uniquely by the measure ν (cf. [38], Section
3.6).
We will not prove the existence of a Poisson point process on (Ω,H), but give a rough
outline of the construction. For a detailed discussion, the interested reader may refer to
[24], Chapter 2.

Theorem 8.5 (Existence theorem for Poisson point processes)
Let G be a σ-compact group and denote by J its Borel σ-algebra. Further, let Ω and H be
given as above. Then if ν is a non-atomic, σ-finite measure on (G,J ), there is a Poisson
point process P on (Ω,H) with intensity ν.

We give a sketch of the proof which is based on [24], Chapter 2. For this, we need the notion
of independent Poisson point processes.

Definition 8.6 (Independence of Poisson point processes)
Let (G,J ) be a measurable space and assume that Ω and H are chosen as above. A (possibly
infinite) family {Pn}n∈M , M ⊆ N of Poisson point processes on (Ω,H) is called independent
if for every finite set M ′ ⊆ M and all sets B ∈ J , the corresponding random variables
{Nm(·)[B]}m∈M ′ are independent.

Proof (of Theorem 8.5, Sketch)
The proof consists of three major parts.

(1) The first step is the verification of a Disjointness Lemma showing that if P1 and P2
are two independent Poisson point processes on (Ω,H) with intensities ν1 and ν2 and if
B ∈ J with ν1(B), ν2(B) < ∞, then the locally finite random sets Υ1 and Υ2 realized
by the processes are almost surely disjoint on B.
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To see this, we must treat P1 and P2 as processes on the set B. So we first endow
the collection Ω := (B ×B)f consisting of all finite subsets of B ×B with the coarsest
σ-algebra H making the map

Ω→ N : Υ := (Υ1,Υ2) 7→ #(Υ ∩ C)

measurable for all sets C ⊆ B × B ∈ J ⊗ J , where J ⊗ J stands for the product
σ-algebra of J with itself. Then one shows that the mapping

π : Bf ×Bf → (B ×B)f : (Υ1,Υ2) 7→ Υ1 ×Υ2

is measurable with respect to H0×H0 on Bf ×Bf , where H0 is the smallest σ-algebra
on Bf making the map Υ 7→ #(Υ ∩ C) measurable for all measurable C ⊆ B. As
a consequence, the map π induces on (Ω,H) the joint probability measure P of the
processes P1 and P2. Note that the event EB := {(Υ1,Υ2) |Υ1 ∩ Υ2 ∩ B = ∅} can
likewise be expressed as EB := {Υ |#(Υ ∩ DB) = 0}, where DB is the (measurable!)
diagonal set in B ×B. By the notion of the image measure,

P(EB) = (P1 × P2)(π−1(EB)),

where P1 and P2 are the distributions of the independent random variables N1(·)[B]
and N2(·)[B]. A short calculation using Fubini’s Theorem shows that

(P1 × P2)(π−1(EB)) = 1

and therefore, the outcomes Υ1 and Υ2 of the processes are P-almost surely disjoint
random subsets in B.

(2) Next, using the Disjointness Lemma, one proves the so-called Superposition Theorem.
It says that if {Pi} is a sequence of independent Poisson point processes on (Ω,H) with
intensities {νi}, then there is a Poisson point process P on (Ω,H) with intensity measure
ν :=

∑∞
i=1 νi.

In a canonical manner, P will be the probability distribution of subsets in G represented
as

Υ :=
∞⋃
i=1

Υi,

where the random sets Υi are distributed according to Pi.
By the Disjointness Lemma, the random sets are essentially pairwise disjoint in each
set B ∈ J of finite measure. In light of that, the number of points of some Υ ⊆ Ω in B
is given by the random variable

N(·)[B] :=
∞∑
i=1

Ni(·)[B].

Since the countable sum of independent Poisson random variables is again a Poisson
variable with mean equal to the value of the convergent (!) series of the parameters
of the sequence (one way to see that is to use generating functions) we conclude that
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for every B ∈ J with 0 < ν(B) <∞, the random variable N(·)[B] has indeed Poisson
distribution with mean ν(B).
The independence of a sequence {N(·)[Bj ]}nj=1 for disjoint sets Bj in J is now easily
established. By the fact that all Pi are Poisson point processes, the family {Ni(·)[Bj ]}nj=1
must be independent for all i ∈ N. Moreover, the independence of the Pi guarantees
that the double array {Ni(·)[Bj ]}i∈N, 1≤j≤n consists of independent random variables,
which is sufficient. The Kolmogorov Existence Theorem (cf. [40], Theorem 12.8) makes
sure that there extists indeed a measure P on (Ω,H) having the desired properties.

