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Preface

These lecture notes are intented as a straightforward intrauction to the
calculus of variations which can serve as a textbook for undgraduate and
beginning graduate students.

The main body of Chapter 2 consists of well known results congrning
necessary or suzcient criteria for local minimizers, includng Lagrange mul-
tiplier rules, of real functions de ned on a Euclidean n-space. Chapter 3
concerns problems governed by ordinary di®erential equatits.

The content of these notes is not encyclopedic at all. For adiional
reading we recommend following books: Luenberger [36], Rkafellar [50]
and Rockafellar and Wets [49] for Chapter 2 and Bolza [6], Corant and
Hilbert [9], Giaquinta and Hildebrandt [19], Jost and Li-Jost [26], Sagan [52],
Troutman [59] and Zeidler [60] for Chapter 3. Concerning varational prob-
lems governed by partial di®erential equations see Jost anditJost [26] and
Struwe [57], for example.



CONTENTS



Chapter 1

Introduction

A huge amount of problems in the calculus of variations have heir origin
in physics where one has to minimize the energy associated the problem
under consideration. Nowadays many problems come from ecomics. Here
is the main point that the resources are restricted. There isno economy
without restricted resources.

Some basic problems in the calculus of variations are:

() nd minimizers,

(ii) necessary conditions which have to satisfy minimizers

(iii) nd solutions (extremals) which satisfy the necessary condition,

(iv) suxcient conditions which guarantee that such solutions are minimizers,
(v) qualitative properties of minimizers, like regularity properties,

(vi) how depend minimizers on parameters?,

(vii) stability of extremals depending on parameters.

In the following we consider some examples.

1.1 Problemsin R"

1.1.1 Calculus
Letf : V 7! R, whereV %2 R" is a nonempty set. Consider the problem
x2V:f(x)- f(y) foraly2V:

If there exists a solution then it follows further characterizations of the
solution which allow in many cases to calculate this solutim. The main tool

9
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for obtaining further properties is to insert for y admissible variationsof x.
As an example letV be a convex set. Then for givery 2 V
FO) - Fix+2(yi x)
forallreal 0- 2 - 1. From this inequality one derives the inequality
hrf(x);yj xi, 0 forally2V;
provided that f 2 C1(RM).

1.1.2 Nash equilibrium

In generalization to the above problem we consider two realinctionsf;(x;y),
i=1;2,denedonS; £ Sy, whereS; 2R™Mi. An (x";y") 2 S1 £ S, is called
a Nash equilibrium if

fax;y?) - fi(x%y°) forall x 2 S;

fa(x"y) - fo(x%y°) forally2 Sy
The functions f 1, f, are called payo® functionsof two players and the sets
S1 and S; are the strategy setsof the players. Under additional assumptions
onf; and S; there exists a Nash equilibrium, see Nash [46]. In Section 2.5

we consider more general problems of noncooperative gamesish play an
important role in economics, for example.

1.1.3 Eigenvalues
Consider the eigenvalue problem
Ax = BX;

whereA and B are real and symmetric matrices withn rows (and n columns).
Suppose thattBy;yi > 0 for all y 2 R" nf0g, then the lowest eigenvalue, ;
is given by

_ PAY;yi |

~ y2Rnnfog BY;yi

The higher eigenvalues can be characterized by the maximum-mimum
principle of Courant, see Section 2.5.

51

In generalization, let C %2 R" be a nonempty closed convex cone with vertex
at the origin. Assume C 6 f0g. Then, see [37],

min MY;yI

5 1 = H
y2CnfOg f'By;yl
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is the lowest eigenvalue of the variational inequality
x2C: Ay xi, ,mBxyyj xiforally?2C:

Remark. A set C %2 R" is said to be acone with vertex atx if for any
y 2 C it follows that x + t(yj x) 2 C forall t> 0.
1.2 Ordinary di®erential equations
Set Z b

E(v)=  f(x;v(x);vix)) dx

a
and for givenug; up 2 R
V = fv2 Clab: v(a) = ua; v(b) = uyg:;

wherejl <a<b< 1 andf is suzciently regular. One of the basic
problems in the calculus of variation is

(P) minyoy E (V).
That is, we seek a

u2V: E(u)- E(v) forall v2V:

Euler equation. Let u 2 V be a solution of (P) and assume additionally
u2 C2(a;b), then

%f wo(X; u(x); udx)) = fu(x;u(x); uqx))

in (a;b).

Proof. Exercise. Hints: For xed A 2 C?[a;h with A(a) = A(b) = 0 and
real 2, j2j <2, setg(?) = E(u+ 2A). Sinceg(0) - g(?) it follows g¥0) = 0.
Integration by parts in the formula for g¥0) and the following basic lemma
in the calculus of variations imply Euler's equation. 2
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a b X

Figure 1.1: Admissible variations

Basic lemma in the calculus of variations. Let h 2 C(a;b and
Zy
h(x)A(x) dx =0

a

for all A2 Cd(a;b). Then h(x) = 0on (a;b).

Proof. Assumeh(xg) > 0 for an xg 2 (a; b), then there is a+ > 0 such that
(Xoi £ % + %) ¥%2(a;b)and h(x) , h(xg)=2 0on (Xgj ;X + %). Set
Yo i ¢
A(x) = "2 xi xei2 2 if X2 (Xoi %+ 1) ,
0 if x2(a;bhn[xoi X+ 4

Thus A2 C}(a;b) and

Z b Z Xo+
h()A(X) dx | 1C0)

a 2 Xoi *

A(x) dx > 0;
which is a contradiction to the assumption of the lemma. 2

1.2.1 Rotationally symmetric minimal surface

Consider a curve de ned byv(x), 0 - x - |, which satis esv(x) > 0 on [0 1]
and v(0) = a, v(I) = bfor given positive a and b, see Figure 1.2. LetS(v)
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Figure 1.2: Rotationally symmetric surface

be the surface de ned by rotating the curve around thex-axis. The area of
this surface is Z,

iS(V)j=2Y v(x)p 1+ (vqx))2 dx:
0
Set
V = fv2 C0o1]: v(0) = a; v(I) = b; (x) > 0on (a;bg:

Then the variational problem which we have to consider is
szl\r/IJS(v)J:

Solutions of the associated Euler equation are catenoids (=hain curves),
see an exercise.

1.2.2 Brachistochrone

In 1696 Johann Bernoulli studied the problem of a brachistobrone to nd

a curve connecting two pointsP; and P such that a mass point moves from
P1 to P, as fast as possible in a downward directed constant gravitioal

“eld, see Figure 1.3. The associated variational problem is ére

Z+, P anrevonz
min pw dt;
Gy)2voy o y(t) i yat+ kK

whereV is the set of C1[t1;t,] curves de ned by (x(t);y(t)), t1 - t - ta, with
xqt)? + yAt)? 6 0, (x(t1);y(t1)) = P1, (X(t2);y(t2)) = P2 and k := v§=2g,
where v is the absolute value of the initial velocity of the mass poin, and
y1 = y(t1). Solutions are cycloids (German: Rollkurven), see Bolza{]



14 CHAPTER 1. INTRODUCTION

.

P
y 2

gl

Figure 1.3: Problem of a brachistochrone

and Chapter 3. These functions are solutions of the system othe Euler
di®erential equations associated to the above variational fpblem.

One arrives at the above functional which we have to minimizesince
q P
v=29(yi y1)+ Vi v=ds=dt; ds=  xy(t)2+ y{t)2dt

and Z., Z., ds
T= dt = —
t1 t1 \Y
where T is the time which the mass point needs to move fronP; to P,.

1.2.3 Geodesic curves

Consider a surfaceS in R3, two points Py, P, on' S and a curve onS
connecting these points, see Figure 1.4. Suppose that the dace S is de ned
by x = x(v), where x = (X1;X2;%3) and v = (vg;v2) and v 2 U % R2,
Consider curvesv(t), t; - t - tp, in U such that v 2 CY[ts;t5] and vi(t)? +
v9(t)2 6 0 on [ty;t], and dene

V = fv2 Ctyto] 1 x(v(ty)) = P1; x(v(t2)) = Pag:

The length of a curve x(v(t)) for v 2 V is given by
z, "
L) = dx(v(1) dx(v(D)
ty dt dt

SetE = xy; ¢Xy;, F = Xy; ¢Xy,, G = Xy, ¢Xy,. The functions E, F and G
are called coezcients of the rst fundamental form of Gauss. Tren we get

for the length of the cuve under consideration
z t2 0
L(v) = E(v(t)vI(t)? + 2F (v(D)VR(H)vI(t) + G(v(t)va(t)? dt

ta
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X3

Figure 1.4: Geodesic curves

and the associated variational problem to study is here
inL(v):
g L)
For examples of surfaces (sphere, ellipsoid) see [9], Part |

1.2.4 Critical load

Consider the problem of the critical Euler load P for a beam. This value is
given by

_a(viv)
P= ﬂ'f'%g b(v;v)’
where
Z
a(u;v) = ElI u%¢x)vo¢x) dx
z,°
b(u;v) = udx)v(x) dx
and

E modulus of elasticity,

| surface moment of inertia, El is called bending sti®ness

V is the set of admissible de°ections de ned by the prescribed aulitions at
the ends of the beam. In the case of a beam simply supported atdth ends,
see Figure 1.5(a), we have
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|

() (b)

Figure 1.5: Euler load of a beam

V =fv2C?0;1]: v(0)= v(I)=0g

which leads to the critical value P = EIY4?=I2. If the beam is clamped at
the lower end and free (no condition is prescribed) at the uper end, see
Figure 1.5(b), then

V = fv2 C?[0;1]: v(0)= vY0)=0g;
and the critical load is here P = E1¥42=(412).

Remark. The quotient a(v;v)=k(v;v) is called Rayleigh quotient (Lord
Rayleigh, 1842-1919).

Example: Summer house

As an example we consider a summer house based on columns, $eg-
ure 1.6:
9 columns of pine wood, clamped at the lower end, free at the yger end,
9 cm£ 9 cm is the cross section of each column,
2,5 m length of a column,
9 -16¢10° Nmi 2 modulus of elasticity, parallel ber,
0.6 - 1¢10° Nmi 2 modulus of elasticity, perpendicular "ber,
ZZ
| = x2 dxdy; -=( i 4:5;4:5)£ (j 45;4:5);
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| =546:75¢10 8m*,
E:=5£ 10° Nmi 2,

P=10792 N, m=1100 kg (g:=9.80665msi 2),

9 columns: 9900 kg,
18 m? area of the °at roof,
10 cm wetted snow: 1800 kg.

Figure 1.6: Summer house construction

Unilateral buckling

If there are obstacles on both sides, see Figure 1.7, then wee in the case
of a beam simply supported at both ends

V = fv2 C?0;1]: v(0)= v(I)=0and A(x) - v(x) - Ax(x) on (0;1)g:

The critical load is here

. a(v;v)
P = inf :
v"r11f0g b(v; V)

It can be shown, see [37, 38], that this numberP is the lowest point of
bifurcation of the eigenvalue variational inequality

u2V: auvi u), ,b(u;vi u) forall v2V:
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X

Figure 1.7: Unilateral beam

A real , o is said to be apoint of bifurcation of the the above inequality if
there exists a sequencel,, U, 6”0, of solutions with associated eigenvalues
.n such thatu, ! O uniformly on [O;l]and , 5! 0.

Optimal design of a column

Consider a rotationally symmetric column, see Figure 1.8. ket
| be the length of the column,

r(x) radius of the cross section,

I (x) = Yr(x))*=4 surface moment of inertia,

Y4constant density of the material,

E modulus of elasticity.

Set
Z, 41/2 T MZ 1
a(r)(u;v) = r(x)*u%x)vo%x) dx j EZ r(t)%dt  uqx)vix) dx
0 0 X
Z
b(r)(v;v) = ugx)vex) dx:
0

Suppose that%=Eis suzciently small to avoid that the column is unstable
without any load P. If the column is clamped at the lower end and free at
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1

P

r(x)

Figure 1.8: Optimal design of a column

the upper end, then we set
V = fv2 C?0;1]: v(0)= vi0)=0g
and consider the Rayleigh quotient

a(r)(v;v)
b(r)(v;v)

We seek anr such that the critical load P (r) = E%,(r)=4, where

q(r;v) =

,(r)= Vgnvlgfogq(r;V);

approaches its in mum in a given setU of functions, for example
Z,

U=fr2Clab:ro- r(x)- ry; % r(x)>dx= Mg;
0

whererg, r1 are given positive constants andM is the given volume of the

column. That is, we consider thesaddle pointproblem
U

max min v
r2u v2anqu( )

Let (ro;Vp) be a solution, then
q(r;vo) - d(ro;vo) - d(ro;Vv)
forall r 2 U and for all v2 V nf0g.
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1.2.5 Euler's polygonal method

Consider the functional
Zy
E(v)=  f(xv(x);vix)) dx;

a

wherev 2 V with
V =fv2 Clab: v(a) = A; v(b= Bg
with given A, B. Let
a= Xg<X1<::<Xpn<Xnpns1 =Db

be a subdivision of the interval [a;b. Then we replace the graph de ned
by v(x) by the polygon de ned by (xo;A), (X1;V1), ... » (Xn;Vn), (Xn+1;B),

\Y

a b X
Figure 1.9: Polygonal method

and replace the above integral by

x1 M -
ev)= f X Vi o lh_VI' .
i=1 :

hil

The problem minyorn €(v) is an associated nite dimensional problem to
miny2yv E (V). Then one shows, under additional assumptions, that the nie
dimensional problem has a solution which converges to a sdion to the
original problem if n!1

Remark. The historical notation "problems with in nitely many varia bles"
for the above problem for the functional E (v) has its origin in Euler's polyg-
onal method.
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1.2.6 Optimal control

As an example for problems in optimal control theory we mentbn here a
problem governed by ordinary di®erential equations. For a gien function
v(t) 2 U%LR™, to- t- t1, we consider the boundary value problem

yAt) = f Gy ®);v(D); y(to) = x% y(ta) = x*;
wherey 2 R", x%, x! are given, and
f:[to;t]E R"ER™ 7! R":

In general, there is no solution of such a problem. Thereforeve consider
the set of admissible controlsU,q de ned by the set of piecewise continuous
functions v on [tp; t1] such that there exists a solution of the boundary value
problem. We suppose that this set is not empty. Assume a costuinctional

is given by .
t1

E(v) = Oty (1); v(t) dt;
to

where
fO: [to;t1] E R"£ R™ 7! R;

v 2 Uy and y(t) is the solution of the above boundary value problem with
the control v.

The functions f; f 9 are assumed to be continuous int{y;v) and contin-
uously di®erentiable in ¢;y). It is not required that these functions are
di®erentiable with respect tov.

Then the problem of optimal control is

max E(v):
v2 Uy

A piecewise continuous solutionu is called optimal control and the solution
x of the associated system of boundary value problems is said the optimal
trajectory .

The governing necessary condition for this type of problemss the Pon-
tryagin maximum principle, see [48] and Section 3.5.
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1.3 Partial di®erential equations

The same procedure as above applied to the following multi@ integral leads
to a second-order quasilinear partial di®erential equation.Set

Z
E(v)= F(x;v;r v) dx;
where - %2 R" is a domain, x = (Xz1;:::;Xn), V= v(x) : - 7! R, and
rv=_Vx,;::1;Vx,). Itis assumed that the function F is suxciently regular

in its arguments. For a given function h, de ned on @, set

V=fv2C!(9): v=hon@ g

Euler equation. Let u 2 V be a solution of (P), and additionally u 2
C?(-) , then

Proof. Exercise. Hint: Extend the above fundamental lemma of the c&ulus
of variations to the case of multiple integrals. The interval (Xgj ;X + %) in
the de nition of A must be replaced by a ball with center atxq and radius
+. 2

1.3.1 Dirichlet integral

In two dimensions the Dirichlet integral is given by
zZ .
i

2, 2%
D(v) = Vi + vy dxdy

and the associated Euler equation is the Laplace equatiod u =0 in -.
Thus, there is natural relationship between the boundary vdue problem

4u=0in-;u=h on @
and the variational problem

vmzl\r) D (v):
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But these problems are not equivalent in general. It can hapen that the
boundary value problem has a solution but the variational problem has no
solution. For an example see Courant and Hilbert [9], Vol. 1,p. 155, where
h is a continuous function and the associated solutionu of the boundary
value problem has no "nite Dirichlet integral.

The problems are equivalent, provided the given boundary vaue function
h is in the classH 7?(@), see Lions and Magenes [35].

1.3.2 Minimal surface equation

The non-parametric minimal surface problem in two dimensiors is to nd a
minimizer u = u(x1;X2) of the problem
Z q__
i 2 2 :
min 1+vg +vg, dx;

where for a given functionh de ned on the boundary of the domain -
V=fv2Cl!(): v=hon@g:

Suppose that the minimizer satis es the regularity assumpton u 2 C2(-),

Figure 1.10: Comparison surface

then u is a solution of the minimal surface equation (Euler equation) in -
A ! A !
@ le @ qu

— — + — ——— =0:
@x 1+jr uj? @x 1+ jr uj?
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In fact, the additional assumption u 2 C?(-) is super°uous since it follows
from regularity considerations for quasilinear elliptic equations of second
order, see for example Gilbarg and Trudinger [20].

Let - = R2. Each linear function is a solution of the minimal surface
equation. It was shown by Bernstein [4] that there are no othe solutions of
the minimal surface equation. This is true also for higher dmensionsn - 7,
see Simons [56]. Ih | 8, then there exists also other solutions which de ne
cones, see Bombieri, De Giorgi and Giusti [7].

The linearized minimal surface equation overu ~ 0 is the Laplace equa-
tion 4u = 0. In R? linear functions are solutions but also many other
functions in contrast to the minimal surface equation. This striking di®er-
ence is caused by the strong nonlinearity of the minimal suiice equation.

More general minimal surfaces are described by using pararre rep-
resentations. An example is shown in Figure 1.141 See [52], pp. 62, for
example, for rotationally symmetric minimal surfaces, and[47, 12, 13] for
more general surfaces. Suppose that the surfacg is de ned by y = y(v),

Figure 1.11: Rotationally symmetric minimal surface

wherey = (y1;y2;y3) and v = (vi;V) and v 2 U % R2. The area of the

surfaceS is given by Z

| O
iS(y)j = EGi F2dv;
U

! An experiment from Beutelspacher's Mathematikum, Wissenschaft sjahr 2008, Leipzig
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where E = vy, ¢yy,, F = yy, Cyy,, G = yy, Gy, are the coexcients of the
“rst fundamental form of Gauss. Then an associated variatioral problem is

52'0 IS

whereV is a given set of comparison surfaces which is de ned, for exate,

by the condition that y(@U % i, where j is a given curve in RS, see
Figure 1.12. SetV = C1(-) and

X3

1

Figure 1.12: Minimal surface spanned between two rings

z z
E(v) = F(x;v;r v) dx g(x;v) ds;
- @

where F and g are given suzciently regular functions and - % R" is a
bounded and suzciently regular domain. Assumeu is a minimizer of E(v)
in V, that is,
u2V: E(u)- E(v) forall v2V;
then
Z P ) ¢
Fu, (Guir u)Ag + Fuguir u)A dx
z
i gu(x;u)Ads=0
@

i=1
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for all A2 C(-). Assume additionally that u 2 C?(-), then u is a solution
of the Neumann type boundary value problem

X @
—F = Fy in-
i=1 @x ™ ’
X0
I:uxioi = Qu oN@;
i=1
where® = (°4;:::;°,) is the exterior unit normal at the boundary @. This

follows after integration by parts from the basic lemma of the calculus of
variations.
Set z z

E(v) = % jr vj? dx . h(x)v ds;

then the associated boundary value problem is

4u = 0 in-
u
%Oz h on@:

1.3.3 Capillary equation

Let - % R? and set
Z D Z Z
E(v) = 1+ jr vj2 dx + 5 vZ dxj cos° v ds:
: : @

Here is- a positive constant (capillarity constant) and ° is the (constant)
boundary contact angle, that is, the angle between the contmer wall and
the capillary surface, de ned by v = v(x1;X>2), at the boundary. Then the
related boundary value problem is

div (Tu) = -u in-
°¢Tu = cos®° on@ ;
where we use the abbreviation

ru

Tu= p———;
1+jr uj?

div (T u) is the left hand side of the minimal surface equation and it 5 twice
the mean curvature of the surface de ned byz = u(x1;X»), see an exercise.
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The above problem describes the ascent of a liquid, water foexample,
in a vertical cylinder with constant cross section -. It is assumed that
the gravity is directed downwards in the direction of the negative x3 axis.
Figure 1.13 showsthat liquid can rise along a vertical wedgeThis is a conse-
guence of the strong nonlinearity of the underlying equatims, see Finn [16].
This photo was taken from [42].

Figure 1.13: Ascent of liquid in a wedge

The above problem is a special case (graph solution) of the lowing
problem. Consider a container partially Tled with a liquid, see Figure 1.14.
Suppose that the associate energy functional is given by

z
E(S)= ¥Sji ¥ JW(S)j+ Y Y2 dx;
-1(S)

where
Y potential energy per unit mass, for exampleY = gxs, g= const:, 0,
Ylocal density,
Yssurface tension,%= const: > 0,
"~ (relative) adhesion coezcient between the °uid and the contaner wall,
W wetted part of the container wall,
- | domain occupied by the liquid.

Additionally we have for given volume V of the liquid the constraint

- 1(8)=V:
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Wy
vapour

Figure 1.14: Liquid in a container

It turns out that a minimizer Sp of the energy functional under the volume
constraint satis es, see [16],

23%H
cos°

. T g¥%% on Sy
~on @y;

where H is the mean curvature of Sy and ° is the angle between the surface
So and the container wall at @5.

Remark. Theterm j 3% jWj in the above energy functional is calledwvetting
energy.

Figure 1.15: Piled up of liquid
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Liquid can pilled up on a glass, see Figure 1.15. This picturevas taken
from [42]. Here the capillary surfaceS satis es a variational inequality at
@ where S meets the container wall along an edge, see [41].

1.3.4 Liquid layers

Porous materials have a large amount of cavities di®erent inise and geom-
etry. Such materials swell and shrink in dependence on air hmidity. Here
we consider an isolated cavity, see [54] for some cavities gpecial geometry.

Let - s 2 R3 be a domain occupied by homogeneous solid material. The
question is whether or not liquid layers -| on - ¢ are stable, where -, is
the domain Tled with vapour and S is the capillary surface which is the
interface between liquid and vapour, see Figure 1.16.

solid WS

W,
liquid

Figure 1.16: Liquid layer in a pore

Let
E(S)= %Sj+ w(S)i *iDi(S)] (1.1)

be the energy (grand canonical potential) of the problem, wiere
Yssurface tension,jSj, j- |(S)j denote the area resp. volume of, - |(S),

Z
w(S) = j F(x) dx; (1.2)
- v )
is the disjoining pressure potential, where
z dy
F(x)=c¢ - — ! 13
) S X oyP (1.3)

Here isc a negativeconstant, p > 4 a positive constant (p = 6 for nitrogen)
and x 2 R®n- g, where - 5 denotes the closure od =, that is, the union of
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- ¢ with its boundary @ s. Finally, set
1 = KTIn(X) ;

where

Y.density of the liquid,

k Boltzmann constant,

T absolute temperature,

X reduced (constant) vapour pressure, < X < 1.

More precisely, ¥2is the di®erence between the number densities of the
liquid and the vapour phase. However, since in most practichcases the
vapour density is rather small, %2can be replaced by the density of the liquid
phase.

The above negative constant is given byc = H=%%, where H is the
Hamaker constant, see [25], p. 177. For a liquid nitrogen Im @ quartz one
has aboutH = ; 10 2°Nm.

Suppose thatSy de nes a local minimum of the energy functional, then

i 2%H+F; *1=0 on Sy (1.4)

where H is the mean curvature of Sg.

A surface Sy which satis es (1.4) is said to be anequilibrium state. An
existing equilibrium state Sy is said to be stableby de nition if

o .

g2 (5() Y >0
for all 3 not identically zero, where S(2) is an appropriate one-parameter
family of comparison surfaces.

This inequality implies that

1 @F
i 2(2H?; K)+3—/4@>0 on So; (1.5)

whereK is the Gauss curvature of the capillary surfaceSy, see Blaschke [5], p. 58,
for the de nition of K.

1.3.5 Extremal property of an eigenvalue

Let - % R? be a bounded and connected domain. Consider the eigenvalue
problem

i4 u
u

1] |
QO v
c
(@]
S5 —.
@ =}
1
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It is known that the lowest eigenvalue , 1(-) is positive, it is a simple eigen-
value and the associated eigenfunction has no zero in -. LetV be a set of

suzciently regular domains - with prescribed area j- j. Then we consider
the problem

min , 1(-) :

min, 1(-)
The solution of this problem is a diskBgr, R = P j- j=% and the solution is

uniquely determined.

1.3.6 Isoperimetric problems

Let V be a set of all sutciently regular bounded and connected domais
- 1% R? with prescribed length j@ j of the boundary. Then we consider the
problem

maxj- j:

-2V

The solution of this problem is a diskBr, R = j@ j=(2¥3, and the solution
is uniquely determined. This result follows by Steiner's synmetrization,
see [5], for example. From this method it follows that

j@%i 44-j>0
if - is a domain di®erent from a disk.