(3) Finally, one gives the construction of the Poisson point process on (Ω,H). Since the
measure ν is σ-finite, there is a sequence {Gi} of disjoint measurable subsets of G such
that ∪∞i=1Gi = G and 0 < ν(Gi) <∞ for all i ∈ N. We define measures νi(·) := ν( · ∩Gi)
on (G,J ) for every i ∈ N. Now fix i0 ∈ N and denote by L an arbitrary Poisson
distributed random variable with mean νi0(G) := ν(Gi0) on a suitable measurable space
(ΩL,HL). Assume further that {Zj} is a sequence of identically and independently
distributed, G-valued random variables on a probability space (ΩZ ,HZ ,PZ) which are
also independent of L and which all have distribution

PZ := νi0(·)/νi0(G) = ν( · ∩Gi0)/ν(Gi0).

Then, for each τ ∈ ΩL and every ωj ∈ ΩZ , a random subset of G is determined by some
H-measurable (choose HL and HZ appropriately) map

Υi0(τ, {ωj}) := {Zj(ωj) | 1 ≤ j ≤ L(τ)}.

Further, define

Ni0(Υi0)[B] := #{Υi0 ∩B}

on (Ω,H) for B ∈ J . Let {Bj}nj=1 be a disjoint family of measurable sets in G and set
B0 := G \ ∪nj=1Bj . By the choice of the distributions of the Zj , we observe that given
the fact that #Υi0 = m ∈ N, the random variables {Ni0(Bj)}nj=0 obey a multinomial
distribution, i.e.

P(Ni0(·)[Bj ] = mj , 1 ≤ j ≤ n |#Υi0 = m) = m!∏n
j=0mj !

·
n∏
j=0

(
νi0(Bj)
νi0(G)

)mj
,

where m0 := m−
∑n
j=1mj ≥ 0 (The probability is zero if m0 < 0).

Using the definition of conditional probability and the fact that L has Poisson distribu-
tion with mean νi0(G), one finally arrives at

P(Ni0(·)[Bj ] = mj , 1 ≤ j ≤ m) =
n∏
j=0

exp(−νi0(Bj))
νi0(Bj)mj

mj !
,

which shows with a summing argument that each random variable Ni0(·)[Bj ] is indeed
distributed according to the Poisson distribution with mean νi0(Bj) = ν(Bj ∩Gi0) and
that the family {Ni0(·)[Bj ]}nj=1 is independent. We conclude that the image measure Pi0
of the mapping Υi0(τ, {ωj}) is a Poisson point process on (Ω,H) with intensity measure
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νi0 .
Since i0 was arbitrary, we can construct for every i ∈ N a process Pi in this manner. It
is clear that ν =

∑∞
i=1 νi and it follows from the disjointness of the Gi that the processes

Pi are independent of each other. Hence, the Superposition Theorem tells us that there
must be a Poisson point process P with intensity ν on (Ω,H). �

For the proof of Theorem 8.1 for non-discrete amenable groups we need an elementary
lemma which is similar to Lemma 8.2.
Lemma 8.7
Assume that (G,J ) is a Borel measurable space endowed with a σ-finite measure ν without
atoms. Moreover, let P be a Poisson point process on the space Ω of all locally finite subsets of
G with the canonical σ-algebra H. Then for any measurable B ∈ J with ν(B) <∞ there is a
random variable ΥB(·) with distribution PB realizing the process on B, i.e. it takes values in
the set Ω of all locally finite subsets of B with trace σ-algebra H := H∩Ω := {H∩Ω |H ∈ H}
and

E(# ΥB(·) |# ΥB(·) ≥ 1) ≤ 1 + ν(B).

Alternatively, PB can be interpreted as a Poisson point process on (Ω,H) with intensity
measure νB := ν( · ∩ B) (restriction property).

Proof
We define the measure νB as

νB(C) := ν(C ∩B)

for all C ∈ H. We have seen in the construction that P is the distribution of some H-
measurable random variable Υ with values in Ω. Therefore, we set

ΥB(·) := Υ(·) ∩B.