Remark. Such an isoperimetric inequality follows also by using the m-
equality 7 7

juj dx - 1 jr uj? dx
2

R 4]/4 R2

for all u 2 C3(R?). After an appropriate de nition of the integral on the
right hand side this inequality holds for functions from the Sobolev space
H3(-), see [1], or from the class BV (-), which are the functions of bounded
variation, see [15]. The set of characteristic functions fosuzciently regular
domains is contained inBV (-) and the square root of the integral of the
right hand de nes the perimeter of -. Set

Ys

_ai - 1 x2-
USA = 5. xe2
then .
i Sie i

4Y;
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The associated problem inR® is
maxj-
whereV is the set of all sutciently regular bounded and connected dorains
- % R3 with [B,rescribed perimeter j@ j. The solution of this problem is a
ball Bk, R = @ j=(4%), and the solution is uniquely determined, see [5],
for example, where it is shown that the isoperimetric inequadity
@i 36%4-j%, 0

holds for all sutciently regular -, and equality holds only if - is a ball.
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1.4 Exercises

1.

Let V 2 R" be nonempty, closed and bounded and : V 7! R lower
semicontinuous onV. Show that there exists anx 2 V such that
f(x). f(y)forally2V.

Hint: f : V 7! R" is called lower semicontinuous onV if for every
sequencex® I x, xK; x 2 V, it follows that

lim inf f (X, f(x):

. Let V %2 R" be the closure of a convex domain and assunfe: V 7! R

is in C1(R"). Suppose thatx 2 V satisesf (x) - f(y) forall y2 V.
Prove

M hrf(Xx);yi xi, Oforally2V,

(i) r f(x)=0if x is an interior point of V.

. Let A and B be real and symmetric matrices with n rows (and n

columns). Suppose thatB is positive, i. e., By;yi > 0 forally 2
R" n f0g.
(i) Show that there exists a solution x of the problem
. PAyyi
min -
y2Rnnfog MBY; Yi

(i) Show that Ax = ,Bx , where, = hAX; X i=BX; Xi.

Hint: (a) Show that there is a positive constant such that lBy;yi ,
chy;yi forally 2 R".

(b) Show that there exists a solution x of the problem minyhAy;yi,
where By;yi = 1.

(c) Consider the function

PA(X + 2y)i X + 2yi |
B (x+ 2y;x + 2yi’

9(®) =

where j2j <2, 2¢ suxciently small, and use that g(0) - g(?).

. Let A and B satisfy the assumption of the previous exercise. LeC

be a closed convex nonempty cone ilR" with vertex at the origin.
AssumeC 6 f0g.
(i) Show that there exists a solution x of the problem

. PAy; yi
y2n(;]|rlrf109 MBy;yi '
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(i) Show that x is a solution of

Xx2C: hAy i xi, .,y xi foraly?2C;
where ;| = hAX; xi=Bx; X 1.
Hint: To show (ii) consider for x y 2 C the function

PA(X + 2(y i X));x+ 2(yi X)i

IO o2y )i 2y o

where 0< 2 < 2 4, 25 suzciently small, and use g(0) - g(?) which
implies that g40) , O.

5. Let A be real matrix with n rows andn columns, and letC % R" be
a nonempty closed and convex cone with vertex at the origin. Bow
that

x2C: bAX;yj xi, O forally2C

is equivalent to

hAX;xi =0 and hAx;yi, O forally2 C:

Hint: 2x; x+y2 Cif x; y 2 C.

6. R. Courant. Show that
z 1
. ¢ _
E(v):= 1+ (vIx)2 T dx
0

does not achieve its in mum in the class of functions
V = fv2 C[0;1] : v piecewiseC!; v(0)=1; v(1)=0g;

i. e, thereisnou 2 V suchthat E(u) - E(v)forall v2 V.
Hint: Consider the family of functions
23

eye  C10F 0 x. <l

0 : x>2

7. K. Weierstravs, 1895. Show that
Z 1
E(v) = x2(vqx))? dx
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does not achieve its in mum in the class of functions
© a
V= v2CYi11]:v(j1=avd)=b ;
wherea 6 b.
Hint:

a+ b+ bi a arctan(x=2)

v(X;2) =
(%) 2 2 arctan(1=?)

de nes a minimal sequence, i. e., lim ¢E(v(?)) =inf 2y E(V):

. Set Zb

g(?) := f (x;u(x)+ 2Ax);uqx) + 2Aqx)) dx;
a
where?, j2j < 2, is a real parameter,f (x; z;p) in C2 in his arguments
and u; A2 Cl[a; . Calculate gX0) and g°¢0).

. Find all C2-solutions u = u(x) of

&fuoz fu,

itf=" T+ (W2

Set 7
1 | ¢
E(v) = v2(x) + xvdx) dx
0
and
V =fv2Cl0;1]: v(0)=0; v(1)=1g:
Show that miny,y E(v) has no solution.

Is there a solution of min,»y E(v), whereV = CJ[0; 1] and

|
ZlAZ v(x) ’
E(v) = o (1+3%)d dx?

Let u 2 C?(a;b) be a solution of Euler's di®erential equation. Show
that u¥,0j f ~ const, provided that f = f(u;u9, i. e., f depends
not explicitly on x.
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Consider the problem of rotationally symmetric surface min,2v jS(v)j,
where z,

iS(V)j=2% v(x)p 1+ (vqx))2 dx
0
and
V = fv2 CY0o;1]: v(0)= a; v(I) = b; \(x) > 0on (a;b)g:

Find C2(0; I)-solutions of the associated Euler equation.
Hint: Solutions are catenoids (chain curves, in German: Kettenhien).

Find solutions of Euler's di®erential equation to the Breachistochrone
problem min 2y E(v), where

V = fv2 C[0;a]\ C?(0;a]: v(0)=0; v(a) = A; v(x) > 0ifx 2 (0; a]g;

that is, we consider here as comparison functions graphs owehe x-
axis, and
zZ,P i+

E(v) = —p— dx:
0 v

Hint: (i) Euler's equation implies that

y(L+y®) = @ y=y(x);
with a constant @®.
(i) Substitution

y = g(li cosu); u= u(x);

implies that x = x(u), y = y(u) de ne cycloids (in German: Rollkur-
ven).

Prove the basic lemma in the calculus of variations: Let -2 R" be a
domain andf 2 C(-) such that
Z

f (x)h(x) dx =0

forall h2 C3(-). Then f ~ 0in-.

Write the minimal surface equation as a quasilinear equéon of second
order.
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17. Prove that a minimizer in C1(-) of

Z Z
E(v) = F(x;v;r v) dx g(v;v) ds;
- @
is a solution of the boundary value problem, provided that additionally
u2 C%(),
X @
—Fuxi = FU In -
i=1 @x
X
Fu,®i = Qu on@;
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Chapter 2

Functions of n variables

In this chapter, with only few exceptions, the normed space Wl be the
n-dimensional Euclidean spaceR". Let f be a real function de ned on a
nonempty subsetX p R". In the conditions below where derivatives occur,
we assume thatf 2 C* or f 2 C? on anopensetX p R".

2.1 Optima, tangent cones

Let f be a real-valued functional de ned on a nonempty subset p X.

De nition.  We say that an elementx 2 V de nes aglobal minimum of f
in Vv, if
f(x): f(y) for all y2V;

and we say thatx 2 V de nes astrict global minimum, if the strict inequal-
ity holds for all y 2 V; y6 x.

For a %2 >0 we de ne a ball By(x) with radius “2and center x:
B:Ax) = fy 2 R, jiyi xjj <¥ag;

where jjy i xjj denotes the Euclidean norm of the vectorx j y. We always
assume thatx 2 V is not isolatedi. e., we assume thatV \ Bi(x) 6 fxg for
all ¥2>0.

De nition.  We say that an elementx 2 V de nes alocal minimum of f in
V if there exists a%2 >0 such that

f(x)- f(y) for all y2V\ ByXx);

39
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and we say thatx 2 V de nes astrict local minimum if the strict inequality
holds for ally 2 V\ By(Xx); y 6 X.

That is, a global minimum is a local minimum. By reversing the direc-
tions of the inequality signs in the above de nitions, we obtan de nitions
of global maximum, strict global maximum, local maximumand strict local
maximum. An optimum is a minimum or a maximum and alocal optimum is
a local minimum or a local maximum. If x de nes a local maximum etc. of
f , then x de nes a local minimum etc. ofj f, i. e., we can restrict ourselves
to the consideration of minima.

In the important case that V and f are convex, then each local minimum
de nes also a global minimum. These assumptions are satis edni many
applications to problems in microeconomy.

De nition. A subsetV p X is said to be convexif for any two vectors
X;y 2 V theinclusion x +(1j ,)y2V holdsforall0- , - 1.

De nition.  We say that a functional f de ned on a convex subsetv p X
is convexif

Flx+@i )y - F0)+@ i ,)f(y)

for all x;y 2 V and for all 0 - 1, and f is strictly convex if the strict
inequality holds for all x;y 2 V,x6 y,andforall ,,0<, 6 < 1.

Theorem 2.1.1. If f is a convex functional on a convex seV u X, then
any local minimum of f in V is a global minimum off in V.

Proof. Suppose thatx is no global minimum, then there exists anx! 2 V
such that f (x1) <f (x). Sety(,)= x*+(1j ,)x,0<_ < 1,then

PG - FO)+@ i DF) < )+ @i )fx)=f(x):

For each given2 >0 there exists a, = , (1) such that y(,) 2 Byx) and
f(y(,)) <f (x). This is a contradiction to the assumption. 2

Concerning the unigueness of minimizers one has the follongj result.

Theorem 2.1.2. If f is a strictly convex functional on a convex seV p X,
then a minimum (local or global) is unique.

Proof. Suppose thatx!; x2 2 V de ne minima of f, then f (x!) = f (x?),
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see Theorem 2.1.1. Assumg! 6 x?, thenfor0<,< 1
FOx T+ @i X)) < f D)+ i )F(x®) = f(xa) = f(x2):

This is a contradiction to the assumption that x*; x? de ne global minima.
2

Theorem 2.1.3. a) If f is a convex function andV %2 X a convex set, then
the set of minimizers is convex.
b) If f is concave,V %2 X convex, then the set of maximizers is convex.

Proof. Exercise.

or Df (x).

Theorem 2.1.4. Suppose thatv %2 X is convex. Thenf is convex onV if
and only if

fly)i f(x),hf9x);yi xi forall x; y2V:

Proof. (i) Assume f is convex. Then for 0- , - 1 we have

B

fLy +@i)x) - fMM+Qi . )f(x)
fx+,(yi x)) - )+, (Wi f(x)
FO)+, HO)yi xi+o() - FO)+, ()i fX);
which implies that
H )i xi- f(y)i f:
(i) Setfor x; y2Vand 0< < 1
xt:=@j ,)y+.x and h:=yj xk

Then

1;

h:

Since we suppose that the inequality of the theorem holds, whave
fy)i f(x1) , hfqxh)yi xti
fx)i f(xY) . hfdxh:xi xb

i qx); hi
i iy x1); hi:
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After multiplying the rst inequality with (1 | , )=, we add both inequalities
and get

P+ f0 f(xY) L 0

5

(1i ,)f’(y)+ f )i @i Dfehi feh L o
Thus
@i DfW+.F ), FOD7 f(@iL)yi x)
forall0<, < 1. 2

Remark. The inequality of the theorem says that the surfaceS de ned by
z = f (y) is above of the tangent planeT, de ned by z = H qx);yj xi+f (x),
see Figure 2.1 for the casa& = 1.

z

Figure 2.1: Figure to Theorem 2.1.4

The following de nition of a local tangent cone is fundamentd for our
considerations, particularly for the study of necessary coditions in con-
strained optimization. The tangent cone plays the role of the tangent plane
in unconstrained optimization.

De nition. A nonempty subsetC p R" is said to be acone with vertex at
z2 R",ify2 C implies that z+ t(yj z) 2 C for eacht> 0.

Let V be a nonempty subset ofX .
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De nition.  For given x 2 V we de ne the local tangent coneof V at x by

T(V;x) = fw2R": there exist sequencesx" 2V, wW2R; tx>0;
such that x* ! x and t,(xXj x)! wask!1g

This de nition implies immediately

T(V,X)

Figure 2.2: Tangent cone

Corollaries. (i) The setT(V;X) is a cone with vertex at zero.
(i) A vector x 2 V is not isolated if and only if T(V;x) 6 fQg.
(iii) Suppose thatw 6 0, then t, !'1

(iv) T(V;x) is closed.

(v) T(V;x) is convex ifV is convex.

In the following the Hesse matrix (f x,x; )/} =y is also denoted byf °¢x), f ()
or D?f (x).

Theorem 2.1.5. Suppose thatV 2 R" is nonempty and convex. Then

(i) If f is convex onV, then the Hesse matrixf °¢x), x 2 V, is positive
semide nite on T(V;Xx). That is,

i O)w;wi . 0
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for all x 2 V and for all w2 T(V;x).

(i) Assume the Hesse matrix f °¢x), x 2 V, is positive semide nite on
Y=V V,thesetofallxj ywherex; y2 V. Then f is convex onV.

Proof. (i) Assume f is convex onV. Then for all x; y 2 V, see Theo-
rem 2.1.4,

f(y)i f(x),hfYx);yi xi:
Thus
M A%);yi xi+ EHO?X)(yi X);yi xi+o(jyi xji?) ., hfqx)yi xi
o) (yi x)iyi xi +jiyi xi? Giyi xji) . 0

where limy o (t) = 0. Suppose that w 2 T(V;x) and that t, xK ! x are
associated sequences, i. ek 2 V, ty > 0 and

wE o= (XK x) ! we
Then
HOB)W; whi + Wi (ix* i xjj), 0;
which implies that
H OC)w; wi, 0
(i) Since
. 1 .
FO i FO0iht00syi xi = SH R+ 2y i x))(yi x)iyi xi;

where 0< + < 1, and the right hand side is nonnegative, it follows from
Theorem 2.1.4 thatf is convex onV. 2
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2.1.1 Exercises

1.

10.

11.

AssumeV % R" is a convex set. Show thatY = Vi V = fxj y:
X; y2Vgisaconvex setinR",02Y andify2 Y thenjy2Y.

. Prove Theorem 2.1.3.
. Show that T(V; X) is a cone with vertex at zero.

. AssumeV p R". Show that T(V;x) 6 f0Og if and only if x 2 V is not

isolated.

. Show that T (V; x) is closed.
. Show that T (V; x) is convex if V is a convex set.

. Suppose thatV is convex. Show that

T(V;x) = fw2R"; there exist sequences® 2 V; ty 2 R; ty > 0;
such that t(x*j x)! wask!1g

. Assume ifw 2 T(V;x); w6 0. Then tx!'1 |, wherety are the reals

from the de nition of the local tangent cone.

. Letp2 V %R" and jpj? = pi+ :::+ p2. Prove that

P—
f(p)=" 1+jp?
is convex on convex sety/ .
Hint: Show that the Hesse matrixf %¢p) is nonnegative by calculating
i %¢p)3;3i, where3 2 R".
Suppose thatf %x), x 2 V, is positive on (V i V) nf0g. Show that
f (x) is strictly convex on V.

Hint: (i) Show that f (y)j f(x) > HFqx);yj xiforallx; y 2V, x 6 y.
(i) Then show that f is strictly convex by adapting part (ii) of the
proof of Theorem 2.1.4.

Let V %2 X be a nonempty convex subset of a linear spacX and
f . V 7' R. Show that f is convex onV if and only if ©(t) :=
f(x+t(yj x))is convex ont 2 [0;1] for all (xed) x; y 2 V.

Hint: To see that © is convex iff is convex we have to show

©(s1+(i ,)s2) - ,O(s)+(1 i ,)O(s2);
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0., 1,52][01]. Set¢g=.,s1+(1 i ,)s2), then
©(¢) = f(x+ ¢lyi x)

and

X+(,s1+(@j ,)s2)(yi x)
L (X Fs(yi x)+@A g L)X+ sy X))

X+ ¢(yi X)
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2.2 Necessary conditions

The proof of the following necessary condition follows fromassumptionf 2
C1(X) and the denition of the tangent cone.

We recall that f is said to be di®erentiable atx 2 X %2 R", X open, if
all partial derivatives exist at x. In contrast to the casen = 1 it does not
follow that f is continuous atx if f is di®erentiable at that point.

De nition.  f is called totally di®erentiable at x if there exists ana 2 R"
such that

fly)=f(x)+ hajyi xi+ ofjjx vij)

asy! x.
We recall that

(1) If f is totally di®erentiable at x, then f is di®erentiable atx and a =

f qx).
(2) If f 2 CY(B4), then f is totally di®erentiable at every x 2 B,

(3) Rademacher's Theorem.If f is locally Lipschitz continuous in By, then
f is totally di®erentiable almost everywhere inBy, i. e., up to a set of
Lebesgue measure zero.

For a proof of Rademacher's Theorem see [15], pp. 81, for exate.

Theorem 2.2.1 (Necessary condition of rst order). Suppose thatf 2
C1(X) and that x de nes a local minimum of f in V. Then

HYx);wi, 0 forall w2 T(V;X):

Proof. Let ty; xX be associated sequences tw 2 T(V;x). Then, since x
de nes a local minimum, it follows

0- F(xX) i Fx)= HYx);xki xi+ o(iixi xjj);
which implies that

0-h f0)tex i )i+ jite(xX i )" Gx i xij);
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where limy 9" (t) = 0. Letting n!1 we obtain the necessary condition.
2

Corollary. Suppose thatV is convex, then the necessary condition of The-
orem 1.1.1 is equivalent to

H9Yx);yi xi, 0 forall y2V:

Proof. From the de nition of the tangent cone it follows that the coro llary
implies Theorem 2.2.1. On the other hand, xy 2 V and dene xK :=
(Li LY+, 1k, k2 (0;1); k! 1. Thenxk 2V, (1j , )" *(x*j x) = yj x.
Thatis, yi x2 T(V;X). 2

The variational inequality above is equivalent to a xed point equation, see
Theorem 2.2.2 below.

Let pv (z) be the projection of z 2 H, whereH is a real Hilbert space, onto
a nonempty closed convex subset yu H, see Section 2.6.3 of the appendix.
We havew = py(z) if and only if

hov(z)i z;yi pv(2)i, O forally2 V: (2.1)

Theorem 2.2.2 (Equivalence of a variational inequality to an equation).
Suppose thatV is a closed convex and nonempty subset of a real Hilbert
spaceH and F a mapping fromV into H. Then the variational inequality

x2V: HFX);yj xi, 0 foral y2V:
is equivalent to the xed point equation
X =pv(xi gF(x)) ;

where0<q< 1 is an arbitrary xed constant.

Proof. Setz = xj qF(x)in (2.1). If x = pyv(Xxj gF(x)) then the variational
inequality follows. On the other hand, the variational inequality

x2V:mj i gF(X);yi xi, 0 forally2V

implies that the xed point equation holds and the above theorem is shown.
2
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Remark. This equivalence of a variational inequality with a xed point

equation suggests a simple numerical procedure to calculatsolutions of
variational inequalities: x**1 := py(x¥ i gF(x¥)). Then the hope is that

the sequencex® converges if 0< q < 1 is chosen appropriately. In these
notes we do not consider the problem of convergence of this @f related

numerical procedures. This projection-iteration method runs quite well in

some examples, see [51], and exercises in Section 2.5.

In generalization to the necessary condition of second orden the un-
constrained case i °¥x)h;hi ;| 0 for all h 2 R", we have a corresponding
result in the constrained case.

Theorem 2.2.3 (Necessary condition of second order).Suppose thatf 2
C?(X) and that x de nes a local minimum of f in V. Then for eachw 2
T(V;x) and every associated sequenceg; x¥ the inequality

0- liminf tcH qx); wki + %h‘o?x)w;wi
holds, wherewX := t, (x¥ i x).
Proof. From
fOg - f(xk)
= fx)+ HYX);x"i xi+ %H ) (xK i x):xKi xi
XXX xii);
where limy o~ (t) =0, we obtain
0 - tkhf s whi + %h‘ )Wk whi + jw ([ix i xjp):
By taking liminf the assertion follows. 2

In the next sections we will exploit the explicit nature of the subsetV.
When the side conditions which de neV are equations, then we obtain
under an additional assumption from the necessary conditia of rst order
the classical Lagrange multiplier rule.

2.2.1 Equality constraints
Here we suppose that the subseV is de ned by
V=1fy2R" g(y)=0;j=1;:::;mg:
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Let g 2 CY(R"), w2 T(V;x) and ty, xX associated sequences to. Then
0=g(x)i g ()= hglx);x i xi + ofiix i xi);
and from the de nition of the local tangent cone it follows for eachj that

hg’(x);wi =0 forall w2 T(V;x): (2.2)

decomposition with respect to the standard Euclidean scalaproduct ha; b .
We recall that dim Y? = nj kifdim Y = k.

Equations (2.2) imply immediately that T(V;x) p Y?. Under an addi-
tional assumption we have equality.

Lemma 2.2.1. Suppose thatdim Y = m (maximal rank condition), then
T(V;x)= Y?.

Proof. It remains to show that Y? p T(V;x). Suppose thatz 2 Y?; 0<
2. 24; 245 suxciently small. Then we look for solutions y = o(2), depending
on the "Xed z, of the systemgj (x+2z+y)=0; j =1;:::;m. Sincez2 Y~
and the maximal rank condition is satis ed, we obtain the exigence of a
y = 0(23) as2! 0 from the implicit function theorem. That is, we have
X(3) = x+22+y2V,wherey = 0(2). This implies that z 2 T(V;X) since
x(®)! x; x(3); x2V and2i Y{(x(®) i x)! zas2! 0. 2

From this lemma follows the simplest version of the Lagrangeamultiplier rule
as a necessary condition of rst order.

Theorem 2.2.4 (Lagrange multiplier rule, equality constraints). Suppose
that x de nes a local minimum of f in V and that the maximal rank con-
dition of Lemma 2.1.1 is satis ed. Then there exists uniquelydetermined
.j 2 R, such that

xn
t00+ gl =0:

i=1

Proof. From the necessary conditiontf {x);wi , 0 for all w 2 T(V;x) and
from Lemma 2.2.1 it follows that if {x);wi =0 for all w2 Y? sinceY? is
a linear space. This equation implies that

fqx) 2 Y " spanfgd(x);:::;0% (X)g:
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Uniqueness of the multipliers follow from the maximal rank condition. 2

There is a necessary condition of second order linked with adagrange func-
tion L(x;, ) de ned by

Xt
LG, )=100+ g (X):
j=1

Moreover, under an additional assumption the sequencgH {x); wXi, where
wk = t, (xXj x), is convergent, and the limit is independent of the sequenes
xX: t, associated to a giverw 2 T(V;X).

We will use the following abbreviations:

xXn xn
LY, )= 100+ ,jg’x) and L%, )= 1%+ ;g0
j=1 j=1

Theorem 2.2.5 (Necessary condition of second order, equality constrairs).
Suppose thaf; g; 2 C?(R™) and that the maximal rank condition of Lemma 2.2.1
is satis ed. Let x be a local minimizer off in V and let, =(,1;:::;. m

be the (uniquely determined) Lagrange multipliers of Thearm 2.2.4 Then

(i) hHOx; )z;zi, 0 forall z2Y? (" T(V;x);

i} . X .
(i) Jim o Ogiwhi = 50 Phowiwi wie= b0 x);
! i=1
for all w2 T(V;x) and for all associated sequences®; ty

tow2 T(V;x) (C Y?):

Proof. (i) For given z2 Y7, jjzjj =1, and 0 <2 - 2(, 25 > 0 suxciently

follows from the maximal rank condition and the implicit fun ction theorem.
Then

f(x+2z+y) L(x+2z+y;,)
L(x;, )+ hLAx;, )2z + i

+ %H_O?x; )z + )2z + yi + 0(22)

f(x)+ %*“’?x:, )(2z + y);2z + yi + 0(??);
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sinceL{x;,) = 0 and x satis es the side conditions. Hence, sincé (x) -
f(x+ 2z +y), it follows that HL%x; )z;zi, O.

(ii) Suppose that xK 2 V; t, > 0, such that wk := t,(x¥; x)! w. Then

X0
L(xk,) ~ f(x9)+ L6 (x9)
j=1
1 . )
= L(x,)+ EhLOQX:,)(xki x); XK i xi + o(jix* i xjj?):
That is,
f(xX¥) i f(x)= %“-O?X;,)(in x);xK i xi + o(jix® i xjj?):

On the other hand,

FxX*) i f(x)= m9x);xi xi+ %HO?X)(X"i x);x¥ i xi + o(jix* i xjj?):

Consequently
.1 . - -
)X i xi= 5 g xx i xi+ olix* i xji%);
j=1
which implies (ii) of the theorem. 2

2.2.2 Inequality constraints

integersm ., 1landp, 0. If p=0 then we setE = ;, the empty set. In
this section we assume that the subseV is given by

V =fy2R"; g(y) - Oforeachj 21 andg(y)=0foreachj 2 Eg

and that g 2 C1(R") for eachj 2 I [ E. Let x 2 V be a local minimizer
off inV andletlgpu | be the subset ofl where the inequality constraints
are active, thatis, lo= fj 21, g(x) =0g. Let w2 T(V;Xx) and xX, ty are
associated sequences tw, then for k | kg, kg suzciently large, we have for
eachj 2 Ig

0, g(x*)i g0)=rg);x i xi+ o(jix"i xj):
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It follows that for each j 2 Ig

hg’(x);wi- 0 forall w2 T(V;x):
If j 2 E, we obtain from

0=g(x)i g(x)=gP(x);x*i xi+ ofjjx*i xij)

and if j 2 E, then

hg’(x);wi =0 forall w2 T(V;X):
That is, the tangent cone T (V; X) is a subset of the cone

K=1fz2R": hgx);zi =0; j 2 E; and hg’(x);zi - 0; j 2 log:

Under a maximal rank condition we have equality. By jMj we denote the
number of elements of a nite setM , we setjMj=0if M = ; .

De nition. A vector x 2 V is said to be aregular point if

i ¢
dim “spanfg(x)gjze[1, = JEj+ jloj:

It means that in a regular point the gradients of functions which de-
‘ne the active constraints (equality constraints are included) are linearly
independent.

Lemma 2.2.2. Suppose thatx 2 V is a regular point, then T(V;x) = K.

Proof. It remains to show that K p T(V;Xx). Suppose thatz2 K; 0<2 .
2p; 2p suzxciently small. Then we look for solutions y 2 R" of the system
g(x+22+y)=0;j 2Eandg(x+22+y)- 0 2 lo. Once one has
established such ay = o(2), depending on the xed z 2 K, then it follows
that z2 T(V;X) sincex(?):= x+2z+y2V; x(?! x5 x(®; x2V and
2i (x(2)j x)! zas2! 0.

Consider the subsetld p 1o dehed by 1§ = fj 2 lo; hgX(x);zi = 0g.
Then, the existence of a solutiony = 0o(?) of the systemg (x + 2z + y) =
0,j2Eandg(x+22+y)=0;]j 2 | § follows from the implicit function
theorem since 3 ‘

dim spanfg’(X)gi2e19 = JEj+ il
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holds. The remaining inequalitiesg; (x+ 2z+y) - 0; j 2 lonlJ, are satis ed
for suzciently small 2 > 0 sincehg (x);zi < 0if j 2 IonlQ, the proof is
completed. 2

Thus the necessary condition of rst order of Theorem 2.1.1 ishere
HYx);wi, 0 forall w2K (C T(V;X); (2.3)

if the maximal rank condition of Lemma 2.2.2 is satis ed, that is, if x 2 V
is a regular point.

In generalization of the case of equality constraints the vaational in-
equality (2.3) implies the following Lagrange multiplier rule.

Theorem 2.2.6 (Lagrange multiplier rule, inequality constraints). Suppose
that x is a local minimizer of f in V and that x is a regular point. Then
there exists, j 2 R, ,;, 0if j 2 lo, such that

X
f0+ g0 =0:
j2E[ 1o

Proof. Since the variational inequality (2.3) with
K = fz2R": hgx);zi, 0andhjg’(x);zi, O foreachj 2 E;
and hj g(x);zi, 0 for eachj 2 log

is satis ed, there exists nonnegative real numbers ; if j 2 1o, 1J-(1) ifj 2 E
and 1j(2) if j 2 E such that

X ¢ X X o ¢
fqx) = i)+ P+ 1P )
j21g i2F , j2E
= 1jgjO(X)+ 11_(1)i 1j(2) gjO(X):
i2lg j2E

This follows from the Minkowski{Farkas Lemma, see Section . let A be
a real matrix with m rows and n columns and letb 2 R", then hb;yi, O
8y 2 R" with Ay , 0 if and only if there exists anx 2 R™, such thatx , 0
and ATx = b. 2

The following corollary says that we can avoid the considertion whether
the inequality constraints are active or not.
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Kuhn{Tucker conditions. Let x be a local minimizer of f in V and
suppose thatx is a regular point. Then there exists,; 2 R, ,;, 0ifj 21,
such that

0;

X 0
f qx) + 197 (X)
j2l§([l
LG (X)
j21

I
o

As in the case of equality constraints there is a necessary odition of
second order linked with a Lagrange function.

Theorem 2.2.7 (Necessary condition of second order, inequality constrais).
Suppose thatf; g; 2 C?(R"). Let x be a local minimizer off in V which is
regular and , j denote Lagrange multipliers such that

X
£ + ,1g(x)=0;
i2E[ 1o
where j , 0if j 2 1g. LetI§ =fj 2 1o, ,j > 00 Vo=fy2V; g(y) =
0 for eachj 2 158, Z = fy 2 R" : hg’(x);yi =0 for eachj 2 E[ I5gand
L(y;.) " T+ j2e(1,.19(y). Then

(i) T(Vo;x) = Z;
(i) HOx; )z;zi, 0 forall z2 T(Vo;x) (" Z);
i) im0 = 5 L rgowwi; wE = (K x);
j2E[ o
for all w2 T(Vo;x) and for all associated sequences®; t
tow2 T(Vo;x) (C 2):

Proof. Assertion (i) follows from the maximal rank condition and th e im-

plicit function theorem. Since f (y) = L(y;,) for all y 2 Vp, we obtain
o1 . - N

L, )iy xi+ SO )y i x)y i xi+ oliix i yii®)

1 .
= éhLO‘Ex;,)(yi X);yi xi+o(jixi yij%:

fFiy)i £(x)
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On the other hand
1 o )
f(y)i f(x)=HYx);yi xi+ QHO?X)(Yi X);yi Xi+o(jyi xj?):

Sincef (y) , f(x) if y is close enough tox, we obtain (ii) and (iii) by the
same reasoning as in the proof of Theorem 2.2.5. 2

2.2.3 Supplement

In the above considerations we have focused our attention othe necessary
condition that x 2 V is a local minimizer: hFqx);wi , 0 for all w 2
C(V;x). Then we asked what follows from this inequality whenV is de ned
by equations or inequalities. Under an additional assumpton (maximal rank
condition) we derived Lagrange multiplier rules.

In the case that V is de ned by equations or inequalities there is a
more general Lagrange multiplier rule where no maximal rankcondition is

assumed. Let
V=Ffy2R": g(y)- 0 foreachj 21 and g(y)=0 foreach j 2 Eg:

The case where the side conditions are only equations is inaled, herel is
empty.

Theorem 2.2.8 (General Lagrange multiplier rule). Suppose thatx de nes
a local minimum or a local maximum of f in V and that JEj + jloj < n.
Then there exists, ; 2 R, not all are zero, such that

X
of 0+ g0 =0
j2E[ 1o

Proof. We will show by contradiction that the vectors f9x); g’(x); j 2
E [ lo, must be linearly dependent if x de nes a local minimum.
By assumption we haveg; (x) =0if j 2 E[ lgandgj(x) < 0ifj 2 I nlo.

regular quadratic submatrix of N = 1+ m + k rows (and columns) of the
associated matrix to the above (column) vectors. One can assne, after
renaming of the variables, that this matrix is

1
le(X) gl;Xl(X) ¢e¢eon i 1§X1(X)
fxz(x) gl:xZ(X) ¢ee ON i 1;X2(X) § :

fxn (X)) Guxy (X)) CCCON; 1:xy (X)
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Hereg;x, denote the partial derivative of g; with respectto x;. Seth = f (x),
then we consider the following system of equations:

f(yL i i YNGXN+1; 003 Xn) = h+u

g (yiiin YN XN+t Xn) = 05 J2E] g
whereys;:::;yn are unknowns. The real numberu is a given parameter in a

neighbourhood of zero, sayuj < u g for a suzciently small ug. From the im-
plicit function theorem it follows that there exists a solutiony; = Aj(u); i =

Then f(x?) >f (x) if u> 0andf(x®) <f (x)ifu< 0, i e.,x denes
no local optimum. 2

From this multiplier rule it follows immediately:

1. If x is a regular point, then , o 6 0. After dividing by , o the new coef-
“cients jO = ,j=.0,] 2 E[ lg, coincide with the Lagrange multipliers
of Theorem 2.7.

2. If ,o=0, then x is no regular point.
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2.2.4 Exercises
1. Suppose thatf 2 C1(B:). Show that

fly)= f(x)+ HYx)yi xi+o(iyi xii)
for every x 2 By, that is, f is totally di®erentiable in B,

2. Assumeg maps a ballBy{x) ¥2 R" in R™ and let g 2 C'(B+). Sup-
pose that g(x) =0 and dim Y = m (maximal rank condition), where
Y = spanfgd(x);:::;9%9. Prove that for xed z 2 Y? there ex-
ists y(2) which maps (j 20;20), 20 > 0 suzciently small, into R™,
y 2 Cl(j 20;20) and y(2) = 0o(?) such that g(x + 2z + y(?)) ~ 0 in

(i 20;20).
Hint: After renaming the variables we can assume that the matrix
Oix; » i; j =1;:::;m s regular. Sety := (y1;:::;¥m;0;:::;0) and

fZy) = (X + 22+ y);:::;0m(X + 22 + y)). From the implicit
function theorem it follows that there exists a C* function y = y(?),
j3j <24, 21 > 0 suzxciently small, such that f (%y(?)) =~ 0in j?j <2;.

a=(a1;:::;am;0;:::;0) it follows that a =0 holds.
3. Find the smallest eigenvalue of the variational inequaliy
x2C: bPAXy i xi, ,hyj xi forall y2C;

whereC = fx 2 R%; x;, Oandxz- OgandA is the matrix
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2.3 Suzcient conditions

As in the unconstrained case we will see that su+cient conditons are close
to necessary conditions of second order. Let be a local minimizer off 2 C?2
in the unconstrained caseV ~ R", then f {x) = 0 and K %¥x)z;zi , 0 for
all z 2 R". That means, the st eigenvalue , ; of the Hessian matrix f °¢x)
is nonnegative. If /1 > 0, then from expansion (1.2) follows thatx de nes
a strict local minimum of f in V.

Let V p R" be a nonempty subset and suppose thak 2 V satis es the
necessary condition of ‘rst order, see Theorem 2.2.1:

(?) HYx);wi, 0 forallw2 T(V;X).

We are interested in additional assumptions under whichx then de nes
a local minimum of f in V. For the following reasoning we will need an
assumption which is stronger then the necessary condition?).

Assumption A. Let w 2 T(V;x) and xK and t, associated sequences. Then
there exists anM > j1 such that

5

lim inf t2H x);x* | xi, M:

Remarks. (i) Assumption A implies that the necessary condition (?) of
“rst order holds.

(i) Assume the necessary condition ®) is satis ed and V is convex, then
assumption A holds with M = 0.

The following subcone of T(V;x) plays an important role in the study
of suxcient conditions, see also Chapter 3, where the in nite}y dimensional
case is considered.

Denition.  Let T;o(V; ) be the set of allw 2 T(V;x) such that, if x and
tx = jjxki xjji ! are associated sequences to, then limsup,,;  t2Hf qu); xKi
Xi<1l.

Set
fqx)? = fy 2 R"; K qx);yi =0g:

Corollary. Suppose that assumption A is satis ed (this is the case ¥/ is
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convex), then
Tro(V;x) o T(V:)\ f9%)7 -

Proof. Assume thatw 2 T;o(V;X) and let t, and xk be associated sequences.
If w60, then t, ! 1 and assumption A implies that if {x);wi , 0, see
Remark 2.2. On the other hand, the inequality liminf,  t2Hf qx); x*j xi <

1 yields i qx);wi- 0. 2

From an indirect argument follows a suzcient criterion.

Theorem 2.3.1. Suppose thatf 2 C2(R"). Then a nonisolated x 2 V
de nes a strict local minimum of f in V if Tfo(V;Xx) = f0g or if assumption
A is satis'ed for each w 2 Tro(V;x) with an M , 0 and if %¢x)w;wi > 0
holds for all w 2 T¢o(V; X) nf0g.

5

Proof. If x does not de' ne a strict local minimum, then there exists a
sequencexk 2 V, xK1 x; xX 6 x, such that
0, f(xif(x)

5

= HYQOxE i xi+ RO 0T xi + ol i xj?)
Sett, = jjx¥i xjji 1, then

0 . 0T i+ S Bt | )i kx* i )i

2k o 200XK 0 X))

For a subsequence we havg(x¥i x)! w; jjwjj = 1. The above inequality
implies that w 2 To(V;X). Since assumption (A) is satis ed with M , 0
it follows that 0 , h f ®x)w;wi, a contradiction to the assumption of the
theorem. Sincew 2 T;o(V;Xx) 6 fOg if x is no strict local minimizer, it
follows that x de nes a strict local minimum if T;o(V;Xx) = fO0g. 2

The following example shows thatT; o(V; X) can be a proper subset o2 (V; x)\

fqx)?.

Example. Let f (x) = x2i c¢(x?+ x3); ¢>0;andV = fx2R2: 0- x;<
1 and xP - x» < 1g, where 1< ® < 1 . Sincef 40) = (0; 1), the vector
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x = (0;0) satis es the necessary conditiontf 0);y i 0i, Oforally 2 V.
We ask whetherx = (0;0) de nes a local minimum off in V. A corollary
from above implies that T;o(V;x) = fOg or that Tio(V;x) = fy 2 R% y, =
Oandy;, 0g. If1<®< 2, then T;o(V;x) = f0g, see an exercise. In this
case (Q0) de nes a strict local minimum of f in V, see Theorem 2.3.1. In
the case 22 ® <1 we nd that the vector (1;0) is in Tso(V;x). Thus the
assumption of Theorem 2.3.1 is not satis ed since

H 10 1

0 - .
f900) = i 2c 01

By taking a sequencey = (x1;x$); x1! 0, it follows that (0;0) de nes no
local minimum if 2 <® < 1 . In the borderline case® = 2 it depends on ¢
whether or not (0; 0) de nes a local minimum.
2.3.1 Equality constraints
We assume here that the subseV is given by

V=Ffy2R": g(y)=0;j=1;:::;mg;
wheref and g are C? functions. Set

Xn
L(y;.,)=f(y)+ .19 ()
j=1

Theorem 2.3.2 (Suzcient condition, equality constraints). Assume a
nonisolated x 2 V satises Ldx;,) = 0 and hL®®x;, )z;zi > 0 for all
z2 T(V;x)nf0g. Then x de nes a strict local minimum of f in V.

Proof. Sincef (y)= L(y;,) forall y 2 V we obtain for x; xX 2 V

f(x) i f(x) hL9x;, )ixK i xi+ :—ZLH_O?X;, (XK x):xKi xi
+o(jix* i xjj?)

= ZH% )0 0T i+ ot X

If x is no strict local minimizer, then there exists a sequenceztk 2V, xk1 x
and xk 6 x such that

0 %H_O?X;,)(in X)X i xi + o(ix i xjj?)

5



62 CHAPTER 2. FUNCTIONS OF N VARIABLES

holds, which implies that

o(iix* i xij% .

1 o k k -
1 : ) : +
0> 2“— ?X!> )tk(x I X),tk(x | X)I JJXk ] XJJZ '
wherety := jjx¥j xjji 1. For a subsequence we havig (x*j x) ! w; jjwjj =1
andw 2 T(V;x), which is a contradiction to the assumption of the theorem.
2

We recall (see Lemma 2.2.2) that the tangent coneT (V; X) is a hyperplane
given by fy 2 R"; I'gjo(x);yi =0; for everyj g if the maximal rank condition
of Lemma 2.2.2 is satis ed.

2.3.2 Inequality constraints

Here we use the notations of previous sections (inequalityanstraints, nec-
essary conditions).

Theorem 2.3.3 (Suzcient condition, inequality constraints). Suppose that
X 2 V is nonisolated and that there exists multipliers, j such thatLYx;, ) =
0, where

X
L(y:,)=f(y)+ i)
i2E[ 1o

i, 0ifj 2 1o. Let 15 be the subset ofg de'ned bylg = fj 2 1¢; ,j > Og.
SetTo " f z2 T(V;x) : hgx);zi =0 foreachj 2 Igg. Then x is
strict local minimizer of f in V if To = f0g or if L%x;, )z;zi > 0 for all
z2 Tonf0Og.

Proof. Set

X
G(y;,) =i Lig )

j21g

then G(x;,) =0; G(y;,), Oforally2 V andf(y) " L(y;.,)+ G(y;,).
If X is no strict local minimizer, then there exists a sequence(k 2 V: xk1
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x; xK 6 x, such that

0, f(x¥i f(x)
= LOKL) LG, )+ GO i G(x;,)

= HYx, );xKi xi+ %H_O?x;, )(xK i x);xKi xi + G(xK;))

+o(jix* i xjj?)
1 . s
= SO0 X)X i xi + G5, )+ o(iixt i xji?) ;
Setty = jix* i xjji L, then

1

1 oliix* i xji?)
> 2

0, SHh%x, )(t(x*i x)it(x*i x)i + tFG(x*; )+ ix< xijz - @Y

This inequality implies that tﬁG(xk; , ) is bounded from above. Sincé&s(y;, )
0 for all y 2 V, it follows that t,G(x¥;,)! 0. On the other hand

B

ko y— e ook v a OUIXE i)
WG, ) = BTk, )it(x i i + =i
which follows sinceG(xX;,) i G(x;,) = G(x¥;,) holds. Thus we nd that
hGqx; , );wi = 0, where w is the limit of a subsequence ot (xK | x); ti
jix¥i xjjit. sincew 2 C(V;x) we have hg’(x);wi - 01if j 2 I5. Hence,
since per denition ,; > 0ifj 2 15, we obtain from the de nition of G(y;, )
that
hg’(x);wi =0  foreach j 21 (2.5)

From G(x¥;,) . 0 it follows from inequality (2.4) that HL%9x;, )w;wi - O.
This inequality and equations (2.5) contradict the assumption of the theo-
rem. Since the proof shows thatTy 6 fOg if x is no strict local minimizer,
it follows that x de nes a strict local minimum if To = f0g. 2

Remark. The above proof is mainly based on the observation that the
sequenc&ﬁG(xk; . ) remains bounded from above. In the general case of a set
V which de nes the side condition we have that the sequencgghf (x); x*i xi
remains bounded from above. In the in nitely dimensional cag we must
exploit this fact much more then in the above nitely dimensional case
where it was enough to use the conclusion thatf {x); wi = 0.
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2.3.3 Exercises

1. Show that assumption A implies that the necessary conditbn of rst
order i {x);wi, 0 holds for allw 2 T(V;X).

2. Show that T;o(V;x) = f0Og in the above example if 1< ® < 2 holds.

3. Assumef 2 CY(R") and that V is givenbyV = fy2 R": & - vy -
bg. Show that the variational inequality x 2 V : Hqx);yj xi, 0
forally 2 V is eqlﬁ'valent to the corresponding Lagrange multiplier
equationfqx) = i = ;,,,;€, where,;, 0ifx; =h and,; - Oif
Xj = @ . The index setlq denotes the set of active indices.
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2.4 Kuhn-Tucker theory

Here we consider again the problem of maximizing a real fun@n under side
conditions given by inequalities. Set

V=Ffy2X:d(y)., 0j=1;:::;mg;

where X %2 R" is a given nonempty convex set, and consider the maximum
problem

(P) maxyav f (y).

In contrast to the previous considerations, we do not assumehat f or g
are di®erentiable. But the most theorems in this section reqire that f and
g are concave functions. De ne, as in the previous section, théagrange
function

xn .
L, )=f)+ g x):

=1

Denition. A couple (x%,9), where x® 2 X and ,° , 0 is called saddle
point of L(x;, ) if
Lo, %) - L% - Lix%:,)

for all x 2 X and for all 0, see Figure 2.3 for an illustration of a saddle

5 5

point. The relationship between saddle points and the probém (P) is the

Figure 2.3: Saddle point

content of the Kuhn-Tucker theory.
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Theorem 2.4.1. Suppose that(x?; , ©) is a saddle point. Then
Jg(x% , 0 j=1;:::;m;

xXn )
P (x0) = 0:
j=1

Proof. The assumption says that

feo+ P fOO)+  PdE0) - fx)+ g (X0

j=1 i=1 j=1

forall x 2 X and forall, , 0. Set,; =01if j 6 I, divide by ,; > O
and letting ,; ! 1, we get g(x% , O for everyl. Set, = 0. Then
1.9 (x% - 0. Since,?, 0andgd(x% , 0, the equation of the

theorem follows. 2

Theorem 2.4.2. Suppose that(x?; , %) is a saddle point. Thenx? is a global
maximizer of f in V.

Proof. Since

xn .
fFoo+  Pd ) - f(x0

j=1
it follows that f (x) - f(x%) for all x 2 X satisfying @ (x) , O. 2
The following is a basic result on inequalities in convex opimization. We
write w > 0 or sometimesw >> 0, if all coordinates of the vectorw are

positive.

Theorem 2.4.3. Suppose thatX % R" is nonempty and convex andy :

X 2R, =1;:::7k, are concave. Assume there is no solutiox 2 X of the
system of inequalitiesg/ (x) > 0, j = 1;:::;k. Then there are ,; , 0, not
all of them are zero, such that
Xk .
.jgd(x)- 0

j=1

forall x 2 X.
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Zy=fz2 R*: z<g(x)g

and Z = [ yoxZx. We have  62Z, otherwise 0< gl (x) for an x 2 X
and for all j, a contradiction to the above assumption. SinceZ is convex,
see an exercise, it follows from a separation theorem for ceax sets, see
Section 2.6, that there is ap® 6 0 such that

tp°; zi , h p°; i
forall z 2 Z. We have pO - O since withz = (z3;:::721;::0,2) 2 Z
alsoz%= (zg;:::;t;:::;2¢) 2 Z for all t - z. Dividing by negative t and

lett!jl we nd that every coordinate of p° must be nonpositive. Set
p= i p° then hp;zi- O forall z2 Z. Another representation of Z is

Z="Ffg(xX)j 2: x2X; 2> Qg

Thus,
tp;g(x)i %i- O
for all x 2 X and for all 2> 0. Consequentlyhp;g(x)i- Oforallx2 X. 2

Replacingg by j g, we get

Corollary. ~ SupposeX %2 R" is convex and allg : X 7! R are convex.
Then either the systemd (x) < 0, =;:::;k has a solutionx 2 X or there
isap, O, notall coordinates zero, such thathp; g(x)i, 0 forall x 2 X.

The main theorem of the Kuhn-Tucker theory, is

Theorem 2.4.4  (Kuhn and Tucker [31]). Suppose thatX %2 R" is nonempty
and convex, and leff; g/ : X 7! R are concave. Ifx° is a solution of problem

are zero, such that

xn .
pof )+  pd(x) - pof (x% forall x2 X and
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Proof. By assumption there is no solutionx 2 X of the systemg(x) , 0 and
f(x)i f(x% > 0. Then there is no solution ofg(x) > 0 andf (x)i f (x°) > 0

are zero, such that

xn .
po(f ()i f(x%)+ pg(x)- 0
j=1
for all x 2 X, see Theorem 2.4.3. Sex = x9, then it follows that
pd % o
j=1
In fact, we have equality sincep; , 0 and g (%, o. 2

Under an additional assumption (Slater condition) we havepgy > 0.

De nition.  We say that the system of inequalitiesg(x) , 0 satis es the
Slater condition if there exists anx! 2 X such that g(x!) > 0.

Theorem 2.4.5. Suppose that the assumptions of the previous theorem
are ful'lled and additionally that the Slater condition holds. Then there are
nonnegative constants 2, j = 1;:::;m such that(x%,9), , 25 (,$;:::5, %),

is a saddle point of the Lagrange functionL(x;, )= f (x) + jmzl .9 (x).

P .
Broof. If Po = 0, then j'“:l pid(x) - Oforall x 2 X, and, in particular,
j"‘:l oxe} (x}) - 0 which is a contradiction to the Slater condition. Set

fo)+ h%gx)i- f(x°:

Sinceh %;g(x%i = 0, we obtain that L(x;, %) - L(x%,9), and L(x%9) -
L (x9;,) follows since, , 0andg(x% , O. 2

5

Lemma. Suppose that(x°;, ©) is a saddle point ofL(x;, ), X is convex and
f,g2 Cl Then
RAx% %:xj x% - 0

forall x 2 X.

Proof. The lemma is a consequence df(x% %) ., L(x;, 9 forall x 2 X.
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De nition  The following equations and inequalities are calledKuhn-Tucker
conditions for (x%; , ©):

(i) LYx%,9%:xj x% - Oforallx2X,

(i) 9(x% . 0o,

(iiiy h %g(x)i =0,

(iv) .°, O.

From the above Theorem 2.4.4, Theorem 2.4.5 and the previoukemma it
follows

Theorem 2.4.6 (A necessary condition). AssumeX % R" is convex,f, ¢
are in C! and concave onX and that the Slater condition holds. Ifx° is
a solution of the maximum problem (P), then there exists a véor  ° such
that the Kuhn-Tucker conditions are satis ed.

Theorem 2.4.7 (A suzcient condition). Suppose thatX is convex,f, ¢
are concave and inC*. If (x%; ©) satis es the Kuhn-Tucker conditions then
x? is a global maximizer inX of f under the side conditionsg(x) , 0, that
is of the problem (P).