It is clear that ΥB is H-measurable and that it has the probability distribution PB induced
by P. By checking the definitions, one observes that PB determines a Poisson point process
on (Ω,H) with intensity measure νB.
Thus,

PB(#ΥB = m) = exp(−ν(B)) · (ν(B))m

m!

for all m ∈ N and

E(# ΥB(·) |# ΥB(·) ≥ 1) =
∑
m≥1mPB(#ΥB = m)∑
m≥1 PB(#ΥB = m) = E(#ΥB(·))

1− PB(ΥB = ∅)

= ν(B)
1− exp(−ν(B)) ≤

ν(B)
1− (1 + ν(B))−1

= ν(B)
ν(B)(1 + ν(B))−1 = 1 + ν(B),
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where the inequality is due to the classical inequality e−x ≤ (1 + x)−1 for x ≥ 0.
By extending PB to P′B on the whole space (Ω,H), where we put P′B(C) = 0 for all C /∈ H
we see that P′B determines a Poisson point process on (Ω,H) with intensity νB. This finishes
the proof. �

Now, we have all tools to complete the proof of Theorem 8.1.

Proof (of Theorem 8.1, G non-discrete )
We put

Ω :=
{
ω = (Υj)Nj=1

∣∣∣Υj ⊆ G locally finite for 1 ≤ j ≤ N
}

and endow this set with the σ-algebraH which is theN -product ofH′ , the coarsest σ-algebra
on the set Ω′ of all locally finite sets in G making the map

N
′(·)[B] : Ω′ → N ∪ {∞} : Υ 7→ # (Υ ∩B)

measurable for all B ∈ J . Following Theorem 8.5, we now establish independent Poisson
point processes Pj on the space (Ω′ ,H′) with intensities νj := αjmR(·), where mR(·) is
the right Haar measure on G and αj := δ/|Fj | for 1 ≤ j ≤ N . Hence, the corresponding
product measure P, defined on the measurable space (Ω,H) can be seen as a product of N
independent Poisson point processes on (Ω′ ,H′).
Note that since G is also σ-compact by Proposition 3.4 and as mR(·) is a Radon measure,
the intensity measures νj are σ-finite. Moreover, the fact that G is not discrete guarantees
that they are non-atomic (see e.g. [9], Proposition 1.4.4). In light of that, the intensities
satisfy at least all technical requirements. The reasons for which these measures are also
the ’right’ choices in the sense that they lead to success will become clear below.
So let us formulate the algorithm for the construction of the subcollection Z(ω) for ω =
(Υj)Nj=1 ∈ Ω.

1. Put j := N and B(N+1)
i (ω) := Bi for 1 ≤ i ≤ N .

2. Set Σj(ω) := Υj ∩B(j+1)
j (ω) and

Zj(ω) := {Fjb | b ∈ Σj(ω)}.

3. For all i < j, remove from B
(j+1)
i (ω) those elements b with Fjb ∩ (∪k≥jZk(ω)) 6= ∅ to

obtain the sets B(j)
i (ω) for i < j.

4. As long as j 6= 1, replace j by (j − 1) and return to Step 2.

5. Return

Z(ω) :=
N⋃
j=1
Zj(ω).
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As mentioned above, the algorithm is similar to the corresponding one in the discrete case.
The possible candidates for the final collection Z(ω) are determined by random sets gener-
ated by the the Poisson point process. Note that for every 1 ≤ j ≤ N and every a ∈ Fj , the
continuity of the group multiplication in G guarantees that aBj = aBj ⊆ F and therefore,
the closure of Bj is compact. It follows that αjmR(Bj) < ∞ such that Υj is finite almost
surely by the proof of Lemma 8.7.
Further, we show that the counting function Λ : Ω×G→ N0∪{∞} : (ω, g) 7→

∑N
j=1 Λ(j)(ω, g)

with

Λ(j) : Ω×G→ N0 ∪ {∞} : Λ(j)(ω, g) :=
∑

B∈Zj(ω)
1B(g)

is measurable with respect to the product σ-algebra H ⊗ J . To see this, note that it is
sufficient to deal with the single functions Λ(j)

g since they all have disjoint support on F .
We assume first that j = N = 1 and that Λg(ω) = Λ(N)

g (ω) ≥ 1. This implies g ∈ FNBN
and we calculate for M ≥ 1

[Λ = M ] = [Λ(N) = M ] = {(ΥN , g) |#(BN ∩ΥN ∩ F−1
N g) = M}

= {(ΥN , g) |N ′(ΥN )[F−1
N g] = M}

= {(ΥN , g) |N ′(ΥNg
−1)[F−1

N ] = M}.