Proof. The function
L(x;, %)= f(x)+ h %g(x)i
is concave inx since, © . 0. It follows that

LeG, % L%, 0 - LA, % X
0

for all x 2 X . The second inequality is the rst of the Kuhn-Tucker condi-
tions. On the other hand we have

Oi

L(x%,)i L(x%.,9 o(x%, %, 0,
hg(x%;, i i
hg(x%);, i

0:

5

Thus we have shown that &°;, ©) is a saddle point. Then the assertion of
the theorem follows from Theorem 2.4.2. 2
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Example: Pro t maximizing

This example was taken from [3], p. 65. Suppose that a rm prodges a
good and letq be the real number of the produced goods (output). Assume
there are n di®erent goods which the production needs (input) and letx;

let r = (rq;:::;rn) be the associated given price vector. We make the
assumptionq - f (x), wheref denotes the given production function. Then
the problem of pro t maximizing is

max (p qjhr;xi)

under the side conditionsq- f(x), x, Oandq, O.
De ne the convex set

X =f(q;x)2R"™ : q, 0; x, Og

5

and let
L(x;,)=paihnxi+ (f(x)i 9

be the associated Lagrange function. We suppose thdt is concave inx , 0,
f(0)=0, f(x) > 0ifx, 0andnotx =0, and fy (0) > O for at least onej,
which implies that the Slater condition is satis ed. From above we have that
the Kuhn-Tucker conditions are necessary and suzcient that @°;x% 2 X is
a global maximizer of the pro't pgjhr;xi under the side conditions. That
is, we have to consider the following inequalities and one egtion for ¢° , 0
andx , O: = i ¢

() (pi i )+ [y i+, % (x0) (i x0) - Oforall(g;x) 2 X,
(i) f(x%i o, 0,

iy ,°(F(x%i o’ =0,

(iv) ,°, O.

Corollaries. (a) ° = 0 implies that x° =0.
(b) If ®> 0, then, ©=p, f(x%) = ¢® andrj = pfy, (x%) if x; > 0.

Remark. If @® > 0 and x° > 0, then x% is a solution of the nonlinear
systempf {x) = r. If the Hesse matrix f %¢x) is negative or positive de nite
onx > 0, which implies that f is strictly concave, then solutions are uniquely
determined, see an exercise.



2.4. KUHN-TUCKER THEORY 71

2.4.1 Exercises

1. SetZy = fz2 RK: z<f (x)gand Z = [ xax Zx, see the proof of
Theorem 2.4.3. Show thatZ is convex if X is convex andf is concave

on X.

2. Prove that solutions x 2 R", x > 0, of f {x) = b, whereb 2 R", are
uniquely determined if the Hesse matrixf °¢x) is negative or positive
de nite for all x> 0.
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2.5 Examples

2.5.1 Maximizing of utility
This example was taken from [3], p. 44. SetX = fx 2 R" . x; >

mean that x; > 0 for eachi. Let p2 R"; p >> 0, the vector of prices for
the n commodities x; and m denotes the available income of the consumer.
Concerning the utility function U(x) we assume thatU 2 C2(X) is strictly
concave andU® >> 0 8x 2 X. The assumption U? >> 0 re°ects the
microeconomic principle \more is better". SetV = fx 2 X : hp;xi - mg
and consider the problem of maximizing of the utility, that i s, max.>yv U(X)
under the budget restriction hp; xi - m. Assumex® 2 V is a solution, then
hp; x% = m, which follows from the assumption Uy, > for eachi. Thus,
one can replace the above problem by maxyoU(x), where V0= fx 2 X :
hp; xi = mg. From assumption onU it follows that a local maximum is also
a global one. The associated Lagrange function is here

L, )= U0)+ , (mihp;xi):

The necessary condition of rst order isUy; i , Opj =0foreachj =1;:::;n,
.9 2 R. Hence,® > 0 sinceUy, > 0. The vector x° is a strict local
maximizer if

h%x% . 9z;zi< 0
for all z 2 R" nf0g satisfying hp;zi = 0. This equation is hgYx);zi = 0,
where the side condition is given byg(x) " h p;xij m = 0. Or, equivalently,

hU%x%)z;zi < 0822 R"; 26 0 and hUYx®);zi = 0:

The previous equation follows from the necessary conditiorof “rst order.
Consider the systemUYx% i % =0; hp;x%j m =0 of n+1 equations,
then it follows from the necessary condition of rst order and the above
suzxcient condition that the matrix
ook p
pr 0

where p is a column vector and p' it's transposed, is regular (Exercise).
From the implicit function theorem it follows that there exi sts continuously
di®erentiable demand functionsx; = f'(p;m) and a continuously function
LO=f(p;m), jpi poj <%, jmi moj < %, £ > 0 suxciently small, where
(x%; . o) is a solution of UYx) j .p%=0 and hp% xi = my.
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2.5.2 Vs a polyhedron
Suppose thatf 2 C2 and that V is given by
V=Ffy2R": Hjyi- a&;i=1;:::;mg;

where H;yi = P 321 likYk, lik 2 R, are given linear functionals. Assume
X 2 V is a solution of the variational inequality if {x);y i xi > 0 for all
y 2 V, (or equivalently of the corresponding Lagrange multiplier equation).
De ne the cone

Suppose thatk = f0g or, if K 6 f0g, that , 1 > 0, where
0 Vi
,1= min o )y:yl ‘(x)){,yl ;
y2Knfog  hy;yi

then x is a strict local minimizer of f in V. If ,; < O, then x is no local
minimizer. Equivalently, x is a strict local minimizer if K = fOg or if the
lowest eigenvalue of the variational inequality

w2K: H%)w;zi wi, ,hw;zj wiforall z2 K

is positive.

2.5.3 Eigenvalue equations

Consider the eigenvalue equatiolAx = ,Bx , where A and B are real and
symmetric matrices with n rows (and n columns).

To illustrate the Lagrange multiplier method in the case of equations as
side conditions, we will prove the following well known resil.

Assume B is positive de nite, then there existsn eigenvalues, ; - , 2 -
;i1 -, n such that the associated eigenvectors®) are B-orthogonal, that is
Bx &) :xMi =0 if k6 I. The k-th eigenvalue is given by

PAy;yi
By;yi '

.k =min

where the minimum is taken overy 6 0 which satisfy lBx(:yi = 0 for all
b1 1- ki L
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Proof. Set
1 _ 1 .
f(y) = EhAy;yl ;ogly) = QFBy;yI :

Step 1. We consider the problem to minimizef (y) under the side condition
g(y) = 1. There exists a minimizer xM . The vector xY is a regular point
since BxM 6 0 which follows since B is positive de nite. Then Lagrange
multiplier rule implies that there exists an eigenvalue , ; and that x® is an
associated eigenvector. SinceAxD;xDj = ;Bx®:x@j it follows that
.1 = min(1 =2)PAy;yi under the side condition (1=2)By;yi = 1.

Step 2. We consider the problem to minimizef (y) under the side conditions
g(y) = 1 and hgqx®);yi = 0. We recall that gqy) ~ By. By the same
reasoning as above we nd a minimizex@ which is a regular vector since
Bx® and Bx®@ are linearly independent (Exercise). Then there exists
,2; 1 2 R" such that

Ax@ = ,Bx@ +1Bx @ :

By (scalar) multiplying with x@®) we obtain that * = 0, and by multiply-
ing with x@ we see that, , = min(1 =2)hAy:yi under the side conditions
(1=2)mBy;yi =1; BBx®;yi =0, which implies that ,; - |, is satis ed.
Step 3. Assumex(K), k - n, is a minimizer of the problem minf (y) under

K1
Ax(k) = ka(k) + 1 |BX(|) :
=1

From the side conditions it follows that the multipliers 1, are zero. Moreover,
, k = min(1 =2)hAy; yi, where the minimum is taken over

fy 2 R"; %rBy;yi =1; Bx";yi =0; 1=1;:::;ki 1g:

satisfy Bx (K); x()j = 24, where 4, denotes the Kronecker symbol de ned
by 4 =1if k=1land 4 =0 if k 6 |. The associated eigenvalues satisfy
the inequalities ;1 - ,2- :::- ,n.

Another proof. Exploiting the special structure of the problem, we can
prove the above proposition more directly without relying on the Lagrange
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multiplier rule. Let x®) be a minimizer of the problem minf (y) under the

side conditions g(y) = 1, and hgqx®);yi = 0,1 - I - ki 1, wherex®
are mutually B-orthogonal, that is, Bx(:x(® )i = 24,, and suppose that
AxD = Bx®:; 1. 1. kj 1. Equivalently, x! is a solution of
min hAy;y! =Lk
By yi
where the minimum is taken over ally 6 0 which satisfy the side conditions
hAxM);yi =0; 1- 1- kj 1. We will show that x*) is an eigenvector to

the eigenvalue, = | . Set for?2; j2j <2g; 2¢ suxciently small,

hA(x®) + 2y): x(K) + 2yj
hB (x(K) + 2y): x(K) + 2yj '

h(?) =
wherey is a xed vector satisfying the side conditions
hgdx®);yi=0;1- 1. kj 1: (2.6)
Then h(0) - h(2), which implies that h40) = 0 or
hax ) yi = Bx®);yi (2.7)
for all y which satisfy the above side conditions (2.6). It remains toshow

R" = Z © 27, where the orthogonal decomposition is taken with respect
9 the scalar product lBx;yi. For y 2 R" we have the decompositiony =
Kilox®M+w; ¢g2R; w22Zz?. We must show that

1 1
hAx®: ox®M + wi = Bx®;  ox® + wi
=1 =1

holds. Sincew satis es the side condition (2.6) we have
hax ) wi = | Bx ™ wi:
If1- 1. kj 1, then
Bx ®;xMj = Bx;xK®j =0 (2.8)

since x(K) satis'es the side conditions (2.6) and sinceB is symmetric. It
remains to show that hAx):x(i = 0. On the other hand, we have for
1- |- ki 1the equations, lBBx":yi = hAx(":yi are satis'ed for all
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y 2 R". It follows, in particular, that , mBx®;x®i = hax®;x®i which
implies that , ;iBx®):x(Mi = hax ¥ : x(Dj = 0, because of equation (2.8) and
since the matricesA; B are symmetric.

As a corollary to the above theorem we obtain the maximum-minimum
principle of Courant. The advantage of this principle is that we can de ne

For given ki 1 vectorsz(!) 2 R" set

. 1 .
Vi1~ V(@O zKi Dy = fy2 R SMBy;yi =1;
BzWO:yi=0; 1=1;::::ki 1g
and 1
o, (z; ¢ ¢ ¢zKi V) := min ZhAy;yi :
Vi 1 2
2
Maximum-minimum principle of Courant. The k-th eigenvalue, i is
given by
Ck = maxa  (zW;:zki Dy
where the maximum is taken over al(ki 1)-tuples of vectorszD;:::;zki 1,
Proof. Setz® = x@:::::zki D) = ki1 \where x() denotes the above

eigenvector to the eigenvalue, |. Then

min Zhay:yi = i

sk sup  oy(z®; ki Dy
Z(l) ..... Z(ki 1)

P
On the other hand, leth =, ¥, ax®, where we choose coezcients, such
that $rBk; ki = 1, that is, K =1and BzO;ki =0, 1 =1;:::;ki 1,

for xed vectors zW::::;z(ki 1 Then
| 1 X X
o (zZW; 28Dy Zhak ki = P Lk =Lk
2 1=1 1=1
Consequently,
sup oWk Dy
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2.5.4 Unilateral eigenvalue problems

Discretization of some obstacle problems in mechanics leat the following
type of problems. Let A and B be real and symmetric matrices withn rows
(and n columns). Set as above

1 . 1 .
f(y)= ih’ky;yl; aly) = ihBy;yl; y2R";

and assume that the matrix B is positive de nite and that the set of admis-
sible vectors is given by

V=fy2R": a - vyi- b;i=1;:::;n9;

wherea 2 [[1 ;1)and by 2 (j1 ;1] are given and satisfya; < b; for
eachi. If ax = j1 , then we suppose thaty; satis es the inequality j1 <
Yk, if bk = 1, then yx < 1, respectively. The setV is a closed convex
subset of R". Then we consider the eigenvalue problem

Xx2V: PAXy i xi, ,MBxyij xi foral y2V; (2.9)

i. e.,, we seek g 2 R such that (2.9) has a solutionx 6 0.
The constrained minimum problem
Jqin f(y); (2.10)
where Mg = fy 2 V; g(y) = sg for a givens > 0, is closely related to
the variational inequality (2.9) and vice versa. If x is a regular point with
respect to the side conditiong(y) = s and the side conditions which de ne
V, then there exists, o; ,j 2 R such that
X _
AXx =  oBX j i€ (2.11)
j2lo

whered = (0;::::0;1;0;:::;0) denotes the vectors of the standard basis in
R", and | o denotes the set of indices where the constraints which de n&/
are active. One has,j , Oifx; = and,; - 0ifx; = a.

One nds easily that x is a regular point if and only if at least one
coordinate of Bx with an index k 62 is not zero (exercises).

Thus we have shown

Assume that a solutionx of the minimum problem (2.10) satis estBx; eXi &
0 for a k 62 ¢, then there exists, o; ,; 2 R; j 2 lg, such that the Lagrange
multiplier rule holds, where ,; , Oif x; = b and,; - Oif xj = g.
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Another useful observation is that

the variational inequality (2.9) and the Lagrange multiplier equation (2.11)
are equivalent.

Proof. (i) Assume x 2 V : hAX;y j xi, ,oBx;yj xi forally 2 V.

Setl = f1;::;;ngand 1§ = fi 21 : xi = &g; I8= fi2l: xj = bg.

The variational inequality implies that ( Ax);i = ,o(Bx); if i 2 I n(1§ [

18); (AX)i, ,o(Bx)iifi2 18 (AX)i - ,o(Bx)iif i 2 I5. One can write

these inequalities as equation (2.11) with appropriate, .

(if) Multiplying the Lagrange multiplier equation (2.11) w ith yj x, we obtain
X _ X :

PA;Y i Xii ,oBXyi Xi =i Ly xi ey xi, 0
i21§ j218

since,; - 0, he;yi xi, Oifj218and,;, O he;yi xi- 0ifj 21§

2

5

Now we consider the question whether a solutionX;, ¢) 2 V£ R; x 6 0, of
the variational inequality (2.9) or, equivalently, of the L agrange multiplier
equation (2.11) de nes a strict local minimum of the functional

, 0
2

L1 . .
F(y:,o0) = f(y)i .o0ly) EMy;yli By, yi

inV=fy2R"; a- vyi- bo:

The phenomenon that an eigenvector de nes a strict local mininum of the
associated functionalF (y; , o) is due to the side conditions. There is no such
behaviour in the unconstrained case. In this case we have

1 .
F(X+Y;,0) F(x;, o)+ FFYx;, )i + Ehco?x;, 0)Y; i

1 .
F(X;, 0)+ éhco‘fx;, 0)Y; Vi
= F(X;,0)+ MAY i ,oBy;yi:

Sety = 2x; 2 6 0, then we obtain F(X + 2x;, g) = F(X;, 0). Thus x is no
strict local minimizer of F(y;, o).

In our example, the tangent coneT (V; X) is given by

T(V;x)=fy2R":y; - 0ifxj=h andy;, 0if xj = ag:
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Let I§ =fj 21o: ,j 6 0g, where the ,; are the multipliers in for-
mula (2.11), and set

To=fz2T(V;x): 7z =0ifj215g

It follows from the suzcient criterion Theorem 2.3.3 that ( X;, o) de nes a
strict local minimum of F(y;, o) if To = fOg or if A j , oB is positive on
TonfOg, i. e., if (Aj ,oB)z;zi > 0 forall z2 TopnfOg.

2.5.5 Noncooperative games

Noncooperative games are games without binding agreementsetween the
players. A noncooperative game consists of

(i) Asetof nplayersN =1f1;2;:::;ng.

(i) A collection of nonempty strategy sets S;, where S; is the strategy set
of the i-th player and a subset of a Euclidean space, say d®™i. The
setS = S;£ S,£¢ ¢ ¢S, is the strategy set of the game and an element

is a strategy of the game.

(i) A set of payo® functionsf; : S! R. The value f;(s) is the payo® for
the i-th player if the players choose the strategys 2 S.

We will denote such a game byf Sj;figion. To formulate the concept

of a Nash equilibrium we need some notations. Seb;i = S1£ SECCCE
Si; 1£ Si+1 £¢ ¢ ¢ £S5, and for a given strategy vectors = (S1;S2;:::;Sn) 2 S
we denes;i 2 S;i by s;i=(S1;S2:::;Si; 1;Si+1;:::;Sn). Finally, set
S int=(s1;82: ;S 16Si+1;::5:Sn), 12 S,

Example: Oligopoly

An oligopoly consists of n 'rms producing identical common products.

Firm i has a cost function ¢i(g) where g is the amount of the product
which this rm produces. The inverse demand is given byp(r), where
r=q+qg+:::+ 0. A inverse demand function is the inverse of the
demand function which gives the amount of this product that consumers
will buy as a function of its price. The players are then rms. The player i

chooses the strategy of his strategy seb; = [0; M{], whereM; is the capacity
of the i-th rm. The payo® function of the i-th rm is its pro t

Y@= plan+:::+ )G i G(G):
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A generalization of an oligopoly is amonopolistic competition. Let p; =

De nition. A point s” 2 S is a Nash equilibrium of the gamef S;; figion if
for everyi 2 N

fi(si“i nsy) - fi(s”) forall s;2S:

To formulate the general existence result of Nash we de ne wHaindi-
vidually quasiconcavemeans.

De nition. A function f : V! R, whereV is a convex subset olR", is
said to be quasiconcaveon V if x1; X2 2 V andf (x1) , c; f(x2), cimplies
that f(x1+(1j ,)x2), cforall ; O0<,6< 1.

Each concave function is also quasiconcave, but there are gsiconcave func-
tions which are not concave, see for examplé(x) = j x>+1on0- x- 1
and j x+1on [1;1 ) which is quasiconcave on [01 ].

De nition.  The payo® functionf; is said to beindividually quasiconcaveif
for each values; ; 2 S; ; the function f;(s; j nt) is quasiconcave with respect
tot2S.

We recall that a function f is concave ifj f is convex.

Theorem (Nash [46]). Let fSj;figion be a noncooperative game. Suppose
that the strategy setsS; 2 R™ are convex and compact and that the payo®
functions f; are continuous and individually quasiconcave. Then a Nash
equilibrium exists.

Sketch of proof. De ne multivalued mappings i : S7! S; by
ti(s)= x2S : fi(s;inx)= m%( fi(s;iny)g
yeSi

and set® (s) = X1, ti(s). Then s? 2 S is a Nash equilibrium if and only if
s? is a "xed point of the multivalued mapping !, that is, if s? 2 1 (s?) holds.
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The existence of such a xed point follows from the xed point theorem of
Kakutani [27, 22]. 2

From this theorem it follows the existence of an equilibrium of an oligopoly
or an monopolistic competition if the involved functions satisfy additional
assumptions.

In generalization to local minimizers we de ne a local Nash egilibrium.

De nition. A point s* 2 S is a local Nash equilibrium for the game
fSi;figion if there exists a% >0 such that for everyi 2 N

fi(s’insi) - fi(s") forall si2 S\ Bys) ;
where By(s) is a ball with center s7 2 S; and radius ¥2 >0.

From the above de nition of a local equilibrium we obtain immediately
a necessary condition for a local equilibrium. Sef;;si(s) = r sfi(s), si has
m; coordinatess; = (sil;:::;simi). Then:

His (s°);wi- 0 forallw2 T(S;s) :

Suzcient conditions follow from the results of Section 2.3. To simplify the
considerations assume that eacl5; %2 R™i is a parallelepipedS; = fx 2
RMi; ak - xK. B k=1;:::;mjg. Dene

f%,(s7) = fy 2 R™ : Mg, (s%);yi = 0g

and
n=myﬁmmSWWH

where the maximum is taken overy 2 T(S;;sf) \ fi';-’si(s") which satisfy
hy;yi = 1. In the case that T(S;;sf) \ fi;?si(s") = fOg we set, ; = jl1

From Section 2.3 we obtain the following suzcient condition:



82 CHAPTER 2. FUNCTIONS OF N VARIABLES

Assume the payo® functiong; 2 C? and that s* satis es the necessary con-
ditions. If ,j < O for every i, then s” de nes a local equilibrium. If ,; > 0
for at least onei, then s” de nes no equilibrium.

Let S; be the interval a; - y - b. Then

Yo
7,()= fy2R: fa(y=0g= (& (=)0
The necessary conditions of rst order are
fis, (S)yi s7)- O forall y2§S:
Let N1; N2 g N be de ned as follows:i 2 Ny if fis, (s*) 60and i 2 Ny if

fis, (s") =0. Then s® de nes a local equilibrium if fis, 5 (s*) < O for every
i 2 N2, and s is no equilibrium if fis,.s (s”) > O for at least onei 2 N».
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2.5.6 Exercises

1. Show that the matrix, see Section 2.4.1,

Mooy p !
pr 0
is regular.

2. Set
V=Ffy2R": &g - vy - b;j=1;:::;ng;

where a < bj. Suppose that, o is an eigenvalue of the variational
inequality

x2V: PAGy i xi, ,mBxy i xi forally?2V:

Show that , o > 0 holds, provided that the real matricesA and B are
symmetric and positive, and that a; - 0- Iy forall j.

Hint: The variational inequality is equivalent to the Lagrange rule (2.11).

3. Let

0 1 0 1
2 i1 O 100
A=@;1 2 1A ; B=@0p 1 0A
0 j1 2 0 0 1

andV =fy2R3 vyi- 1;,i=1; 2 3g.

(&) Show that x = (1;1;1) is an eigenvector toeach eigenvalue, g 2
[1;1 ) of the variational inequality

x2V: PAX;y i xi, ,MBx;yj xi forally2V:

(b) Show that x = (a;1;a); 0 < a < 1, is an eigenvector to the
eigenvalue, =2 i (1=a)if asatises1= 2- a< 1.

(c) Show that x = (1;4a;1), 0<a< 1, is no eigenvector.

Hint: Use that the inequality is equivalent to a Lagrange multiplier
rule.
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. Under which conditions on a de ne the eigenvectors and associated

eigenvalues of the previous exercise a strict local minimunof f (y) =
bAy;yii , hBy;yiin V?
Hint: Use Theorem 2.3.3 (suzcient criterion).

n

I = P
. Show that a local equilibrium s® satis es a system of ., m; equa-

tions if s” is an interior point of S.

. Let

2720 000s; | 33600835, ST
2720 000s; | 33 600s1S,| Sa

f1(s)
f2(s)

and S; = S, = [ 100,90]. Show thats” = (j 423582 90) de nes a
local equilibrium.

. Consider the casen = 2 for an oligopoly, that is, a duopoly. Find

conditions under which Nash equilibria are no interior poirs.

. Suppose fghat the oligopoly has a linear demand function, hat is,

p(r); r= g is given by

Ve :
aj br if 0-r- a=b

p(r) = 0 if r>a=b

where a and b are given positive constants. Assume that the cost
functions are linear, then the payo® functions are given by

o
(@ =p(r)gi cg, r:= Ck:
k=1

Show that these payo® functions are continuous and individally quasi-
concave. Consequently there exists a Nash equilibrium of tis oligopoly.

. Consider the previous example. Find conditions under whih Nash

equilibria are no interior points.
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Apply the projection-iteration method
XK'= py (XK i g(AXK i x )
of Section 2.2 to nd eigenvectors of the variational inequaity
x2V:bhAxij xy i xi, 0 forally2V

which are no eigenvectors of the associated eigenvalue edig.

Hint: Type "alg" after loading the following Mathematica program
and you will get somexX.

n:=10

run:=20

gq:=0.5

m:=1/(n+1) "2 ev

0:=6

ev:=20

pr[z_]:=Table[Which[z[[K]] > 1,1, True,z[[K]]] f k,nq]
g[x.,m_]:=q (a.x-m b.x)

alg:=f x=x0;Do[Print[x];x=pr[x-g[x,m]], frung]g
a:=Table[Switch[i-},-1,-1,0,2,1,-1,.,0],fi,ng,fj,nq]
b:=IdentityMatrix[n]

x0:=Flatten[Join[Table[0.5, f k,n-og], Table[1,f k,2 o-ng],Table[0.5f k,n-
og]]

Remark. The above problem comes from a di®erence approximation
of the unilateral eigenvalue problem

Z b VA b
uz2v: u(v(x) i ux)%dx, . uEO(V(X) i u(x)) dx

a a
forall v2 V, whereV = fv2 H(a;b): v(x) - 1on (abg.

11. Let A and V be the same as in the previous exercise. Find eigenvectors
of the variational inequality

x2V: A% Axy i xi, 0 forally2V

which are no eigenvectors of the associated eigenvalue ediaan.
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Hint: Type "alg" after loading the following Mathematica program
and you will get somexX.

n:=20

run:=20

g:=0.1

m:=1/(n+1) "2 ev

0:=15

ev:=40

pr[z_]:=Table[Which[z[[k]] > 1,1, True,z[[K]]].f k,ng]
glx.,m_]:=q ((a.a).x-m a.x)

alg:=f x=x0;Do[Print[x];x=pr[x-g[x,m]], frung]g
a:=Table[Switch][i-j,-1,-1,0,2,1,-1,_,0],fi,ng,fj,ng]
x0:=Flatten[Join[Table[0.5, f k,n-og], Table[1,fk,2 o-ng],Table[0.5fk,n-
og]]]

Remark. The above problem comes from a di®erence approximation
of the unilateral eigenvalue problem
Zy Zy
uz2Vv: ul)(v(x) i u(x)®dx, uP)(v(x) i u(x))°dx

a a

forall v2 V,whereV = fv2 H?(a;bh\ Hi(a;b: v(x) - 1on(a bg.
Consider an oligopol with payo® functions

X
fikGy)=vyi(@i b yx)Xii Gyixi:

k=1
Let the strategy set of the i-th rmbe 0 - x; - 1, the capacity bound
of the i-th 'rm is given by a positive constant y;, and a, b are positive
constants. Set

g(x:y) =i fix, (xy)

and V = [0;1]". Then a necessary condition thatx’ de nes a local
Nash equilibrium is

x7: hg(x%y);xi x%i, 0 forall x2 V:

Apply the projection-iteration method xkK*1 = py (x¥i qg(x¥;y)), 0 <
g < 1, of Section 2.2 to nd local Nash equilibria of an example of
the obove oligopol, i. e., for given dataa; b; ¢ andy;.
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13.

Remark. According to the above suxcient criterion, x” de nes a local
Nash equilibrium if fix .« (x?;y) < 0 for all i where fix, (x”;y) = 0.

In this example we havefiy, x, = i 2by>. Thus x” is a local Nash
equilibrium since y; > 0.

Hint: Type "alg" after loading the following Mathematica program
and you will get somexX. Then type "test" and you will see whether
or not the nal xX denes a local Nash equilibrium.

n:=5

m:=5

run:=10

g:=0.03

pr[z_]:=Table[Which([z[[K]] < 0,0,z[[K]P 1,1, True,z[[K]]].f k,ng]
g[x-y-J:=-q Table[f1[x,y][[K]], f k,ng]

alg:=f x=x0;Do[Print[x];x=pr[x-g[x,y]], frung]g
test:=Table[Which[-0.05 < f1[x,y][[k]]< 0.05,f2[x,y][[K]], True,un],f k,ng]
f1[x_y ]:=Table[N[y[[il] (a-b Sum[y[[K]] x[[K]], f k,ng])-b yI[il]" 2
X[[i]]-c[[il] y[[i], fi.ng]

f2[x_,y_]:=Table[N[-2 b y[[K]] " 2].f k,ng]

a:=10

b:=1

c:=Table[1,fi,ng]

x0:=Table[N[1/(b (n+1)) (a-(n+1) c[[i]l+Sum[c[[K]], fk,ng])].fi,ng]
y0:=-0.2

y:=x0+Flatten[Join[ fyOg,Table[1,fi,m-1g]]]

Consider the oligopoly of the previous exercise but witlthe additional

side condition
xn

YkXk -

a.
k=1 b

Then the strategy set of the i-th rm is
( A )

1 a
Six)= 0+ xi- 1:0- Xi- o i YKt YiXio
k=1

i. e., in fact S;(x) does not depend onx;. Set

V(X)= Si(x) £ ::: £ Sp(X):
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Then we seek solutions of
x?2V(Y): hgx%y):xi x7i, 0 forall V(x?):
This variational inequality is equivalent to the xed point e quation

X = pypo(Xi qaxy))

with a given positive constant g.
Find solutions x?, for given data a; b; g andy;, by using the iteration
procedure

X = py g (XK agxk;y)):

Remark. A problem where the strategy set of the i-th player depends
on the strategy of the other players is called asocial system see [11].

Hint: Type "alg" after loading the following Mathematica program
and you will get somex*. Then type "test" and you will see whether
or not the nal x* de™nes a local Nash equilibrium.

n:=5

m:=5

run:=10

g:=0.03

pr[z_,x_y_]:=Table[Which[z[[K]] < 0,0,z[[K]> Min[1,(d/y[[K]]) ((a/b)-
Sum(y[[ill x[[i]l. fi.ngl+ yIIKI] XKl )],

Min[1,(1/y[[k]) ((a/b)-Sum(y[[il] x[[i], fi,ng]+

YIIKI] x[[K]] )], True,z[[K]]], f k,ng]

g[x-y-]:=-q Table[f1[x,y][[K]], f k,ng]
alg:=fx=x0;Do[Print[x];x=pr[x-g[x,y],X,y], frung]g
test:=Table[Which[-0.05 < f1[x,y][[K]]< 0.05,f2[x,y][[K]], True,un],f k,ng]
fi[x_y J:=Table[N[y[[il] (a-b Sum[y[[K]] x[[k]], f k,ng])-b y{[il]" 2
x[[i]-cI[i] yilil, fing]

f2[x_y_]:=Table[N[-2 b y[[K]] " 2].f k,ng]

a:=10

b:=1

c:=Table[1,fi,ng]

s0:=s

s:=0.5

x0:=Flatten[Join[ f sOg, Table[sfi,n-1g]]]

y0:=1
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y:= f Flatten[Join[ fyOg, Table[1,fi,m-1g]]]
f:=1

89
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2.6 Appendix: Convex sets

Some existence results for systems of linear inequalitiessavell as Lagrange
multiplier rules for variational inequalities follow from separation theorems.
2.6.1 Separation of convex sets

Here we consider separations by hyperplanes. There is notwahys a separa-
tion by a hyperplane of two given sets, see Figure 2.4.

(@ (b)

Figure 2.4: Separation of sets

De nition.  For given p2 R", p6 0, and real ® the set
H(p;® = fy2R": hpjyi = @g
is called hyperplane

De nition. A hyperplane H (p; ® separatestwo nonempty setsA; B %2 R"
if one of the two conditions is satis ed for ap2 R", p6 0, and a real ®:

(i) hp;yi- ®forally2 A andhp;yi, ®forally?2B,
(i) hp;yi, ®forally2 A andhp;yi- ®forally2B.

A hyperplane H (p; ® separates strictly two nonempty setsA; B %2 R" if
one of the two conditions is satis ed for ap2 R", p6 0, and a real ®:
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(i) hp;yi <® forally2 A andhp;yi >® forally 2 B,
(i) hp;yi >® forally2 A andhp;yi <® forally 2 B.

Theorem 2.6.1 (Separation of a closed convex set and a point)Let X %2 R"
be nonempty, closed and convex, and 62X . Then there exists a hyperplane
which separatesX and z strictly.

Proof. There exists a solution of
X2 X : jizi xjj?-jji zj yj? forally2X;
see Figure 2.5 for an illustration. Replacingy by x + , (yi x), 0 - 1,

5

z
Figure 2.5: Projection of z onto X

implies that
x2X: Ij zyyj xi, 0 forally2X:

Setp=xj zand®= i z;xi, then hp;yi, ®forally2 X.
Inequality hp;zi <® holds since

hp;zi = i z;z
= jhxi z;xj zi+ xj z;xi
= il xi Zj*+®
< ®:

Then the hyperplane H (p; ®), where hp;zi < ®° < ®, separatesX and z
strictly. 2

De nition. A hyperplane H (p; ®) is called supporting planeof X at x if
hp;yi, ® forally2 X andhp;xi = ®
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or
hp;yi- ® forally2 X andhp;xi = ®:

Theorem 2.6.2 (Supporting plane of closed convex sets)Suppose thaiX %2
R" is nonempty, closed, convex, and that the boundar@ Xis nonempty. Let
X 2 @X then there exist a supporting plane oX at x.

Proof. Let x 2 @X Then there exists a sequencaX 62X such that xK ! x
ask ! 1 . Without restriction of generality, we can assume, see Theo
rem 2.6.1, that there exists hyperplanesH (p¥; ®) such that

o :yi, &, hpkxki forally2 X:

Moreover we can assume thafjpXjj = 1 since

ko & [
h——;vi REra e h ——;x"i
TS T RT3

for all y 2 X. Thus H(p%; &), where p§ = p*5jpXjj and & = ®jpXjj,
separateX and xX. Choose a subsequence of¢ such that the associated
subsequenceg¥ and @ converge, say top and ®, respectively. It follows
that

hp;vi, ®,hp;xi forally2X:

These inequalities imply that ® = hp; xi sincex 2 X. 2

Remark. A supporting plane can be considered as a generalization of a
tangent plane in the case that this plane does not exist, seeifure 2.6.

Figure 2.6: Supporting planes

Theorem 2.6.3 (Separation of a point and a not necessarily closed convex
set). Suppose thatX %2 R", not necessarily closed, is nonempty, convex and
that z 62X . Then there exists a hyperplane which separates and z.
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Proof. Assumez 62cl X, where cl X denotes the closure ofX. Then the
assertion follows from Theorem 2.2.9. In the case that 2 cl X the theorem
is a consequence of Theorem 2.2.10. 2

This theorem implies the following more general result.

Theorem 2.6.4 (Minkowski). Suppose thatX; Y %2 R", not necessarily
closed, are nonempty, convex and thalX \ Y = ;. Then there exists a
separating hyperplane.

Proof. SetS = X j Y. Since 062X, there exists a hyperplane which

separatesS and 0. That is, there isap 2 R", p6 0, such that hp;si, h p;0i
for all s2 S, or equivalently

hp;Xi, h p;yi
forall x 2 X and forally 2 Y. Thus
inf hp; xi ,  suphp;vi;
x2X y2Y

which implies that there exists an ® such that

hp;xi, ®, hpyi

forall x2 X andforally2 Y. 2

Figure 2.7: Separation of convex sets
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2.6.2 Linear inequalities

Important consequences from the previous separation restd are theorems
about systems of linear inequalities.

Lemma. Letx'2 R", 1=1;:::;k are given, and set

C'—fXZR”'x—XK g 0g;
= Px= XL, Og;
I=1

then the coneC is closed.

Proof. The proof is by induction with respect to k.
(i) Let k =1. Suppose thaty; := , Wyl yifj11 | then

. oy Li
jm | ) = X
jin o1 b1 x1i’

provided that x* 6 0.
(i) Suppose the lemma is shown for alk satisfying 1- k- sj 1. Then we
will show the lemma if k = s. In the case that the coneC contains all of the

is not in C, sayi x5. Then the cone

Xl
Cl=fx2R": x= .ixh L, Og

1=1
is closed by assumption. Consider a sequengé ! y asj !1 . Then
yi=xi% Oxs: xi% ¢t O o (2.12)

Suppose Tst that the sequence, () is unbounded. Let, (%11 fora
subsequence (9, then it follows from the above decomposition (2.12) that
o x9°
lim — = x5
jor o
That is, j x° 2 C%sinceCPis closed. This is a contradiction toj x° 62C°.
If the sequence, () is bounded, then also the sequence! 0, see the de-
composition (2.12). Then it follows from (2.12) that y = x%+ , oxS, where
x%2 Cc%and , o, O. 2
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Theorem 2.6.5. Let A = A(m;n) be a real matrix with m rows and n
columns and letb2 R". Then there exists a solution ofAy ;, Oandhb;yi < 0
if and only if there is no solution x 2 R™ of ATx = band x , 0.

Proof. (i) Suppose that there is no solution ofATx = band x , 0. Set
S=fs2R": s= ATx; x, Og

and T = fbg. The above Lemma implies that the convex coneS is closed.
SinceS and T are disjoint, there exists a hyperplane which separates thee
sets strictly. Thus there arep2 R", p6 0, and ®2 R such that

hp;bi <® < Ip;si

forall s2 S. Thus'kp;ATxi >® for all x, O. Setx_ = 0, then we see that
®< 0. Letx = x;€, wherex; 2 Randx; > 0, and€ denotes the standard
basis vectors inR™. Then

ho;ATei > ®
Xj

p is a solution of Ay , 0 and hb;yi < O.
(i) Suppose that there is a solutiony® of Ay . 0 andhb;yi < 0. Then there
is no solution of of ATx = band x , 0,x2 R™, If not, then

;i = PATx;y% = b Ay%i, O

The next theorem is a consequence of the previous result.

Theorem 2.6.6 (Minkowski-Farkas Lemma). Let A = A(m;n) be a real
matrix with m rows and n columns and letb2 R". Then hb;yi , 0 for all
y 2 R" satisfying Ay , 0 if and only if there exists anx 2 R™, x , 0, such
that ATx = b.

Proof. (i) Suppose that hb;yi , 0 for all y 2 R" satisfying Ay , 0. If there

is no solution of ATx = b, x 2 R™, x . 0, then the above Theorem 2.6.5
says that there is a solution of Ay , 0 and hb;yi < 0, a contradiction to the

assumption.

(i) Assume there exists anx® 2 R™, x° | 0, such that ATx? = b. If there

isay 2 R" such that Ay , 0 and hb;yi < 0, then there is no solution of
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ATx = band x 0, see Theorem 2.6.5, which is a contradiction to the

5

assumption. 2
Another consequence of Theorem 2.6.5 is

Theorem 2.6.7 (Alternative Theorem). Either there exists a nonnegative
solution of ATx - b or there is a nonnegative solution ofAy , 0 and
Ho;yi < 0.

Proof. (i) Suppose that there is a nonnegative solutionx® of ATx - b. Set
z = bj ATXO?, then there exists a nonnegative solution ofATx + z = b,
Assume there is a nonnegative solutiory® of Ay , 0 and ho;yi < 0, then

0> ho;y0i = PATX? + z;y% = % Ay + he;y%i . O

sincex®, 0,z, 0,y°, OandAy® O.
(i) Suppose that there is no nonnegative solution ofATx - b. Then there
are no nonnegativex 2 R™, z 2 R" such that ATx + z = h. Setw = (x;2)

and BT = ATE,, where

0 1
a1 ¢¢c¢an; 1 ¢¢c¢cO
ATE, =@ . ... . .. ... A -

ain ¢¢¢amn 0 ¢cc1

Since there is no nonnegative solution oBTw = b, we have a solutiony® of
By , Oandhb;yi < 0, see Theorem 2.2.13. Thu®\y , 0 andy , O since
these inequalities are equivalent toBy , 0. 2

2.6.3 Projection on convex sets

Let py (z) be the projection of z 2 H, whereH is a real Hilbert space, onto
a nonempty subsetV p H de ned by

Ipv(2) i zij =min iy 2j :

This projection exists if H = R" and if V is closed or in the case of a general
real Hilbert space if V is closed and convex.
Thus we havew = py (z) if and only if w2 V solves

w2V: jiwi zj2-jj yi zj? forally2 V:
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Sety = w+ 2(yj x), 0- 2. 1 then we observe that this inequality is
equivalent to

hov(2)i z;yi pv(2)i, O forally2V,; (2.13)

see an exercise.

Corollary.  The projection py of a real Hilbert space H onto a closed
nonempty convex subseY is nonexpansive, i. e.,

ipv(X) i pv Wi -1 xi Vil

Proof. Exercise.

In the case thatV is a closed convex con& with vertex at the origin, then
there is an interesting decomposition result due to Moreau45].

De nition. The cone
K®=fv2H: hvjui- 0 forallu2Kg

is called polar coneto K.

Moreau's decomposition lemma. For given u 2 H there are uniquely
determined u; 2 K, uy 2 K * satisfying huy; uzi =0, such that

u= ug+ up:
Moreover, u; = px (u) and uz = px=(u).

Proof. (i) Existence of the decomposition. Setu; = pxu, U = U Uj.
Then, see (2.13),uj uj;vi ui- Oforallv2 K. Thus

huo;vii ugi- O forallv2K: (2.14)

Replacing in (2.14) v by the admissible element

, ul 1 1
v+ up© 2 §v+ Eul X

then
huy;vi- 0 forall v2 K: (2.15)
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Thus u; 2 K”. Replacingv in (2.14) by tu, t > 0, we get
(1i t)hug;uzi- O

which implies that huq;usi = 0.
(i) Uniqueness anduj = pg (u), Uz = px=(u). Suppose thatu = uj + Uy,
whereu; 2 K, u 2 K® and hu;usi =0. Let v2 K, then

huj ug;vi uzi = hug;vij ugi = hug;vi- O

which implies that u; = pg (u), see (2.13). By the same reasoning we con-
clude that uy = px=(u) since forv®2 K ® we have

hui us vl usi = hup vl usi = hug vl O

K*

Figure 2.8: Moreau's decomposition lemma

2.6.4 Lagrange multiplier rules

There is a large variety of Lagrange multiplier rules for equations and in-
equalities, see for example [60]. We will present two Lagrage multiplier
rules. The following lemmas can easily extended to more tharone side
conditions.

Let H be a real Hilbert space with the inner product hu;vi, u; v 2 H.
Suppose thatf(h) = 0 for all h 2 V\ Z, wheref is a bounded linear
functional on H, V %2 H a nonempty subspaceZ = fh2 H : g(h) =0g,
and g is another bounded linear functional de ned onH. Then we have
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Lagrange multiplier rule (equation). There exists a real, o such that
f(w)+,09(w)=0
forall w2 V.

Proof. There areF; G 2 cl V, where clV denotes the closure ofV with
respect to the Hilbert space norm, such that

f(h) = HF;hi; g(h)= hG:hi

forall h2 clV. SetY =span G, thenclV =Y ©Y?. Then F = F; + Fy,
whereF;, 2 Y and F» 2 Y? SincehF;F,i =0, we get F, = 0. Consequently
F+.,0G=0,o0r

hF;hi+ , o hG;hi =0

forall h2 clV. 2

Assumef (h) , Oforallh2 K\ Z, whereK ¥V is a nonempty convex
cone with vertex at zero,Z = fh 2 H . g(h) =0g and f, g are bounded
linear functionals de ned on H. We recall that K is said to be a cone
with vertex at zero if h 2 K implies that t h 2 K forall t > 0. By C”

we denote the polar cone of a cone with vertex at the origin. Tle polar
cone of a coneC % cl V with the vertex at zero is de ned to be the cone
C°=fv2clV: hvywi- 0forallw2 Cg.

Lagrange multiplier rule (variational inequality). Suppose that there is
an hg 2 K such thatj hp 2 K and g(hp) 6 0. Then there exists a real, o
such that

f(w)+.o09(w), O
forall w2 K.
Proof. Following the proof of of the previous lemma, we nd that bF;hi, 0
forall h2 clK \ clZ. Thus j F 2 (cl K\ cl Z)". Then the proof is based
on the formula, see the lemma below,
(clK\ clZ)=cl (K°+ Z9):

Thus, sinceZ” = span f Gg, it follows

i F2cl (K"+spanfGg):
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Then there are sequenceg, 2 K°, y, 2 spanfGg such that z, + y, !i F
in cl V. If the sequencey, remains bounded, then there is a convergent
subsequencey,o ! y. Consequentlyz,o ! z 2 K® which implies that
i F 2 K"+ y. Thus there is a real , o satisfying j Fi ,0G 2 K", or
equivalently, lF +  oG;hi, Oforallh2clK.

Suppose that the sequence/, 2 span fGg is unbounded. Setw, =
Zn+ Yn,thenwnj yn =25 2 K ®. Thus hwy i yn;hi- Oforallh2clK, or

hwn;hij |, nhG;hi- 0

forall h 2 cl K. Sincej,nj!1 , we gethG;hi- 0 forall h2clK or
hG;hi, O for all h 2 cl K, which is a contradiction to the assumption of
the lemma. 2

Extending [49], Corollary 11.25(b), p. 495, or [50], Corolary 16.4.2, p. 146,
to a real Hilbert space we get the following lemma.

nonempty, closed and convex cones with vertex at the originthen

(K1\ECe\Km) = cl (KECEE K2)

Proof. (i) The inclusion
(Kicee K2) % (K \CEE\Kpy)®

follows since we have for giverv; 2 K that hvi;hi - 0 for all h 2 Kj.
Consequentlyhvy + ¢¢& vy;hi - Oforall h 2 Ki\¢¢¢\Ky,. Thus
Vit+ CC€ vy 2 (Ki\CCC\K )"

(i) Set C =cl (K{¢¢c¢ K:). Let w2 (K;\¢¢¢\Ky)” be given and
suppose thatw 2 C. From a separation theorem, see one of the following
exercises, it follows that there is ap 2 H such that hp;wi > O andhp;yi- 0
forally 2 C. We havehw;vi- Oforallv2 K;\¢¢¢\K, andhp;yi- O
forally 2 K{¢¢€¢ K. The previous inequality shows thatp 2 K; for all
i. Then hw;pi- 0 in contrast to a separation theorem. 2
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2.6.5 Exercises

1. Prove the related Theorem 2.6.1 where&X is a closed and convex subset
of a real Hilbert space.

2. Show that the closure ofX is convex if X is convex.

set

Xk
C=fx2R": x= _x;,,, Og

I=1
Show that C is closed by using the following hints.

. P . .
Hint: Letyl 2 C,i. e,yi = [, Wx) 0, where, !’ | 0, and

’ :I 5 5
yi! yasj!1l . Then consider two cases
(a) all sequences, I(‘) are bounded,

(b) not all of these sequences are bounded. Then set

ajzmaxf,(lj);:::;,(kj)g

and divide y! by a;.

4. Suppose thatV %2 H is a nonempty, convex and closed subset of a real
Hilbert space. Show that

w2V jjwi zj%-jj yi zj? forally2 Vv
is equivalent to

w2V: hwj z;yj wi, 0 forally?2V:

5. Suppose thatV % H is nonempty, convex and closed. Show that for
given z 2 H there exists a solution of

. . . ..2_
MV 2=

and this solution is uniquely determined.
Hint: Theorem of Banach-Saks: lelV ¥2H be closed and convex, then
V is weakly closed.

6. Show that the projection of a real Hilbert space on a nhonemty closed
convex set is a nonexpansive mapping.
Hint: Use formula (2.13).
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10.

11.

12.
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. Show that the polar coneK ® is a convex and closed cone with vertex

at the origin.

Let K be a closed convex cone with the vertex at the origin. Show
that (K%)" = K.

Separation theorem. Let H be a real Hilbert space andv a nhonempty,
closed and convex subset. Letv 2 H and w 2 V. Show that there is
areal, suchthathp;yi- ,< hp;wi forally?2 V.

Hint: Consider the minimum problem minyoy jjy i vjj2 and use the
Banach-Saks theorem that a closed convex subset is weakly sked.

Separation theorem. Let V in the previous exercise be a closed convex
cone C with vertex at zero. Then hp;yi- 0< hp;wi forall y 2 C.

Generalization of the Lagrange multiplier rule for equatians. Suppose
that f(h) =0 forall h2 V\ Z, whereZ = fh 2 H : gj(h) =

0, j =1;:::Ngand g are bounded linear functionals onH. Then
there exists real, ; such that

X
f(w)+ .jgG(w)=0
j=1

forall w2 V.

Generalization of the Lagrange rule for variational inequdities. Let
K % V be a convex cone with vertex at the origin. Suppose that
f(hy, Oforallh2 K\ Z, whereZ = fh2H: g(h)=0;j =
1;:::Ng and g are bounded linear functionals onH. Assume there

there exists real, j such that

X
f(w)+ .jgG(w), O
j=1

forall w2 K.
Hint: There are Gj 2 H such that Z & fh 2 H @ RGj;hi =0; j =

1;:::;Ng. SetM = fG2H : G = J-Nzl,jGj; ,j 2 Rg and show
that Z = M “.
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2.7 References

The main part of this material is quite standard. The rst orde r neces-
sary condition and the concept of a local tangent cone was aged from
Lions [34].

The presentation of the main results and proofs concerning agrange
multiplier rules was adopted from Hestenes [23], see also kenberger [36].

Concerning applications, the study of eigenvalue equatios is quite stan-
dard, see for example Courant and Hilbert [9]. The case of utateral eigen-
value problems is a nite dimensional version of problems dudo Mierse-
mann [37]. The rst part concerning noncooperative games is dopted from
Luenberger [36]. The equilibrium concept for noncooperatie games is due
to Cournot [10]. A rst existence proof was given by Nash [46]. The con-
cept of a local equilibrium is a straightforward generalizdion. References for
noncooperative games with applications to economy are Deleu [11], Fried-
man [18] and Luenberger [36], for example. For other applidéons of nite
dimensional variational calculus to economics see [58].

A source for variational calculus in R" is Rockafellar and Wets [49] and
Rockafellar [50] for convex sets.
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Chapter 3

Ordinary di®erential
equations

The most part of this chapter concerns classical results ofhe calculus of
variations.

3.1 Optima, tangent cones, derivatives

Let B be a real Banach space andi a real Hilbert space such thatB p H
is continuously embedded, that is,jjvjju - djvjjg for all v 2 B. Moreover,
we assume thatjjvjjg 6 0 implies jjvjjy 6 0 for v2 B.!

In most applications of this chapter we haveB = Cl[a;b and H =
H1(a;b), which is the Sobolev space of all functionsy which have generalized
derivatives of rst order which are, together with the functi ons itselve in
L2(a;b).

Let V 1 B be a nonempty subset and suppose thak : V 7! R.

De nition. A u 2 V is said to be aweak local minimizerof E in V if there
is avs >0 such that

E(u)- E(v) forall v2 V;jjvi ujjs <%

A weak local minimizer is said to be astrict weak local minimizer if E (u) <
E(v)forall v2V,v6 u,jjvi ujg <%

More precisely, we assume that there is an injective embeddingj : B 7! H,i. e.,j is
linear and bounded and jjvjjs 6 0 implies jjj (v)jju 6 O.

105
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Remark. A local minimizer is said to be a strong local minimizer with
respect to a given norm which allows a larger class of compa®n elements
as above. In the classical calculus of variations this norms the C[a; bJ-norm.

De nition.  The local tangent coneT (V;u) of V at u 2 V is the set of all
w 2 H such that there exists sequencesi, 2 V, t, 2 R, ty > 0, such that
Uup! uinB andth(upj u)+w inH.

Corollaries. (i) The setT(V;u) is a cone with vertex at zero.
(@ii) If T(V;u) 6 fOg then u is not isolated.

(iii) Suppose thatw 6 0, thent, !'1

(iv) T(V;u) is weakly closed inH .

(v) T(V;u) is convex ifV is convex.

(vi) AssumeV is convex. Then

T(V;u) = fw2H : there exists sequences, 2 V; t, 2 R; t, > 0;
such thatt,(up j U) +w asn!lg

Proof. Exercise.