Consider the map

η : Ω′ ×G→ Ω′ : (H, g) 7→ Hg−1.

For A ∈ H′ , we have η−1(A) = {(g,Ag) | g ∈ G}. Since {g} × {Ag} ∈ H′ ⊗ J for all g
and since G is a second countable, hence separable topological group, it follows that η is
(H′ ⊗ J )-H′-measurable and by the measurability of the counting map we conclude that
[Λ ≥ M ] ∈ H′ ⊗ J for M ≥ 1. Considering complements, we observe that the same must
be true for M = 0.
If N > j ≥ 1 and if the maps Λ(i) are measurable for j < i ≤ N , we have g ∈ FjB(j+1)

j (ω)
and therefore

[Λ(j) = M ] = {(ω, g) |#(B(j+1)
j (ω) ∩Υj ∩ F−1

j g) = M}

= {(ω, g) |N ′(Υjg
−1)[F−1

j ] = M ]}

for M ≥ 1. We remark that then also Λ(i) = 0 for i > j by the disjointness of the Zi(·) such
that by the independence of the Poisson point processes, it follows in the same manner as
above that

[Λ(j) = M ] = Ω′ × · · · × Ω′︸ ︷︷ ︸
j−1

×S

with
S ∈ H′ ⊗ · · · ⊗ H′︸ ︷︷ ︸

N−j+1

⊗J .

So we have indeed that [Λ(j) = M ] ∈ H ⊗ J . Again, for M = 0, we just consider comple-
ments.
Consequently, the counting function Λ is H⊗J -measurable as the sum of the Λ(j).
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For the proof of the second statement of Theorem 8.1, as in the discrete case, it is sufficient
to show that for all 1 ≤ j ≤ N and every ω ∈ Ω, we have for every g ∈ F that

E(Λ(j)
g |Λ(j)

g ≥ 1 : Φj+1)(ω) ≤ (1 + δ),

where Φj+1 is the smallest σ-algebra generated by the random variables Υi(·) (i > j) induced
by the processes Pi (i > j) and Λ(j)

g (ω) := Λ(j)(g, ω).
To do so, recall that for each g ∈ F and every 1 ≤ j ≤ N , we have

Λ(j)
g (ω) = M ⇐⇒ N

′(Υj(ω))[B(j+1)
j (ω) ∩ F−1

j g] = M.

Of course this argumentation only makes sense when M ≥ 1. For M = 0 we simply have
Υj(ω) ∩B(j+1)

j (ω) ∩ F−1
j g = ∅. By the choice of the αj , we obtain

αjmR(B(j+1)
j (ω) ∩ F−1

j g) ≤ δ

|Fj |
·mR(F−1

j g) = δ

|Fj |
· |g−1Fj | = δ

for all 1 ≤ j ≤ N . Using Lemma 8.7 with ν = αjmR and B = B
(j+1)
j (ω) ∩ F−1

j g we finally
arrive at

E(Λ(j)
g |Λ(j)

g ≥ 1 : Φj+1)(ω) = E(# ΥB(·) |# ΥB(·) ≥ 1)

≤ 1 + αjmR(B(j+1)
j (ω) ∩ F−1

j g)
≤ (1 + δ),

which completes the proof of statement (2).
So let us turn to the proof of the claim (3) of Theorem 8.1. If we fix N ∈ N, then by the
definition of the modular function, we obtain

E
( ∫

F
Λg(·) dmL(g)

)
= E

( ∑
B∈ZN (·)

|B|
)

= E
( ∑
b∈ΣN (·)

|FNb|
)

= E
( ∑
b∈ΣN (·)

∆(b)
)
|FN |. (8.5)

Further, if {Ci}Li=1 is a disjoint family of measurable sets in G with mR(Ci) < ∞ and if
γi ∈ C, (1 ≤ i ≤ L), then for the function

h(g) :=
L∑
i=1

γi 1Ci(g) ∈ L∞(G),
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one has

E
( ∑
b∈ΥN (·)

h(b)
)

= E
( ∑
b∈ΥN (·)

L∑
i=1

γi 1Ci(b)
)

= E
( L∑
i=1

γi ·N
′(ΥN (·))[Ci]

)

=
L∑
i=1

γi · αN mR(Ci)

= αN

∫
G
h(g) dmR(g) (8.6)

by the first property of a Poisson point process. Hence, if h ∈ L∞(G) is a non-negative
function with support of finite mR-measure, it can be approximated pointwise and mono-
tonically by non-negative simple functions of the above form and by the Monotone Conver-
gence Theorem, this implies that equality (8.6) is valid for all functions h ∈ L∞(G) with
mR(supp(h)) <∞. Moreover, applying this fact to the function h(g) := 1BN (g) ∆(g) (note
that h has support of finite measure since mR(BN ) < ∞, see above) and using equality
(8.5), we arrive at

E
( ∫

F
Λg(·) dmL(g)

)
= E

( ∑
b∈BN∩ΥN (·)

∆(b)
)
|FN |

= E
( ∑
b∈ΥN (·)

1BN (b) ∆(b)
)
|FN |

= αN |FN |
∫
BN

∆(g) dmR(g).

Since ∆(g) dmR(g) = dmL(g) by the definition of the modular function and since αN |FN | =
δ by the choice of αN , we finally conclude

E
( ∫

F
Λg(·) dmL(g)

)
= E(|ΣN (ω)| · |FN |) = δ |BN |.

Thus, statement (3) of Theorem 8.1 is verified for N = 1. Again, we exploit the recursive
property of the algorithm (same arguments as in the discrete case) and proceed from here
by induction on N . In exactly the same manner as above, we can derive equality (8.2),
inequality (8.3) and inclusion (8.4). As before, we combine these results with the assumption
that Cγ < 1 and with the fact that {Fj}Nj=1 is a tempered sequence such that by taking
expectations, we obtain indeed that

E
(
Λg(·) dmL(g)

)
= E

 ∑
B∈Z(·)

|B|

 ≥ δ(1 + Cδ)−1

∣∣∣∣∣∣
N⋃
j=1

Bj

∣∣∣∣∣∣ .
This shows statement (3) of the Decomposition Lemma and thus finishes the proof. �

Finally, we are able to prove the main theorem of this thesis. We give two slightly different
proofs.
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Corollary 8.8 (Pointwise ergodic theorem)
Let G be a second countable (and hence σ-compact), amenable group G acting on some σ-
finite measure space (X,B, µ) by measure preserving transformations. Further, let 1 ≤ p <
∞ and assume that {Fn} is a tempered Følner sequence of G with constant C > 0. Then the
pointwise convergence theorem holds, i.e. for every f ∈ Lp(X) there is some G-invariant
f∗ ∈ Lp(X) such that

Anf(x) := |Fn|−1
∫
Fn
f(gx) dmL(g)→ f∗(x)

for µ-almost every x ∈ X as n→∞.

Proof
It suffices to prove the transfer inequality (6.1). The theorem follows then from the transfer
principle, Theorem 6.4 and Theorem 5.3.
To do so, fix f ∈ Lp(X), λ > 0 and x ∈ X. Moreover, we set ε = 1 and for each k ∈ N,
we choose the sets F̃k, Fnk and F k according to Lemma 6.3. Further, for each k ∈ N we
apply the Decomposition Lemma, Theorem 8.1 with δ = 1 on the sets F k and Bj := {g ∈
Fnk | |(Ajf)(gx)| ≥ λ} which have in fact the property that FjBj ⊆ F k for all 1 ≤ j ≤ k.
By the inequality (7.1), we obtain

E
( ∫

Fk

Λg(·) |f(gx)|p dmL(g)
)

= E
( ∑
B∈Z(·)

∫
B
|f(gx)|p dmL(g)

)
≥ λp E

( ∑
B∈Z(·)

|B|
)
.