De nition  (Frgchet derivative). The functional E is said to be FrEchet
di®erentiableat u 2 B if there exists a bounded linear functionall on B
such that

E(u+ h) = E(u)+ I(h)+ ofjjhjjg);

asjjhjjg ! 0.

Notation: | = DE (u) Frgchet derivative of E at u.

De nition  (Gateaux derivative). For t 2 R and xed h 2 B set ©(t) =
E(u + th). The functional E is said to be Gateaux di®erentiableat u 2 B
if there is a bounded linear functional | on B such that ©{0) exists and
©Y0) = I(h).
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Notation: | = EqQu) Gateaux derivative of E at u.

Corollaries.
(i) If f is Fr§chet di®erentiable atu then f is Gateaux di®erentiable atu.

(i) If E%exists and is continuous in a neighbourhood ofi, then Equ) =
DE (u).

Proof. Exercise.

De nition  (First and second variation). The derivative

+E(u)(h) = %E(u + 2h)= ;
2=0

if it exists, is said to be the rst variation (or rst Gateaux variation) of E
at u in direction h.
The derivative r .

+E (u)(h) = @E(u+ 2h) L :
if it exists, is said to be the second variation (or second Géateaux variation)
of E at u in directin h.
The limits, if they exist,

+* E(u)(h) = t!”rg;]t> . E(u+ tht) i E(u)

and , L E(u+ th)j E(u)
+ E(u)(h) = u“g;Lo :

are calledright variation and left variation, respectively.

Corollary.  Suppose the Gateaux derivative exists then also the Gatea
variation and +E(u)(h) = hEYu); hi.
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3.1.1 Exercises

1.

Suppose thatV 2 H is not empty, where H is a Hilbert space. Show
that T(V;x) is weakly closed inH .

Show that Eqx) = Df (u) if EYv) exists and is continuous in a neigh-
bourhood of u.

Show that, in general, the existence of the Gateaux deriative does
not imply the existence of the Frgchet derivative.

Hint; Consider X = R? and the derivatives of f at (0; 0), where
3

2 ’ 2
f(y) = yy§l+y§2 : (y1,y2) 6(0;0)

0 : (yuy2=1(0;0)

Suppose that the Gateaux derivative exists. Show that the Gateaux
variation exists and (+E)(h) = hEQu); hi.

Set fory 2 R?
( y1y§ Ly 6 (0 . 0)
fy)= Vg :
0 : y=(0;0)

Show that there exists the rst variation at (0 ; 0), and that the Gateaux
derivative at (0;0) does not exist.

(i) Show that £E(u)(h) is homogeneous of degree one, i. e.,
+E(u)(,h) = =E (u)(h)

forall , 2 R.
(i) Show that the right variation is positive homogeneous o degree
one.

. Show that £2E (u)(h) is homogeneous of degree two.
. Set ©t) = E(u+ th) and suppose that ©2 C2 in a neighbourhood of

t =0 . Show that
E(u+ th)= E(u) + t£E(u)(h) + gi-zE(u)(h)+ 2,(th);

where limy 25(th)=t> = 0 for xed h.
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3.2 Necessary conditions
Let u; h 2 B, and assume that the expansion
E(u+ h)= E(u)+ FEYQu); hi + " (jjhjje)ijhijn (3.1)

holds, asjjhjjg ! 0, where limy o  (t) = 0 and hEQu); hi is a bounded
linear functional on B which admits an extension to a bounded linear func-
tional on H.

This assumption implies that E is Fr§chet di®erentiable atu.

Example. E(v) = Rolvo(x)2 dx, EQu);hi = 2 Roluo(x)vo(x) dx, B =
Ccl[0;1], H = H1(0;1).

Theorem 3.2.1 (Necessary condition). Let V %2 B be a nonempty subset
and suppose thatu 2 V is a weak local minimizer ofE in V, then

hREQu);wi, 0 forall w2 T(V;u):

Proof. Let t,; u, be associated sequences to 2 T(V;u). Then, if n is
suzciently large,

E(u) - E(up)= E(uU+(uni u))
= E(u)+ FEYu);uni ui + “(juni Ujjg)iiuni Ujjn;

thus

0 - hEYu);uni ui+ (juni Uiig)iiuni Ujjn;

0 - hEYu)ta(uni Wi+ (juni ujjg)iitn(uni Wjin:
Letting n!1 , the theorem is shown. 2

3.2.1 Free problems

Set Z,
E(v)=  f(xv(x);v{x)) dx

a
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and for givenuy; up 2 R
V = fv2 Cla:b: v(a) = ua; v(b) = upg;

wherejl <a<b< 1 andf is suzciently regular. See Figure 3.1 for
admissible variations. One of the basic problems in the caldus of variation

y
Up |
Ua |
a b X
Figure 3.1: Admissible variations
is
(P) min\,zv E(V)

It follows from the necessary condition (Theorem 3.2.1) tha
Zy
£

o}
Fu(u(x); uUx)AX) + fuo(x;u(x);udx)AAx) dx=0  (3.2)
a
forall A2 Vi V, since the left hand side of (3.2) is equal tdEYu); Al and
sinceV i V % T(V;u). The previous inclusion follows from Corollary (v)
of Section 3.1, or directly since for givenv 2 V we haven(u, i u)= vij u,
whereu, ;= u+(vj u)=n, n an integer.

In our case of admissible comparison functions we can derivihis equa-
tion under weaker assumptions.

De nition. A u 2 V is said to be aweaklocal minimizer of E in V if there
exists an2g > 0 such that

E(u) - E(v) forall v2V : jjvi Ujciay <%
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A u 2V is called strong local minimizer of E in V if there exists an2y > 0
such that

E(u) - E(v) forall v2V : jjvi Ujcpap <=
We say that u 2 V is a local minimizer if u is a weak or a strong local
minimizer.

Corollary. A strong local minimizer is a weak local minimizer.

Theorem 3.2.3. Let u 2 V be a local minimizer of (P). Assume the rst
variation of E at u in direction A2 Vi V exists, then equation (3.2) holds.

Proof. Setg(?) = E(u+ 2A) for xed A2 © and j?j <2,. Sinceg(0) - g(?)
it follows g40) = 0 which is equation (3.2). 2

De nition. A solution u 2 V of equation (3.2) is said to be awveak extremal

From the basic lemma in the calculus of variations, see Chamr 1, it
follows that a weak extremal satis es the Euler equation

dixf wo(X; u(x); uYx) = fu(x;u(x); uYx))

in (a;b), provided that u 2 C2(a;b). We will see that the assumptionu 2 C2
is super°uous if f ;o0 6 0 ONn (a;b).

Lemma (Du Bois-Reymond). Let h 2 C[a; b and
Zy
h(x)AYx)dx = 0

a

for all A2 ©, then h =const. on [a; b].

Proof.
roof. Set z,

Ao(x)= h() &

a | a

. b
L2 The)

Then Z,

A= N0 oo he) a
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Since Ay 2 ©, in particular Ag(a) = Ag(b) = 0, it follows

Zy Zy 1 %o Zy
0= hASdx = AJ(x)? dx + — he) d@ Ad(x) dx
a Za bl a a
b;
= AJ(x)? dx
a
Thus . z,
h(x) = h(3) ds:
(X) b a . )

2

Theorem 3.2.5 (Regularity). Suppose thatf 2 C? and thatu 2 C'[a;l is
a weak extremal. Assume

fuouo(X; u(x);u(x)) 6 0

on [a;b. Then u2 C?[a;b.

Proof. Set z,
P(x)=  fuu);u®e)) o

a
Then (3.2) is equivalent to
Zy
(i P+ fu0)Aldx=0
a
for all A2 ©. The above lemma implies thatf,j P = const= con [a; 4.
Set Z,
FOGP) = fuolu(x)ip i fuu)u®E) aoi c
a
Let xo 2 [a;h and po = u%xo). Since F(xo;po) = 0 and Fp(Xo;po) =
f wouo(Xo; U(Xo); uXXo)), it follows from the implicit function theorem that
there is a uniquep = p(x), p 2 C! in a neighbourhood ofxq, such that
p(xp) = po and F(x;p(x)) = 0 in a neighbourhood ofxy. The uniqueness
implies that p(x) = uYx) in a neighbourhood ofxy. 2

Corollary. Supposef 2 C™ in its arguments, m , 2, thenu 2 C™M[a;h.



3.2. NECESSARY CONDITIONS 113

Proof. Exercise.

Example: How much should a nation save?

This example was taken from [55], pp. 13. Let

K = K (t) be the capital stock of the nation at time t,

C(t) consumption,

Y = Y (t) net national product.

We assume thatY = f(K), where f is suzciently regular and satis es
fqK) > 0andf %K) - 0. Then the national product is a strictly increasing
concave function of the capital stock. Further we assume tha

C(t)= f(K(t) i K

which means that "consumption=net production - investment".
U(C) denotes the utility function of the nation. We suppose that UYC) > 0
and U%C) < 0,
Ydenotes the discount factor.
Set
V = fK 2 CY0;T]: K(0)= Ko; K(T)= Ktg;
whereT > 0, Ko and Kt are given, and let
Z . ¢
E(K)=  U'f(K@)i K & *dt
0

Then we consider the maximum problem
TREC):
Set
FEKK 9= U(f(K)i K9el ™
then the associated Euler equation is

d
aFKO— FK

on 0<t<T . We have
Fko i UF(K)i K9l ™
Fk = UYF(K)i K9FAK)e ™
URF(K)i K%el 7

FKOKO



114 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

It follows from the above assumption that a weak extremal K, satis es
Fko< 0, Fkoko> 0 on [0 T]. Consequently a weak extremal is inC2[0; T]
if the involved functions are suzciently regular.

The above assumptions imply that
Zy
EOK )3;3i - (Fkk 32+ 2Fkk 033 %+ Froc 3 ®) dt
0

0

forall K 2V and forall 3 2 Vi V. If additionally f%< 0, then
Z 1
hREOPK)3:3i - c(K;T) 32 dt
0

forall K 2 Vandforall® 2V V, cK;T)is a positive constant, see an
exercise. This implies the following result.

A weak extremalK o 2 V is a global maximizer ofE (K ) in V. If additionally
f 90< 0, then weak extremals are uniquely determined.

Proof. Seth(t) = E(Ko+ t(K j Kp)). Then
Z
h(t) i h(0)= h%o)t + t(ti s)h%s) ds:
0

Thus
E(K)i E(Kg) = fZEO(Ko);Ki Kol
1
+ (Li S)FEEXK o+ s(K | Ko))(K i Ko);K i Koi ds:
0

2

Consider again the general functional
Zy
E(v)=  fOqv(x);vAx) dx;
a
wherev 2 V = fv 2 Cla;b : v(a) = ua; v(b) = upg. We will see in the
next section that the following necessary condition of seauod order is close
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to a suzxcient condition for a weak local minimizer. Set
Z b
RERWAA = f uouo(x; u(x); udx)) AYx)?

"Zf uuo(X; u(x); UO(U))A(X) ,O(X)
+fuu (X u(x); UO(X)) A(X)z dx:

Theorem 3.2.6 (Necessary condition of second order)Let u 2 V be a local
minimizer, then

REYWA A, 0
forall A2V V.

Proof. Setg(2) = E(u+ 2A) for j?j <24 and xed A2 ©, then

00) - 93 = 90) + g0)2 + SgR0) + o)

as2! 0. SincegY0) =0 it follows g°¢0) . 0, which is the inequality of the
theorem. 2

From this necessary condition it follows a condition which & close to the
assumption from which regularity of a weak extremal follows

Theorem 3.2.7 (Legendre condition). Assumeu 2 V satis es the necessary
condition of the previous theorem. Then

Fuauo(x; u(x);uqx)) . 0

on [a; 4.

Proof. (i) Since the inequality of Theorem 3.2.6 holds forA in the Sobolev
spaceH(a; b) the following function A, is admissible. LetAy(x) be contin-
uous on R; b, zero onjxi Xoj, h, Ay(Xxe) = handlinearonxgj h<x<x g
and xg <x<x o+ h. SetA= A, in the necessary condition, then
Z><0+h Zxo+h ZX0+h
0- f o0 dx +2h jfuuoj dx + h? jfudj dx;

Xoi h Xoi h Xoi h
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which implies

0. 2hfuoo(xs;u(xe);udx)) +4h? max jfuoj+2h® max jfuwij;

[Xoi hixo+h] [Xoi hxo+h]

wherex; = X1(h) 2 [Xoi h;xo+ h]. Then divide by h and letting h to zero.

(i) The inequality of the theorem follows also by inserting the admissible
function
Yo L

An(x) = B3

h2ij X i ij2¢2 if jXi Xoj- h .
0 if jxj Xoj>h
2

De nition. A weak extremal is said to be satisfying theLegendre condition
if fyogo(X;u(x);u(x)) , O on [a; b and it satis es the strict Legendre condi-
tion if f o0 > 0 on [a; b).

From the regularity theorem (Theorem 3.2.5) it follows immediately

Corollary. If f 2 C? and an extremalu satis es the strict Legendre condi-
tion, then u 2 C?[a; b.

In the following we will derive a further necessary conditian which follows
from EEQu)A;A , 0 for all A2 ©. From the strict inequality for all
A2 ©nf0g it follows that u denes a strict weak local minimizer provided
the strict Legendre condition is satis ed. Set

R = fuouo(x u(x);uqx));
P = fulsu®);udx));
Q = fuuo(x;u(x);ulx)):

Suppose thatu 2 C?[a;b. This assumption is satis ed if u is a weak ex-
tremal and if R 6 0 on [a; k], see Theorem 3.2.5 (regularity). Set

d
S=Pj d_XQ’

then the second variation is
Zy
REYWA A = (RAZ+ SA) dx:

a
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We recall that A(a) = A(b) = 0.
De nition.  The Euler equation
Lv i(Rv% i Sv=0
dx : N

associated to the second variation is calledacobi equation

Consider the initial value problem for the Jacobi equation

Lv = 0 in(a;b (3.3)
v(a) 0;v{a)=1:

We suppose that the strict Legendre conditionf jo,0 > 0 is satis ed on [a; b
and that there exists C!-extensions ofR and S onto Cl[a #*;b+ 4] for a
(small) £ > 0.

De nition.  The lowest zero3, a < 3, of the solution of (3.3) is said to be
conjugate point of a with respect to L.

Theorem 3.2.8 (Necessary condition of Jacobi). Assume lE°Qu)A; A, 0
for all A2 © and fyoyo(x; u(x);udx)) > 0 on [a;0. Then 3 , b

Proof. If not, then a <3 < b. We construct aw 2 H}(a;b such that
HEQu)A; Al < 0. We choose a xedh 2 C?[a; ] such that h(a) = h(b) =0,
h(3) > 0, for exampleh(x) =(x i a)(bj x) and de ne

U0+ h(x) if a- x- 3

w(x) = h(x) if 3<x - b’

wherev is the solution of the above initial value problem (3.3). The positive
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constant - will be determined later. Then

z, Z,
(RW®+ Sw?) dx+  (Rw®+ Sw?) dx
Z,
i wLw dx + (RwWw)(3 i 0)
Za
b
i wlw dx i (RwSw)(3 +0)

3

Z,

S(v+ -h)Lw dx + R G)(vEE) + -h 12)h(3)
4z
i -2 b dx i -?R(3)hY)h()

’ Z, zZ,

REWVENE); -2 hithdxj - vLhdx
m elzb q a

2REGIVE)hE) i - hLhdx

a

hE Pu)w; wi

a

< 0

forall0<-<. o, - suxciently small. We recall that R(3) > 0; vq3) < 0
and h(3) > 0. 2

De nition.  The inequality 3 > b is called strict Jacobi condition.

If the strict Jacobi condition is satis ed, then there is a solution of the
Jacobi equation which is positive on the closed interval §; bj. Once one has
such a positive solution then we can rewrite the second vari#on from which
it follows immediately that this form is positive if A6 0.

Lemma. Assume that the strict Jacobi condition is satis ed. Then thee
exists a solutionv of the Jacobi equation such thatv 6 0 on [a; b].

Proof. Consider the initial value problem Lv = 0 on (a;b), v(a) = ®, v4a) =
1, where®is a small positive constant. Letv(®; x) be the solution and 3 (®)
the lowest zero ofv(®;x). Then 3(®) ! 3(0) as®! 0, which is a result
in the theory of ordinary di®erential equations (continuous dependence of
solutions on data). 2
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Let z 2 Cl[a; j be an arbitrary function. Since
d . - .
—(zR) = 22AR+ 2%
dx(z ) z z

it follows for A2 © that
Z

(2zAR+ z%A%) dx = 0:

Consequently
Z,. ¢
EEQWA A = '(S+ 2942+ 22AK+ RAZ dx:
a

The integrand of the right hand side is a quadratic form i ajj 3%, where
3, = A0 3, = Aand aip= R, @12 = 2, a2 = S+ z0 Set3 = U(x)", where
U is orthogonal, then  &; 33 = , 1”2+ 2 2. The requirement that one
of the eigenvalues of the matrix @; ) is zero leads to

z>= R(S+ 2Y; (3.4)

which is a Riccati equation forz. Let V 2 C[a; b, V 6 0 on [a; b, then the
substitution

=i R— (3.5)

transforms the Riccati equation into the Jacobi equationLV =0 for V. On
the other hand, let V 6 0 on [a; ], then (3.5) is a solution of the Riccati
equation (3.4). The transformation (3.5) is called Legendre transformation.
Thus the second variation is
Z b 3 4
00, \A- Ai — 0. Z4 % ..
REQuAA = R A+ =A dx; (3.6)

a

sinceS + z%= z2=R.

Theorem 3.2.9. Suppose the strict Legendre conditiorR > 0 on [a; b and
the strict Jacobi condition 3 > b are satis ed. Then hE°®u)A; A > 0 for all
A2 © which are not identically zero.

Proof. From (3.6) it follows hE®Qu)A;A | 0 and " = " if and only if
A%+ (z=R)A =0 on [a;b. SinceA(a) = 0, this di®erential equation implies
that A is identically zero on [a; b]. 2
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3.2.2 Systems of equations
Set Z,
E(v)=  f(x;v(x);vix) dx;

V = fv2 Cla:b: v(a)= ua; v(b) = upg;
where uy; up 2 R™ are given.

Theorem 3.2.10. Suppose thatu 2 V is a C?(a; b) local minimizer of E (v)
in V, then u satis es the system of Euler di®erential equations

d
dx

fujo = fuJ

Proof. Exercise.

Remark. For systems we have some related de nitions and results as for

scalar equations. A weak extremal is inC2[a; b if
3

’ m
det fuo0 (Gu();ux) 80
i ij =

on [a; b, see an exercise. A1 2 V is said to be aweak extremalif

s

oA+ fu A dx=0

Zb>(n3

a k=1

forall A2 Vj V. The condition

X
fuouo®i®, 0 forall® 2 R™
k=1

is calledLegendre condition and is calledstrict Legendre condition if the left
hand side is positive for allR™ nf0g. As in the scalar case it follows from
EQu)(A;A , Oforall A2 Vi V that the Legendre condition is satis ed,
see an exercise.
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Example: Brachistochrone

Consider the problem of a Brachistochrone, see Section 12.to nd a reg-
ular curve from

Vo= f(x(t):y(t) 2 Cltyto] : x®+ y® 60;
(X(t2);y(t2)) = P1; (x(t2);y(t2)) = P2g

which minimizes the functional
Z to
E(xy) = f(ty;x%y9 dt

t1

in the classV, where
X@ + y@
p.::
Yi yi+Kk
For notations see Section 1.2.2. Sincé, = 0, it follows from an equation of
the system of Euler's equations that §0)°= 0. Thus

f =

XO
feoo= p 5 =
Xy YTy K

a; (3.7)
with a constant a. Suppose thatP; and P, are not on a straight line parallel

to the y-axis, thena 6 0. Let t = t(¢) be the map de ned by

I
" xq0)Z+ yqt)?

Setxo(¢) = X(t(¢)) and yo(é) = y(t(¢)). From (3.7) we get

0S¢ (3.8)

yo(é)i yi1+ k (,i—lzcos2 3
= 2—;2(1 +C0s(2¢)): (3.9)
Equation (3.9) implies that
Yo(e) = i 2@sin(2); ®:=15(2a%);
and from (3.8) we see that

x3(¢) = §4®cog ¢ :
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Set 2, = uij Y% then it follows that

8§®Uj sinu)
®&1 i cosu);

Xi X1+
yi y1+k

where (x1;y1) = P1 and is a constant, andx(u) := Xo(¢), Y(u) == yo(é).
Thus extremals are cycloids.

Consider the case whera; =0, P; = (0;0), and that P, = (X2;Yy,) satis es
X2 > 0andy, > 0. Then

®&uj sinu)
®&1 ;i cosu);

where 0 u - u;. For given P, = (X2;y2) one nds u; and ® from the
nonlinear system

X2 = ®Uuj sinu)
y2 = ® 1 cosu);

See an exercise.
Example: N-body problem

ConsiderN mass points with massm; located atx( = (x{";x{";x{") 2 R3,

Set
X mimj

" Jx(')l x(J)J

and consider the variational integral

7 0 - S 1
o R
E(x) = =7 m 2D A dt;
W 2. dt
i=1
wherex = (x;:::;x(N)). The associated system of the 3N Euler equations
is
d2x®

mj ae2 = ir X(i)UZ
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3.2.3 Free boundary conditions

In previous sections there are "enough" boundary conditiors prescribed. In
many problems some further conditions follow from variational considera-
tions. A typical example is miny,yv E(v), where

Zy

E(V) = fxv(x);vix)) dx + h(v(a);v(b):
a

Here isV = Cl[a; b and h(®; ") is a suxciently regular function. Let u be
a local minimizer, then for xed A2 V

E(u) - E(u+ 2A)

for all 2, j2j <2, 2 suzciently small,

Z, ’ r
fuOcu; u9YA+ fuo(x;u;ulA° dx
a

+he(u(a)); u(h)A(a) + h-(u(a); u(h) A(b) = 0

for all A2 V. Assume that u 2 C?(a;b), then
Z U 1

fui dixfuo A dx + [ f yoA]D (3.10)

a

+ he(u(a); u(D)A(a) + h-(u(a); u(h)A(b) =0:

SinceCl(a;b) ¥V, it follows
Z d 1
fui &fuo Adx=0

a

for all A2 C(a;b), which implies that

d
&fUO:O

on (a;b). Then, from (3.10) we obtain
(FuwoA)(D) i fuoh)(a) + he(u(a));u(B)A(a) + h-(u(a); u(b)A(b) =0

for all A2 C[a;j. Choose aA such that A(b) = 0 and A(a) = 1, it follows
fu = he at x = a, and take then a A such that A(b) = 1; A(a) = 0, we
obtain fy,o=j h-atx=h.

These boundary conditions are calledfree boundary conditions These
conditions are not prescribed, they result from the propery that u is a
minimizer of he associated energy functional.

fui
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Mixed boundary conditions

If we chooseV = fv 2 Cla;: v(a) = u.g, where u, is prescribed, as the
admissible comparison set instead oC![a; b, then a local minimizer of E

in V satis es the weak Euler equation and the additional (free) baindary

condition fyo=j h-atx=h.

Proof. Exercise.

Higher order problems

Set 7 b
E(v)=  f(vx);nnviM(x)) dx

a
and let V. = C™M[a;h be the set of the admissible comparison functions.
That is, no boundary conditions are prescribed. Fromu 2 V : E(u) - E(v)
forall v2 V, jjvi Ujc[ay <2 foran 2> 0, it follows the weak Euler

equation
Z oy ,
f L0 06 u(x); u™(x)) AR dx = 0

a k=0
for all A2 C™[a;l. Assume that u 2 C2M[a;lj, which is a regularity
assumption onu, it follows by integration by parts the di®erential equation

xXn
(i D (Fu)® =0
k=0
on (a;b and the free boundary conditions @)(a) = 0, (g)(b) =0, | =
O;:xmj 1, where
Xi | _
a= (i DY H(Fuen)®:
k=1

Proof. Exercise.
Example: Bending of a beam.

Consider the energy functional, see [33] for the related pfsics,
1 z | YA |
J(v) = SEl (vO¢x))? dx i f (X)v(x) dx;
0 0
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where v 2 C2[0;1], El is a positive constant (bending sti®ness), and
denotes the force per unit length, see Figure (i). The Euler guation is here

Elu® =f on (0):

and the prescribed and free boundary conditions depend on hothe beam
is supported, see the related gures.

0] (ii)

(i) (iv)

(i) Simply supported at both endsPrescribed conditions: u(0) =0, u(l) =0,
free boundary conditions: u°¢0) = 0, u®f1) = 0.

(i) Clamped at both ends.Prescribed conditions: u(0) = u40) = 0, u(l) =
uql) =0,

free boundary conditions: none.

(i) Clamped at one end and simply supported at the other endPrescribed
conditions: u(0) = uq0) =0, u(l) =0,
free boundary condition: u°¢l) = 0.

(iv) Clamped at one end, no prescribed conditions at the other endPre-
scribed conditions: u(0) = uY0) = 0,
free boundary conditions: u%1) =0, u°¥) =o0.

3.2.4 Transversality conditions

The condition which we will derive here is a generalization 6 the previous
case (iv), where the right end of the curve can move freely onhe target line
which is parallel to the y-axis.