Using the third statement of the Decomposition Lemma, we arrive at

E
( ∑
B∈Z(·)

|B|
)
≥ (1 + C)−1 ·

∣∣∣∣∣∣
k⋃
j=1

Bj

∣∣∣∣∣∣ ,
which implies that

E
( ∫

Fk

Λg(·) |f(gx)|p dmL(g)
)
≥ λp (1 + C)−1 ·

∣∣∣∣∣∣
k⋃
j=1

Bj

∣∣∣∣∣∣ . (8.7)

On the other hand, using Fubini’s Theorem, it follows from the second statement of the
Decomposition Lemma that

E
( ∫

Fk

Λg(·) |f(gx)|p dmL(g)
)

=
∫
Fk

E(Λg(·)) |f(gx)|p dmL(g)

≤ 2
∫
Fk

|f(gx)|p dmL(g). (8.8)

Therefore, putting the inequalities (8.7) and (8.8) together, we arrive at∣∣∣∣∣∣
k⋃
j=1

Bj

∣∣∣∣∣∣ ≤ 2(C + 1)
λp

∫
Fk

|f(gx)|p dmL(g)

for all k ∈ N, each f ∈ Lp(X), every λ > 0 and almost every x ∈ X.
This proves the desired transfer inequality (6.1). �
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With the Decomposition Lemma, one can likewise use Emerson’s transfer principle
(Theorem 6.1) to prove the individual ergodic theorem.

Proof (Pogorzelski 2010)
We define the operator S on L1

loc(G) as in Theorem 6.1, i.e. (Sf)(g0) := supn∈N |Snf(g0)|,
where

Snf(g0) := |Fn|−1
∫
Fn
f(gg0) dmL(g)

for f ∈ L1
loc(G). We show that S is of weak type (p, p) which means that there is some c > 0

such that

mL({g ∈ G | (Sf)(g0) > λ}) ≤ cλ−p‖f‖pLp(G)

for all λ > 0 and all f ∈ Lp(G) (note that Lp(G) ⊆ Lploc(G) ⊆ L1
loc(G)). Since G is σ-

compact, one can find some sequence {Bn} of compact sets with ∪nBn = G and Bn ⊆ Bn+1
for all n ∈ N. For n ∈ N, we put further Fn := (∪nj=1Fj)Bn. Hence, the sets Fn are compact
and we have FjBj ⊆ Fn for n ∈ N and 1 ≤ j ≤ n.
We now fix n0 ∈ N, f ∈ Lp(G), as well as λ > 0 and define Bj := {g ∈ Bn0 | |(Sjf)(g)| ≥ λ}
for 1 ≤ j ≤ n0. Similarly as in inequality (7.1), one computes for g0 ∈ Bj∫

Fjg0
|f(g)|p dmL(g) ≥ |Fjg0|−p/q

( ∫
Fjg0
|f(g)| dmL(g)

)p
= |Fjg0|−p/q

(
∆(g0)

∫
Fj

|f(gg0)| dmL(g)
)p

≥ |Fjg0|−p/q(∆(g0)p · λp · |Fj |p)
= λp · |Fjg0|−p/q · |Fjg0|p

= λp · |Fjg0|, (8.9)

where q := p/(p− 1) for 1 < p <∞. Note that this inequality holds trivially if p = 1.
We now apply the Decomposition Lemma (Theorem 8.1) to the compact set Fn0 and the
sets Bj , 1 ≤ j ≤ n0. As usual, we choose δ = 1 and the constant from the Shulman condition
of the Følner sequence shall be denoted by C. For ω ∈ Ω, we write Z(ω) for the resulting
subcollection of right-translates from

F := {Fjg | 1 ≤ j ≤ n0, g ∈ Bj},

as well as Λ·(ω) for the corresponding counting function on Fn0 .
By the second property of the decomposition, we obtain with Fubini’s Theorem

E
( ∑
B∈Z(·)

∫
B
|f(g)|p dmL(g)

)
= E

( ∫
Fn0

∑
B∈Z(·)

1B(g) |f(g)|p dmL(g)
)

= E
( ∫

Fn0

Λg(·)|f(g)|p dmL(g)
)

=
∫
Fn0

E(Λg(·)) |f(g)|p dmL(g)

≤
∫
G

2 |f(g)|p dmL(g)

= 2 ‖f‖pLp(G). (8.10)
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By the monotonicity of the expected value and inequality (8.9), it is true that

E
( ∑
B∈Z(·)

∫
B
|f(g)|p dmL(g)

)
≥ λp · E

( ∑
B∈Z(·)

|B|
)

and we conclude with the third statement of the Decomposition Lemma that

λp · (C + 1)−1 ·

∣∣∣∣∣∣
n0⋃
j=1

Bj

∣∣∣∣∣∣ ≤ λp · E
( ∑
B∈Z(·)

|B|
)

≤ E
( ∑
B∈Z(·)

∫
B
|f(g)|p dmL(g)

)
.