126 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Denition. A curve ° in R? is said to be asimple C!-curve if there is a
parameter representationv(t) = (vi(t);va(t)), ta - t - tp, ta <typ, such that
Vi 2 Clta;ty], VO(t)2 + vI(t) 6 0 and v(t1) & v(tp) for all ty; ty 2 [ta;ty]
satisfying t1 6 t,.

Remark. A regular parameter transformation t = t(¢), i. e., @ mapping
t 2 CY[¢a; ¢p] satisfying t(¢a) = ta, t(cp) = thand tY¢) 600N ¢+ ¢ - ény
éa < ¢b, Maps a simply Ct-curve onto a simpleC!-curve.

Proof. Exercise.

Let ° = °(¢) be a given simpleC!-curve and consider the set
V="Ffv:v=v(t); 0- t- 1; simpleC'j curve; v(0)= P; v(1) 2 °q;
where P 62 is given. Letv 2 V, then we consider the functional

YA 1
E(v)=  f(tv();vY) dt
0

f given and suxciently regular. Setfy, = (fy,;fy,) and fyo= (fvg?fvg)-

Theorem 3.2.11. Suppose thatu 2 V \ C?[0;1] is a local minimizer of E
in V, then

d _ .
at (fuo) = fy on(0;1)
fuo(l;u(d);uq1) 2 °:

Proof. Let ¢p such that u(1l) = °(¢p). Since E(u) - E(v) for all v 2 Vg,
where

Vo=fv2V: v(0)=P; v(1) = u(l)g;
it follows the system of Euler equations

d
fui afuo =0
in (0;1). The transversality condition is a consequence of varidbns along
the target curve °, see Figure 3.2. There is a family(t; ¢) of curves such

that v2 C1(D), whereD =(0;1)£ (¢o0i 20;¢p+ 20) for an 29> 0, and

V(t;éo) = u(t); v(0;¢) = P; v(1;¢)= °(é):
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X2 gﬁ
a(t)

a(ty)

Figure 3.2: Admissible variations

For example, such a family is given by
v(te) = u)+(° ()i ()" (1);
where” (1), 0 - t - 1,isa xed C!-function such that " (0) =0and " (1) = 1.

Setg(¢) = E(v). Sinceg(én) - 9(é), jéi ¢oj < 2o, it follows that g¥¢p) = 0.
Consequently

Z, i ¢
fu v, (t o) + fuoV(t;éo) dt=0;
0

wherev®= v;. Integration by parts yields

Zlu 1 h

fui —
0 UIdt

et
fuo Cv,(t;¢0) dt+ fuolv,(t; co) =0 =0:

Since the system of Euler di®erential equations is satis ed ahsincev(0; ¢) =
P.j¢i ¢oj <2, it follows

fuo(L; u(d); uq1)) ev,(1;¢0) = 0:
Finally, we arrive at the result of the theorem sincev(1;¢) = °(¢). 2

Remark 1. If both ends move on curves’ 1, °», respectively, see Figure 3.3,
then
foo? °1 att=0; and fp? °, att=1;

if u(0) 2 °1 and u(l) 2 °,.
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Xy %

X
1

Figure 3.3: Both ends move on curves

Figure 3.4: Target is a surface

Proof. Exercise.
Remark 2. The result of the theorem and of the above remark hold inR".
Proof. Exercise.

Remark 3. Consider the caseR® and let the target be a suzciently regular
surfaceS, see Figure 3.4, then the transversality condition isf ,0? S.

Proof. Exercise.
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ZON

1 1
2

=}

Figure 3.5: Nonsmooth solutions

3.2.5 Nonsmooth solutions

Under additionally assumptions extremals of variational problems associated
to integrals of the type

Z, z

f(x;v;v9 dx or F(x;v;r v) dx
a ;

are smooth, that is they are at least in C2. In general, it can happen that
extremals have corners or edges, respectively, even if thetegrands are
analytically in their arguments.

Example. Consider the class
V = fv2 C[0;1] : v piecewiseC!; v(0) = v(1)=0g:

A u 2 C[a;b] is called piecewise inC*® if there are at most nitely many

to=0and tph+1 =1. For v2 V let
Zl_

E(v) = "Vx)? | 1¢2 d
0

X:
There is a countable set of nonsmooth solutions, see Figure=

Let V be the class of functionsv : [t1;t2] 7! R" in C[ty;t2], piecewise inC*!
and v(t1) = us, v(t2) = uy, whereusy; u, are given. Consider the functional
Z th
E(v) = f(t;v(t); vi(t)))dt;

t1

wherev 2 V and f is given and suzciently regular.
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Vo

u(t,)

Vi
Figure 3.6: Corner of the extremal

Let u 2 V be a weak extremal, that is,
Z,, i ¢

A A0 _
fuCA+ fotA” dt=0

t1

for all A2 C(ty;tp).

Theorem 3.2.12 (Weierstrass-Erdmann corner condition). Suppose that
u 2V and in C2 on the closed subintervals where is in C1, and that u®is
possibly discontinuous atto 2 (t1;t2), see Figure 3.6, then

£ ®o i — —
fuo (to) " Fuoltu(®);utt) o i fuoltu(t);uqr) . o=0:

Proof. Let © > 0 small enough such that there is no further corner of the
extremal in (toi “;to+ ). Thenforall A2 Cl(tgi ";to+ ") we have, where
a=tgj andb=tg+ ",
Zy i ) &
0 = fuCA+ ftA” dt

Za

toi Zb

< L i ] .
fu CA+ fotAl dt+ fu CA+ fuotAl dt
a to  _
z to “ d ﬂ . 1o
fui —=fyo CAdt+ foCA
a dt a
ZyH g T 5
+ fui —fuo CAdt+ foo¢A™
to dt to
£ %o

i fuo (to) CA(to)
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[ [ [ X
a c b

Figure 3.7: Corner of a graph extremal

for all A(tg) 2 R". 2
As a corollary we derive a related condition for nonparametic integrands.
Set 7
b
EV) = f06v(x);viX) dx;

a

wherev: [a;b 7' R,v2 V and V is de ned by

V = fv2 Cla;b : v piecewise inC!; v(a) = ua; v(b) = uyg:

Corollary.  Suppose thatu 2 V satisfying u 2 C?[a;d and u 2 C?[c;H,
wherea <c<b, is a local minimizer of E in V, see Figure 3.7. Then

h o h o
fw (=0 and f i u%, (c)=0:

Proof. The formal proof is to replacex through x = x(t), a- t- b, where
x is a C1-bijective mapping from [a; b onto [a;d such that x°6 0 on [a; b].
Then
1

xqt) dt;

Z, Z, M
FoGvOOvIX) dx = f o x(E)y(t); ﬁ((g
wherey(t) = v(x(t). Set
TR

Fixy;x%y9 = f x;y;%) x&
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£ ©
then [Fxo] (c) =0 and Fyo (c) = 0, which are the equations of the corollary.
The following consideration is a justi cation of that argument. Let u be
a minimizer of E(v) in V. For xed A, Ay 2 C}(a; b) set

X(3t) = t+ 2A(t)

y(%:1) u(t) + 2Ax(t);
wheret 2 [a;b], j2j < 29, 2¢ suxciently small. Then x de nes aC?! di®eo-
morphism from [a; b onto [a; b and x°6 0 for each 2, j2j <2 4. Here we set

x%= x¢(2;t). Let t = t(2;x) be the inverse of the rst of the two equations
above, and set

Y (3x) = y(%t(%x)):
Then Y (2;x) de nes a Cl[a;  graph, i. e., Y 2 V, and

Zy Zy
f O u(x);uqx)) dx - f (Y (2;x); YY2; %)) dx
a Zab H yo(z't)ﬂ
= 2. . 2 . ! 2.
. fox(t);y( ,t),XO(Z;t) xq2;1) dt
= g0):
Sinceg(0) - g(?), j3j < 2o, it follows g{0) = 0 which implies the conditions
of the corollary. 2

Remark. The Trst condition of the corollary follows also by a direct applica-
tion of the argument of the proof of Theorem 3.2.12. The secamh condition
is a consequence of using a family of di®eomorphism of the xedterval
[a; ], which are called sometimes \inner variations".

There is an interesting geometric interpretation of the corditions of the
corollary. Let u be an extremal anda <x g <b.

De nition.  The function
"~ = f(Xo;u(X0);») =1 h(»)
is called characteristic of f at (xg; u(Xo)).

Let (»;7i), i =1; 2, two points on the characteristic curve off at (c; u(c)),
a <c<b, and let T; tangent lines of the characteristic curve at (x;" ),
which are given by

T T = fuo(ciu(e);m)(»iom):
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X, X, X

Figure 3.8: Geometric meaning of the Corollary

Set

1

(Wi uYci 0); »=(u9y* "~ uYc+0)
fi 7 f(c;u©uici 0)); “2=fi " f(c;uc)uYc+0))

N
[N
I

and
flo= fuo(c;u(c); (U9 ); fo= fuo(ciu(e); (UY™):
Then the two tangent lines are given by
T f flo(>i (U9t
i f fJo(»i (U(yr):
From the rst condition of the corollary we see that the tangent lines must

be parallel, then the second condition implies that the lines coincides, see
Figure 3.8.

As a consequence of this consideration we have:

Suppose thath(») = f (x;u;») is strongly convex or strongly concave for all
(x;u) 2 [a;Y £ R, then there are no corners of extremals.

Proof. If not, then there are » 6 » which implies the situation shown in
Figure 3.8. 2

Thus, ﬁxtremals of variational problems to the integrandsf = v® or f =
a(x;y) 1+ v® a> 0, have no corners. If the integrand is not convex for
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all v% then corners can occur as the examplé = (v®; 1)? shows, see
Figure 3.5.

3.2.6 Equality constraints; functionals

In 1744 Euler considered the variational problem min,yv E(v), where
Zy
E(v)=  f(xv(x);vix)) dx;

a

V=1fv2Clah: v(a)= ua; v(b)= up, ge(v)=0; k=1;::::mg

for given ua; up 2 R", and de ne g« by
Zp
(V) = L (x; v(x); vY(x)) dx:

a

The functions f and Iy are given and suzciently regular.
Example: Area maximizing

Set Z,
E(v) = v(x) dx
a

and

V = fv2 Cla;b: v(a) = ua; v(b) = up g(v)= Lg;
where Z, o

g(v) = 1+ v®(x) dx
a

is the given length L of the curve de ned by v. We assume that

c>" (B 2+ (Ui Ua)?:

Then we consider the problem may,v E(v) of maximizing the area j- |
between thex-axis and the curve de ned byv 2 V, see Figure 3.9.
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a b X

Figure 3.9: Area maximizing

Example: Capillary tube

This problem is a special case of a more general problem, seecBon 1.3.3.
It is also a problem which is governed by a partial di®erentialequation, but
it is covered by the Lagrange multiplier rule below. Conside a capillary
tube with a bottom and lled partially with a liquid. The gravi ty g is
directed downward in direction of the negative x3-axis. The interface S,
which separates the liquid from the vapour, is de ned byxs = v(x), x =
(X1;X2), see Figure 3.10. Set
Y z Ya
V= v2Cl(): v dx = const; ;

that is we prescribe the volume of the liquid. Let
Z 3 - 7
E(v) = 1+jr vi2+ =v2 dxj cos° v ds;
. 2 @
where - is a positive constant (capillary constant) and ° is the angle be-
tween the normals on the cylinder wall and on the capillary suface S at the
boundary of S. Then the variational problem is miny,y E (V).

A large class of problems t into the following framework. Suppose that

space andH a real Hilbert space such thatB %2 H is continuously embedded:
iiViin - djvjjg for all v2 B. Moreover, we suppose thatjvjjg 6 0 implies
jiviin 60 for v2 B, that is, B ¥2H is injectively embedded.

Assumptions: (i) The functionals E and g are Frech§chet di®erentiable at
u?2B.
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|9/\

~ =
vapour
NG
Ng
liquid

X1

Figure 3.10: Capillary tube

xn

F (0 E(u+ GA)

Gi(o = g(u+ GA)

j=1
are in C! in a neighbourhood ofc=0, c2 R™.

Set

De nition. A u 2 V is said to be alocal minimizer with respect to m-

Theorem 3.2.13 (Lagrange multiplier rule). Let u 2 V be a local minimizer
or maximizer with respect to m-dimensional variations of E in V. Then
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there existsm + 1 real numbers, not all of them are zero, such that

X 0
, oEqu) + ,ig(u) = 0pge:
i=1

Proof. We will show by contradiction that the functionals lp = EQu), |1 =
gd(u);:::5lm = g% (u) are linearly dependent in B. Suppose that these
functionals are linearly independent, then there areA,- 2B,j=0;1:::;m,
such that li(vj) = %, see for example [28]. SemM = E(u) and consider for
small” 2 R and c2 R™ the system ofm + 1 equations

X

F(o: = E(u+ GA)=M+~
j=0
o

Gi(): = g(u+t ¢A)=0:
j=0

From the implicit function theorem we obtain that there exists an "9 > 0
and a C1(j “o; o) function c¢(") such that ¢(0) = 0 and A(c(");”) = 0 on
i '0<’ <’ o. Then we take an” < 0 from this interval and obtain a
contradiction to the assumption that u is local minimizer of E in V, if uis
a maximizer, then we choose a positivé . 2

Corollary. I gf(u);:::;g%(u) are linearly independent, then, o 6 0.

3.2.7 Equality constraints; functions

Set Z,
E(v) = f (x;v(x);vYx)) dx;

a

lk(X;v(x))=0on[al; k=1;:::;mg

Ua; Up 2 R", and Iy and f are given suzxciently regular functions. We
assumem < n. The problem miny,y E(Vv) is called Lagrange problem
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Set

xXn
Fo;v;ve )= fxv; v+ k(G v):
k=1

Theorem 3.2.14 (Lagrange multiplier rule). Let u be a local minimizer or
maximizer of E in V. Suppose that a xed(m £ m)-submatrix of I, (x; u(x))
is regular for all x 2 [a; 1. Then there are functions , | 2 C1[a; b such that

on (a;b.

Proof. Suppose that _

is regular for all x 2 [a;b. Choosenj m functions "m+y 2 CL, r =

Wimn+r(X;2) = Um+r(X) + 2 m+r(X);

where j?j < 2, 2¢ suzciently small, and consider on [a; b the system

(X Va5 115 Vm Wi+ (X52); 1005 Wn(X;2)) =0
k = 1;:::;m, for the unknowns vi;:::;vm. From the implicit function
theorem we get solutionsv; = w(x;2), | = 1;:::;m, vy 2 Cl on [a;0 £

(i 20;20) satisfying vi(x; 0) = uj(x) on [a;b]. These solutions are uniquely
determined in a C-neighbourhood ofu(x). Thus I (X;w(x;2)) =0 on [a;h

Wm+r(8;2) = Un+r(8); Wm+r(D;?) = um+r(b): (3.11)
Hence, since the above solution is unique, we obtain fat = 1;:::;m that
wi(a;2) = uk(a); wk(b;?) = uk(b): (3.12)

Thus w(x;?2) is an admissible family of comparison functions. Set

@w-

1(x) = 622:0:
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“1(@=0; "i(h=0: (3.13)
Set Z,
h(?) = f (x;w(x;2);wYx;2)) dx:
a
Sincehq0) = 0, we see that
z, A !
b X0
fo 1+ fuo P dx=0: (3.14)
a I=1

From I (x;w(x;2))=0on [a;b £ (i 20;209) we obtain

X

@,j =0; k=1;:::;m
j-1 @Y

Multiplying these equations with functions , x 2 C[a; b, we get

z

xXn b @
X)—"j dx =0; 3.15

o >k()@y1 (3.15)

k=1;:::;m. We add equations (3.14) and (3.14) and arrive at

Zb)@ 3
dx =0;

P

whereF = f + L, l. We recall that I are independent ofu®. Suppose
for a moment that , x 2 C[a; 1, then

Zyyn M d 1
FUj i _Fu.o ,j dx=0 (316)
a i_ dx

j=1

Since we can not choose the function$; arbitrarily, we determine the m
functions |  from the system

Fu i %Fuiozo; i=1;::0m:
That is from the system
xn
fu i &fu?"‘ s kliu; =05

k=1
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S

Z, g mH d | ]
FumHi &Fu%ﬂ m+r dx =0:
a (=1
Since we can choosén+ arbitrarily, the theorem is shown. 2

Example: Geodesic curves
Consider a surfaceS de ned by A(v) = 0, where A: R3 7! R is aC!-function
satisfying r A6 0. Set

V = fv2 Clty;t] 1 v(ts) = Pi v(t2) = P2 A(v)=0g:

Then we are looking for the shortest curvev 2 V which connects two given
points P; and P, on S, see Figure 3.11. The associated variational integral
which is to minimize in V is

to p
E(v) = vqt) evqt) dt:
t1
A regular extremal satis es
atow N
dt " uoew®0

Choose the arc lengths instead oft in the parameter representation ofu,
then
us) =, (s)(r A)(u(s)):;
which means that the principal normal is perpendicular on the surfaceS,
provided the curvature is not zero.
We recall that r A? S, and that the principal curvature is de ned by
u%?s)=- (s), where - (s) = jju®?s)jj (Euclidean norm of u® is the curvature.
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Figure 3.12: String above an obstacle

3.2.8 Unilateral constraints

Letu; h2 B, E: B 7! R, and assume the expansion

E(u+ h)= E(u)+ hEYu);hi + " (jjhjig)iihjin (3.17)
as jjhjjg ! 0, where limy o  (t) = 0 and hEqu);hi is a bounded linear
functional on B which admits an extension to a bounded linear functional
onH.

Let V %2 B nonempty and suppose thatu 2 V is a weak local minimizer of
E in V. Then, see Theorem 3.2.1.

hEQu);wi, 0 forall w2 T(V;u):
If V is a convex set, then
hEQu);vi ui, 0 forallv2V:
sincevj u2 T(V;u)if v2 V.
Example: String above an obstacle
Let
V = fv2 C0;1]: v(0) = v(1) =0 and v(x), A(x) on (0;1)g;

where A 2 C1[0;1] is given and satis esA(0) - 0 and A(1) - 0, see Fig-
ure 3.12. Set 7

E(v) = ' ivo(x)q:2 dx;
0
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and consider the variational problem min,;y E(v). Suppose thatu is a
solution, then u satis es the variational inequality
Z,
uz2V: uqx)(v(x) i u(x))%dx forall v2 V:
0

Remark. The existence follows when we consider the above problem in
the associated convex set in the Sobolev spadé(0;1). Then we nd a
weak solution u 2 H}(0; 1) satisfying u(x) , A(x) on (0;1). Then from a
regularity result due to Frehse [17] we nd that u 2 C1[0;1], provided A
is suxciently regular. Such kind of results are hold also for nore general
problems, in particular, for obstacle problems for the beam the membran,
the minimal surface or for plates and shells.

Example: A unilateral problem for the beam

The following problem was studied by Link [32]2 Consider a simply sup-

ported beam compressed by a forc® along the negativex-axis, where the

de’ections are restricted by, say, a parallel line to thex-axis, see Figure 3.13.
It turns out that u(k;x) de nes a local minimizer of the associated energy
functional zZ, Z

|
J(v) = g vO?x)? dx P vix)? dx;
2 o 2 o
where El is a positive constant (bending sti®ness), in the set
V = fv2 H3(O;1)\ H2©0;1): v(x)- don (0;])g

of admissible de°ections ifl=4 < k < |I= 2 and it is no local minimizer if
0<k<I= 4, see Section 3.3.3 or [40].

Remark. Related problems for the circular plate and the rectangularplate
were studied in [43, 44], where explicit stability bounds wee calculated.

2| would like to thank Rolf KlAtzler for showing me this problem.
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Figure 3.13: A unilateral beam

Example: Positive solutions of eigenvalue problems

Consider the eigenvalue problem

i ¢
L e0ud0)” + qeu)

' dx
u(a) = u(b)

YAx)u(x) in(a;b
0:

We suppose thatp 2 Cl[a; b, q; ¥2 C[a;b], and that p, q and Yare positive
on the nite interval [ a;b]. Set
Z, . ¢
i
POAUPOVIX) + q)u)Vv(x)  dx

a(u;v)

Zy

b(u; v) Ex)u(x)v(x) dx:

a

Then the lowest eigenvalue, 1, which is positive, is given by

a(v;v)
v2Hnfog b(v; V)’

s H

whereH = Hi(a;b. Then we ask whether or not the associated eigenfunc-
tion does not change sign in &;b). In our case of this second order problem
for an ordinary di®erential equation it can be easily shown tlat each eigen-
value is simple. Instead of looking for minimizers of the abwe Rayleigh
quotient in H, we pose the problem directly in the set of nhonnegative func-
tions. De ne the closed convex cone with vertex at the origin

K =fv2Hab: v(x), 0on (a;bg:
Let
a(v;v)
v2K nfog b(v; V)’

s K
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As in Chapter 2 we nd that | ¢ is the lowest eigenvalue of the variational
inequality

u2Hnfog: a(u;vi u), ,b(u;vi u) forall v2 H:
Under the above assumptions we have
Proposition. .,y = ,k.

Proof. It remains to show that , 4 , , k. Let uy be an eigenfunction to
. H, then
a(uy;Vv) = , wb(uy;v) forall v2 H: (3.18)

Moreau's decomposition lemma, see Section 2.6.3, says thaty = u; + uo,
whereu; 2 K, uz 2 K® and a(uz; uz) = 0. We recall that K* denotes the
polar cone associated tK . Inserting v = u; into (3.18), we get

a(u;uy) =, pblugsug) + , wb(uz;ug)
. Hb(ug; uyg)

sinceb(uy;uq) - 0O, see an exercise. Ifi; 6 0, then it follows that , x - , 4.
If up =0, then uy 2 K?, which implies that j uq 2 K, see an exercise. 2

Remark. The associated eigenfunction has no zero inaf b).

Remark. One can apply this idea to more general eigenvalue problems.
In particular it can be shown that the rst eigenvalue of a convex simply
supported plate is simple and the associated eigenfunctiohas no zero inside
of the convex domain - ¥ R?, see [39]. Plate problems are governed by forth
order elliptic equations.
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3.2.9 Exercises

1. Consider the example "How much should a nation save?" Showhat

Z
hEORK)3;3i0 ' (Fik 32 +2Fkk 023 %+ Foco®®) dt
0o
forall K 2 V and forall 3 2 Vj V. If additionally f%< 0 is satis ed,
then Z -
REOK)33i-i oK;T) 32 dt

0
forall K 2V andforall® 2V V,cK;T)is a positive constant.

2. Consider the example "How much should a nation save?". Fid all
extremals if

U(C) = Tlvc1i v and f (K) = bK;

wherev 2 (0;1) and b are constants. Suppose thatb6 (bj A=v.

4. Consider the example of area maximizing of Section 3.2.6Show that
.06 0, where , ¢ and , 1 are the Lagrange multipliers according to the
Lagrange multiplier rule of Theorem 3.2.1.

5. Consider the example of the capillary tube of Section 3.8%. Show that
.06 0, where , ¢ and , 1 are the Lagrange multipliers according to the
Lagrange multiplier rule of Theorem 3.2.1.

6. Weierstra¥%. Show that the integral
Zy
f(x(t);xqt)) dt;

a

parameter transformation t = t(¢), that is, t 2 C! and t°> 0, if and

only if f (x;p) is positive homogeneous im, i. e., f(x;,p) = .f (X;p)

for all positive real , .

Hint: To show that it follows that f (x;p) is positive homogeneous,
di®erentiate the integral with respect to the upper bound ¢, and then

consider the mappingt = ¢, =,, where, is a positive constant.
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10.
11.

12.

13.

14.
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. Show that a solution of the weak Euler equation of the vecto valued

variational problem, see Section 3.2.2, is irC?[a; b if
3 .

m
det  fuou0 (% u(x); uYx)) o, 80

on [a;b].

. Consider the case of a system, see Section 3.2.2, and shdvatt

RECWA; A, ©

forall A2 Vj V implies the Legendre condition

X
fuoue®i®k, 0 forall 2 2 R™:
itk =1

Hint: Set A = 3/A,(X), where 3 2 R™ and A, is the function de ned
in the proof of Theorem 3.2.7.

Find the Brachistochrone if P, = (0;0), P, =(1;1) and vy = 0.
Determine the shortest distance between two straight hes in R,

Find the shortest distance between thex-axis and the straight line
denedby x+y+z=1and xj y+z=2.

Find the the shortest distance between the origin and thesurface (ro-
tational paraboloid) dehed by z=1; x2j y2.

Let Z,
EW)= gt VAD & d
t1

v = (vp;Vv2) and g is continuous. Show that the corner points of
extremals are contained in the setf (X1;X2) 2 R?: g(x1;X2) =0g.

Let u be a solution of the isoperimetric problem
Z,
max v(x) dx;
v2V g
where Ml D fv 2 Cla;bh : v(0) = v(1) = 0; I(v) = Y=g with
I(v)= o 1+(vAx))? dx.
Find u.
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15.

16.

17.

18.

19.
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Let u be a solution of the isoperimetric problem
Z p
min . 1+ (vqx))2 dx;
Where[}{ = fv 2 Cla : v(0) = v(1) = 0; I(v) = Y=8g with
(V)= 4 Vv(x) dx.
Find u.

A geodesic on a surface dened bA(x) =0, x 2 R®andr A6 0
satis es, see Section 3.2.7,

u%s) =, (s)(r A)(u(s)):
Find , .
Find geodesicau(s), 0 - s - L, of length 0 < L < ¥R on a sphere
with radius R.