Combining this estimate with inequality (8.10) and noting that n0 ∈ N was arbitrary, we
see that ∣∣∣∣∣∣

n⋃
j=1

Bj

∣∣∣∣∣∣ ≤ 2(C + 1)
λp

· ‖f‖pLp(G) (8.11)

for all n ∈ N. Recall that the sets Bj depend on n, thus we now write B(n)
j instead. We

define Dn := ∪nj=1B
(n)
j for n ∈ N and claim that

{g ∈ G | (Sf)(g) > λ} ⊆
∞⋃
n=1

Dn.

To see this, note that the event [(Sf)(g) > λ] for some g ∈ G implies that there is some
n ∈ N such that g ∈ Bn and that there is some l ∈ N with |(Slf)(g)| ≥ λ. Since {Bn} is
increasing this implies that g ∈ ∪dj=1B

(d)
j , where d := max{l, n}.

By the choice of the sets Bn, the sequence {Dn} is increasing and since the right-hand side
of inequality (8.11) does not depend on n we conclude that

mL({g ∈ G |Sf(g) > λ}) ≤ mL(∪∞n=1Dn)

= lim
n→∞

mL

( n⋃
j=1

B
(n)
j

)
≤ 2(C + 1)

λp
· ‖f‖pLp(G).

Hence, the operator S is indeed of weak type (p, p). By the transfer principle (Theorem 6.1),
the maximal operator M with respect to the ergodic averages {An} satisfies an Lp-maximal
inequality. The pointwise ergodic theorem now follows from Theorem 5.3. �

Finally, we compare the methods presented in the Chapters 7 and 8. We have seen that
Weiss’ version of the transfer inequality (see Theorem 7.1) is based on the Abstract Combi-
natorial Lemma 7.2. Its proof does not require stochastic arguments but is rather complex
from the combinatorial point of view and only works for countable groups. The Decom-
position Lemma of Lindenstrauss (Theorem 8.1) based on random methods takes into
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account the general situation of σ-compact (second countable) groups. The use of the Pois-
son point processes in the non-discrete case is very elegant and yields a major breakthrough
in the theory of pointwise ergodic theorems. By choosing the coverings randomly, Linden-
strauss overcomes the counting difficulties that one might have with selection methods of
the Weiss type. Hence, the question about the construction of a deterministic algorithm
for the general case is far from being trivial and has not been answered yet. Although the
stochastic version for discrete groups needs more theory than the deterministic version, it
is very clear and thus very understandable.



9 A short outlook

Besides the fact that the general pointwise ergodic theorem (Corollary 8.8) is a beautiful
assertion on its own, it also has various applications.
In his article Lindenstrauss enhances the Decomposition Lemma (Theorem 8.1) signifi-
cantly (cf. [29], Section 2) and provides a powerful toolbox of combinatorial arguments for
problems in entropy theory. For discrete amenable groups, he proved e.g. the existence of
the entropy function h(P) of measure preserving, ergodic actions on the measure space X as
a function of finite measurable partitions P of X. More precisely, Theorem 1.3 in this paper
describes a general version of the Shannon McMillan Breiman Theorem which states that
h(P) is obtained as an L1- and an a.e.- limit of generalized entropy approximants involving
rapidly growing, tempered Følner sequences {Fn} as well as finite partitions PFn as shifts
of P by the elements in Fn.

Further, the individual ergodic theorem can be helpful in mathematical physics. Lenz and
Strungaru use this statement in their work about diffraction theory to construct averages
of specific measures (see [28], Section 4).
Another interesting problem in mathematical physics is the existence of the integrated
density of states of an operator which can be interpreted as cumulative distribution function
of the eigenvalues. It is known for a couple of years now that Banach space valued ergodic
theorems are instrumental for the uniform approximation of the integrated density of states
of operators. One can find concrete results by Lenz and Stollmann for Delone dynamical
systems in [27] as well as by Lenz, Schwarzenberger and Veselić for bounded operators
on Cayley graphs of a large class of discrete amenable groups in [26].
As a concrete project, one might attempt to use Lindenstrauss’ decompositions (see [29],
Section 2) in order to extend the latter result to all finitely generated amenable groups.
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