Consider geodesicx(s) = ( x1(S); X2(s); x3(s)) on an ellipsoid E, de-
“ned by 3 - 3 - 3
2 2 2
X1 + X2 + X3 “ 1,
a b c
where a; b; care positive constants. Let

Pi; P,2E\f x 2 R®: x1=0g:

Show that a geodesic connectindg®; and P,, P; 6 Py, satis es x1(s) ~
0.

Set
V=fv2CYj1;i1]:v(i1)=v@)=0;v(X).i x?+1=4on( 1 1)g:

Find the solution of z,
: 2 dy-
min , (v4x))? dx:
Is the solution in the classC?(0;1)?

SetV = fv2 Cla;b : Ai(x) - v(x) - A(x)g, where A; and A; are in
Cla; b, Ai(x) - Ax(x) on (a;b), A; is convex andA, concave on §; 4.
Let
1
V= S (V)i v+ v(x i h)
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be the central di®erence quotient of second order. For xed® 2
Co(a;b,0- 3. 1,dene

V. = v+ B2y

where? is a positive constant. We suppose that is a suzciently small
positive constant such that v: is de ned on [a; b.
Show that v- 2 V, provided that 0 - 2 - h?=2 is satis ed.

Remark. Such type of admissible comparison functions were used by
Frehse [17] to prove regularity properties of solutions of Biptic varia-
tional inequalities.

20. Consider the example "positive solutions of eigenvalu@quations" of
Section 3.2.8. Show thatu - 0 on (a;b) if u2 K=,

Hint: If u2 K*, then u2 Hi(a;b and
Zy
(pud°+ quv) dx - 0 for all v 2 K:
a

Inserting v(x) = max fu(x); Og.

21. Consider the example "Positive solutions of eigenvaluequations" of
Section 3.2.8. Show that a nonnegative eigenfunction is pds/e on
(a;b).

Prove the related result for the eigenvalue problemj4 u = ,u in -,
u=0o0n @ Hereis- 2 R" a bounded and suzciently regular
domain.
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3.3 Suzcient conditions; weak minimizers

3.3.1 Free problems

Consider again the problem miR,yv E (v), where

Zy

E(v) = f (x;v(x); vix)) dx
a

andV = fv 2 Cla;ld: v(a) = ua; v(b) = upg. The next theorem shows
that an extremal u is a strict weak local minimizer if the assumptions of
Theorem 3.2.9 are satis ed. In contrast to the n dimensional case, the
assumption EE%Pu)A; A > O for all A2 (V | V) nfOg alone is not suxcient
such that u is a weak local minimizer. A counterexample is, see [53],

f=(xi a%y®+(yi ay® a<x<b:
The second variation admits the

HERUAA = a(u)(A A i bu)(A;A);

where
Zy
a(u)(A; A = RA® dx;
a.
o z by ¢
bU)(A; A = 2QAA+ PA?" dx:
a
If u2 C?[a;l, then
Lo, ¢ Zy
2QAR+ PA? dx = SA dx;
a a
with q
=P =Q:
S i de

If the strict Legendre condition is satis ed on [a; b, then u 2 C?[a;j and
the quadratic form a(u)(A; A) is equivalent to a norm onH = H{(a; b and
b(u)(A; A is a completely continuous form onH .

Theorem 3.3.1. Suppose that
(i) u2 V is a solution of the weak Euler equation,
(i) EEQu)A;A > 0forall A2 (Vi V)nfOg,
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(i) fyouo(x; u(x);uqx)) > 0 on [a; H.
Then u is a strict weak local minimizer of E in V.

Proof. Assumption (i) implies that FEQu)A; A, 0 for all A2 Hi(a;b). If
u is no strict local minimizer, then we will show that there is a Ay 2 H(a; b),
Aq 6 0 such that lEQu)Ag; Agi = 0. Thus Aq is a solution of Jacobi equation
hE%u)Ag; Ai = 0 for all A 2 H}(a;b). A regularity argument, we omit the
proof here since this problem is addressed in another coursshows that
A2 Vi V. The idea of proof is a purely variational argument. We inset
for A the admissible function 3 (x)Ai "(x), where 3 is a su+ciently regular
cut o® function and Ai M is the backward di®erence quotient. After some
calculation one can show thatAy 2 H ?(a; b) which implies that Ay 2 C1[a; b].
SetB = Clla;j and H = Hi(a;b). If u is no strict local minimizer, then
there is a sequencel, ! uin B, u, 6 uin B, such that

E(u) , E(un)= E(u+(uni u))
= E(u)+ EYu);uni ui
+ SFERU)(un i u)iun i Ui+ (jun i ujis)iiun i ujiE:
Then we can write the above inequality as
0 , a(u)(uni usuni u)i b(u)(uni ujuni u)
+ (jjun i ujie)iiun i ujif:
Sett, = (a(u)(un i U;upj uw)! 122 and wy, = th(un i u). Then
0 , a(u)(wWn;wn)i b(u)(wn;wn)
+" (jjun i ujie)ijwniif:

Sincea(u)(wp; wp) = 1 it follows for a subsequencew, + w that b(u)(w;w) ,
1, in particular w 6 0, and a(u)(w;w) - 1 sincea(u)(v; V) is lower semicon-
tinuous on H. It follows a(u)(w;w) i b(u)(w;w) - 0. Since by assumption
a(u)(v;v) i b(u)(v;v), Oforallv2H itfollows that hE%Qu)w;wi =0. 2

There is an interesting relationship betweenrEQu)A; A > 0 for all A 2
(Vi V)nfOgand an associated eigenvalue problem. Again, we suppose tha
the strict Legendre condition f yo,o(X; u(x); u{x)) > 0 on [a; 4 is satis ed.
SetH = H{(a; b and consider the eigenvalue problem

w2 Hnfog: a(u)(w;A)= b(u)(w;A) forall A2 H: (3.19)
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Lemma. Suppose that there is av 2 H such that b(u)(w;w) > 0. Then
there exists at least one positive eigenvalue of (3.19), antthe lowest positive
eigenvalue, 7 is given by

blu)(v;V) .

v2Hnfog a(u)(Vv; V)’

Proof. The idea of proof is taken from Beckert [2]. Set
V=1fv2H: au)(v;v)-  1g;
and consider the maximum problem
r\pza\l/xb(u)(v;v):

There is a solutionv; which satis es a(u)(vi;v1) - 1. From the assumption
we see thata(u)(vy;vi) =1. Then

maxb(u)(v; v) = max b(u)(v;v);

whereV; = fv 2 H : a(u)(v;v) = 1g. The assertion of the lemma follows
since for allv 2 H nf0g we have

blu)(v;v) _ bu)(sv;sv).

a(u)(v;v)  a(u)(sv;sv)’

where s = (a(u)(v;v))' ¥ 2

Theorem 3.3.2. The second variation
RERUA A = a(u)(A A | bu)(A A
is positive for all A2 H nf0Og if and only if there is no positive eigenvalue

of (3.19) or if the lowest positive eigenvalue satises ; > 1.

Proof. (i) Suppose that the second variation is positive, then

bu)(v;v) _ 1

a(u)(v;v)

forall v2 H nfOg. If b(u)(v;v) - 0 for all H, then there is no positive
eigenvalue of (3.19). Assumédu)(v;v) > 0 for aw 2 H, then we obtain

from the above lemma that the lowest positive eigenvalue sases ,; > 1.
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(i) Suppose that there is no positive eigenvalue or that thelowest positive
eigenvalue satis es, ; > 1.

(iila) Consider the subcase thatb(u)(v;v) - 0 forall v2 H, then
a(u)(v;v) i bu)(viv), O

for all v2 H. It follows that
a(u)(v;v) i b(u)(viv) >0

for all v2 H nf0Og. If not, then we have for aw 2 H nfOg that a(u)(w;w) =
b(u)(w;w). Thus a(u)(w;w) - 0, which implies that w = 0.

(iib) Suppose that there is aw 2 H such that b(u)(w;w) > 0. Then there is
at least one positive eigenvalue and the lowest positive eanvalue satis es,

see the lemma above,
i G bu)(v;v)

o a(u)(viv)
for all v2 H nf0g. According to the assumption there is a positive2 such
that L

1j 2= 1 il'

It follows that
a(u)(v;v) i blu)(v;v), 2a(u)(v;v)
forall v2 H. 2

Remark. In general, the lowest positive eigenvalue ; is not known explic-
itly. Thus, the above theorem leads to an important problem in the calculus
of variations: "nd lower bounds of 7.

3.3.2 Equality constraints

E(u+ h)

E(u)+ FEQu); hi + EFEOQU)h:hI + (jihijs)iihii&;

Gi(u+ h) gi(u) + hglu); hi + %ngo?u)h;hi + 7 (ijhije)iihii;

where limy o (t) = 0, hEQu); hi, hgYu); hi are bounded linear functionals
on B which admit a extensions to bounded linear functionals onH. We
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suppose thathE ®Qu)v; hi and hg®u)v; hi are bilinear forms onB £ B which
has continuous extensions to symmetric, bounded bilineardrms onH £ H.

Ry,
EXAMPLE: B = Cl[a;H, H = H(a;b) and E(v) = _’ (v{x))? dx, then

Zb 1Zb
E(u+ h)= E(u)+ uqx)h9x) dx + 5 hqx)h9x) dx:
a a
Set for (v;,) 2 B£ R™
xn
L(vi,) = EMWM+ gV
i=1
X 0
Lqv:,) = EW+  ,jdv)
j=1
LRv;.) = E%w+ L jgtv:
j=1
Let
V=fv2B: g(v=0;i=1;:::;mg
and assume

I Qu;, Oh;hi = a(u;, O (h;h) i bu;, ©)(h;h);

wherea(u;, °)(v; h) and b(u;, °)(v; h) are bounded bilinear symmetric forms
onH £ H, a(u;, %(v;v) is nonnegative onH and

i ovge 12 .
@ a(u;, ")(v;v) is equivalent to a horm onH,
(b) b(u;, %)(v;h) is a completely continuous form onH £ H.
Theorem 3.3.3. Suppose that(u;, %) 2 V £ R™ satis es LYu;, %) =0 and

a(u;, 9 (h;h) i b(u;, %)(h;h) > 0

is a strict weak local minimizer of E in V.



154 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Proof. The proof is close to the proof of Theorem 3.3.1. Ifu is no strict
local weak minimizer, then there exists a sequence, 2 V, jjun i Ujjg 60,
Uy, ! uin B such that

0, E(un)i E(u=Lun,%i Lu;,9
= Y, Diuni i+ %H-O?U;,O)(uni u);Un i Ui
+ (ijun i ujis)iiun i ujjf
= %a(U;,O)(uni UiUn i U)i %b(U;,O)(Uni UjUn i U)
+ " (ijun i ujjs)iiun i UjjF:

Set i ¢ 1
th= a(u;, 9)(Uni Uupj u) '

and w, = th(un i u). Then
0, 1i b(u;, ®)(Wn;wn)+2" (jjun i Uiis)iiwniif:
Let w, +w in H for a subsequence, then
0, 1j b(u;, %)(w;w)

and
a(u;, O)(w;w) - 1

Summarizing, we arrive at
a(u;, *)(wiw) i blu;, °)(wiw) - 0

for a w 6 0 satisfying

The previous equations follow from the above expansion ofj (u + h). 2

There is a related result to Theorem 3.3.2 for constraint prdolems considered
here. Set
W =fh2H: hgdu);hi =0; j=1;:::;mg

and consider the eigenvalue problem

w2 Wnfog: a(u;, 9)(w;A)= b(u;, %) (w;A) foral A2 W: (3.20)
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Theorem 3.3.4. Suppose that(u;, % 2 V £ R™ satises Lqu;, % = 0.
Then u de nes a strict local weak minimizer of E in V if there is no positive
eigenvalue of (3.20) or if the lowest positive eigenvalue a'es , 7 > 1.

Proof. Exercise.

3.3.3 Unilateral constraints

AssumeE : B 7! R. Let V ¥2B be a nonempty subset and suppose that
u 2V is a weak local minimizer ofE in V, then

hEYu);wi, 0 forallw2 T(V;u);

see Theorem 3.2.1. For the de nition of T(V; u) see Section 3.1. We recall
that we always suppose thatu is not isolated in V.
For given u 2 B we assume

E(u+h)= E(u)+ EYu);hi + %VEO?U)h:hi + 7 (iihiis)iihiif ;

where hEQu); hi is a bounded linear functional onB which admits an ex-
tension to a bounded linear functional onH, and hEQu)v; hi is a bilinear
form on B £ B which has a continuous extensions to a symmetric, bounded
bilinear form on H £ H. Moreover, we suppose that

FE®Qu)h; hi = a(u)(h;h) i Blu)(h; h);

where a(u)(v; h) and b(u)(v;h) are bounded bilinear symmetric forms on
H £ H, a(u)(v; V) is nonnegative onH and

O (a(w(v;v)) 122 s equivalent to a norm onH,
(@ii) b(u)(v;h) is a completely continuous form onH £ H.

De nition.  Let Teo(V;u) be the set of allw 2 T(V; u) such that, if u, and
th = jjuUn i ujj,ul are associated sequences v, then

limsup t2hEQu);un j ui < 1:
nil

Corollary. If u2 V satis es the necessary conditionrEqu);wi, 0 for all
w 2 T(V;u), then EQu);wi =0 for all w2 Tgo(V;u).
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Proof. Exercise.

Theorem 3.3.5. Suppose thatu 2 V satis es the necessary condition of
Theorem 3.2.1 and that

lim inf t2HEQu);unj ui, O
for all associated sequencesy, t, to w 2 Tgo(V;U). Then u is a strict weak
local minimizer of E in V if Tgo(V;u) = f0Og or if

a(w(w;w) i bu)(w;w) >0 forall w2 Tego(V;u) nfOg:

Proof. If u is no strict local weak minimizer of E in V, then there exists a
sequenceu, 2 V satisfying jju, i ujjg 60, up, ! uin B, such that

E(uy , E(utu,ju
= E(u)+ EQu);u, i ui
+%[(a(U)(uni Upun i u)i b(u)(uni ujuni u]
+"(jjun i uiis)iiuni ujif:
Set
th = (a(u)(un i Uupj u)i

and w, = th(un i u). Then
0, taPEXU)iwni + S[Li B(u)(Wa;wa)]+ " (jun i ujje)iiwniifi;  (3.21)

which implies that

limsup t2rEQu);un i ui < 1:
nil

It follows, if wg is a weak limit of a subsequencewnno of wy,, that wg 2
Teo(V; u), and inequality (3.21) yields
0, Iirr]plinkaO(u);tnownoi + %[1i b(u)(wo; wo)]:

Since the rst term on the right hand side is nonnegative by assmption, we
get
0, 1j b(u)(wo;Wwo);
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which implies that wp 6 0. Since the square of the norm on a real Hilbert
space de nes a weakly lower semicontinuous functional, we ke

a(u)(wo;wp) - L
Combining the two previous inequalities, we obtain nally th at
a(u)(wo; wo) i b(u)(wo;wo) - 1j b(u)(wo;wo) - O;
which is a contradiction to the assumptions of the theorem. 2
Remark. Assumption
lim inf t2HEQu);unj ui, O
is satis ed if V is convex sincelEqu);vij ui, Oforallv2 V.

Corollary. A u 2 V satisfying the necessary condition is a strict weak local
minimizer of E in V if
supb(u)(v;v) < 1;

where the supremum is taken for alv 2 Teo(V;u) satisfying a(u)(v;v) - 1.
Proof. Inequality a(u)(v;v) j b(u)(v;v) > 0 for v 2 Tgo(V;u) is equivalent
toli b(u)(v;v) > 0 forv 2 Teo(V;Uu) satisfying a(u)(v;v) = 1. We recall
that Teo(V;U) is a cone with vertex at zero. 2

It follows immediately

Corollary. Let K be a closed cone with vertex at zero satisfyingeo(V; u) %
K. Suppose thatu 2 V satis es the necessary condition. Thenu is a strict
weak local minimizer of E in V if

L :=max b(u)(v;v) < 1;
where the maximum is taken over 2 K satisfying a(u)(v;v) - 1.

Remark. If K is convex and if there exists aw 2 K such that b(u)(w;w) >
0, then ti ! is the lowest positive eigenvalue of the variational inequiity,
see [37],

w2K: auw,vi w), ,b(u(w;vi w) forall v2K:
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Example: Stability of a unilateral beam

Consider the example "A unilateral problem for the beam" of Section 3.2.8,
see Figure 3.13. Set

V = fv2 H3(O;1)\ H?0;l): v(x)- don (0;l)g;
z |

u9x)vox) dx
2

uqx)vix) dx

a(u;v)

b(u; v)

and 1
E(v;,)= éa(V;V)i ’Eb(v;V);

whereu; v2 V and, = P=EI ). The family of functions

8 3
3 g p3< +sin(p§< - 0- x<k
u=u(k;x) = 3 0 d . k- x-1jk
4 V@i x)+sinC L (@i x) : li ke x<l
where 0< k - [=2 and , = (¥%=R? denes solutions of the variational
inequality

u2V: HEYu, );vj ui, 0 forallv2V;
where | = (¥4=R2.
Proposition. Suppose thatl=4 <k - =2, then u = u(k;x) is a strict local
minimizer of E in V, i. e., there is a % >0 such thatE(u;, ) <E (v;,) for

all v2 V satisfying 0 < jjui Vjjuzy) <% and u is no local minimizer if
k<l=4.

Proof. The coneTgo(V;U) is a subset of the linear space

L(k)= fv2 Hg(0; )\ HZ(0;1): v(k) = v(Ii k)=0; vik)= v{li k)=0g;
see the following lemma. We show, see Theorem 3.3.5 and thecead Corol-
lary, that a(v;v)j ,b(v;v)>Oforallv2 L(k)nfOgifl=4<k - |=2. We

recall that , = (¥=R2. Consider the eigenvalue problem

w2 L(k): alw;v)= b(w;v) forall v2 L(k): (3.22)
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In fact, this problem splits into three problems if 0 <k <I= 2. The rst one
is to nd the lowest eigenvalue of a compressed beam of lengthj 2k which
is clamped at both ends, and the other two consist in nding the lowest
eigenvalue of the compressed beam of lengtk which is simply supported
at one end and clamped at the other end. Thus the lowest eigemlue 1 ;

of (3.22) is
(3.22) (5 - u )
. 1 2 2Y.
11 =min = ;
k i 2k

where ¢1 = 4:4934:: is the lowest positive zero of tarx = x. Then u is a
strict weak local minimizer if

3 1 ’ 5
.= E/4 <1l
is satis ed. This inequality is satis ed if and only if 1=4<k - |=2.
If 0 <k <= 4, thenu(k;x) is no local minimizer sinceE (u+w;, ) < E (u;, ),
wherew(x), k - x - |j k, is the negative eigenfunction to the rst eigenvalue
of the compressed beam of length; 2k which is clamped at both endsx = k
andx=1; k.On0- x- kandonlj k- x- | we setw(x)=0. 2

It remains to show

Lemma. The coneTgo(V;U) is a subset of the linear space

L(k)= fv2 H3O; 1)\ H2(0;1): v(k)= v(li k)=0; viI)= vl k)=0g:

Proof. Let w 2 Tgo(V;u), i. e., there is a sequencas, 2 V, u, ! uinH
such that t,(un j u) +w , wheret, = jjup j Ujjhl and

limsupt2rEqu;, );un i ui < 1:
n!l

We have
wh(k) - 0 and wn(lj k) - O;
wherew, = th(un i u), and

FEQU;, );wni = § Aqwn(K) i Aown(l i K); (3.23)

with
A= u%; 1); A=u'Q; k+0)



160 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

are positive constants. From the de nition of Tgo(V; u) it follows that
REYu;, );whi - cith

By ¢ we denote positive constants. Set
2n = th i uni Ujin;

then
i A1wWn(K) i Aowh(li K) - €12n: (3.24)

It follows that wp(K); wh(l'j k)! Oasn!1 , which implies
w(k)=0 and w(lj k)=0:
Now we prove that
wik)=0 and wql; k)=0:
We haveu + 2,wy, = up, thatis u+ 2,w, - don [Gl], or
2own - dj ou on [Gl]: (3.25)

Sinceu 2 H3(0;1), which follows directly by calculation or from a general
regularity result due to Frehse [17], andw, 2 H?(0;1), we have the Taylor
expansions

. .
wn(k) + wi(k)h+ O jhj*? ;
3

u(k) + udk)h + %uo?k)h2+ O jhj>?
. '

wn(k + h)

u(k + h)

d+ O jhj>?

SLet x§ h2 (0;1)and v2 H™(0;1). Then

v(x + h) = v(x)+ vox)h+ ::: 1

MY (OR™ L+ Ry
mi oW m

where z,

— 1 . mij 1,,(m)
Rm_i(mi D, (hijt) v (x + t) dt

which satis es
2mi 1

iRmj - civ™jigm@ayihj” 2
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sinceuqk) = u°fk) = 0. Then we obtain from (3.25) that
. .

2 Wa(K)+ Wa(k)hi cfhj®? - cajhj>™: (3.26)

We consider two cases.

Case 1. Suppose thatw, (k) = 0 for a subsequence, then we get from (3.26)
that wQ(k) = O for this sequence, which impliesw{k) = 0.

Case 2. Suppose thatw, (k) < 0 for all n > n . Set

® =i Wa(k); “n = jwp(k)j:

From above we have that®, ! Oasn!1l . Assume ,, witha positive
constant . Set

h= 2% signwd(K)):
then we obtain from inequality (3.26) that
A !
- Moo Ta H o TTs=
2 2
20 i@ +2®, 2 o & . C3 g.h :
which implies
A M '”3—2! H s
2 - 2 B
2, ®hij C i‘” - C3 i‘” :
Consequently
2. @ (3.27)

for all n, ng, ng suxciently large. Combining this inequality with inequal-
ity (3.24), we nd
A1@®, - C1y@®32

which is a contradiction to A; > 0. Consequentlyw?(k) ! 0. Thus wqk) =
0. We repeat the above consideration ak = | k and obtain that w1 k) =
0. 2
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3.3.4 Exercises

1. Show that the square of the norm on a Hilbert space de nes a vakly
lower semicontinuous functional.

2. SetB = Cl[a;b, H = H(a;b) and

Zy
E(v)=  f(xv(x);vix)) dx;

a

wherev 2 B, and f is assumed to be suzciently regular.
Show, ifu; h 2 B, then

E(u+ h)= E(u)+ hEYu);hi + %FEOQU)h:hi + " (iihiig )iiiid ;
where

Zy
[f (¢ u; uQh + fo(x; u;u9hY dx

hEYu); hi

z b
[f uu (X u; UYh? + 2 yo(x; u; uYhh©
a

hE %Qu)h; hi
+f youo(x; u; uYh®] dx;

and limg o~ (t) = 0.
. Ro
Hint: Setg(?)= . f(x;u + 2h;u®+ 2h9 dx. Then

o(1) = 90) + 6%0) + Sa%0)+ S1ets) i ol
where 0< + < 1.

3. Set Z b
a(u)(h; h) = f youo(x; u; u9YhYx)? dx;

a

where u; h 2 Cla;b. Show that (a(u)(h;h)) 122 s equivalent to a
norm on Hg(a; b), provided that the strict Legendre condition

f uouo(X; u(x); udx)) > 0

is satis ed on [a; b.
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Hint: Show that there exists a positive constantc such that
Zy Zy
hdx)?dx, ¢ h(x)?dx

a a
for all h 2 Ci(a;b).

4. Show that the bilinear form dened on H £ H, whereH = H1(a;b),
Zy
b(u)(A; A) = | [f wo(AA+ APR) + f AA] dx;

a

wheref ,o; fuu 2 C[a; b, is completely continuous onH £ H, i. e.,
Jim ) (AiA) = BU)(AR)

if Ay +A and A +A inH.

Hint: (i) The sequencesf A,g, fA g are bounded inH (a;b).

(i) The sequencesf A, g, fAjg are equicontinuous sequences.
(iii) Use the Arzela-Ascoli Theorem.

5. Prove Theorem 3.3.4.
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3.4 Suzcient condition; strong minimizers

The following consideration concerns a class of free probies. There are
related results for isoperimetric problems, see [6, 52, 19Jor example. Set

V = fv2 Cla;b: v(a) = ua; v(b) = upg

and forv 2 V Z,
E(v) = f (x;v(x);v{x)) dx;

a
wheref (Xx;y; p) is a given and suzciently regular function f : [a;H£E RER 7!
R.

We recall that u 2 V is called aweaklocal minimizer of E in V if there
exists a% >0 such that E(u) - E(v) for all v 2 V satisfying jjvi Ujjci[an <
Y% And u 2 V is said to be astrong local minimizer of E in V if there exists
a%>0such that E(u) - E(v) forall v 2V satisfying jjvi Ujjcan <%

Let u 2 V be a weak solution of the Euler equation, that is
u2V: hEQu);Ai =0 forall A2V V:

If the strict Legendre condition is satis ed on [a; b, then u 2 Cz[a; b, i e,
u is a solution of the Euler equation. Assume

hEQu)A; A > 0 forall A2 (Vi V)nfOg;

then u is a weak local minimizer ofE in V, see Theorem 3.3.1. If additionally
fop(X;y;p), Oforall (x;y) 2 D+(u) and p2 R, where for a+ >0

Di(u)=f(x;y): a- x- by ux)ij £+ y- u(x)+ zg;
then we will prove that u is a strong local minimizer of E in V.

De nition. A set D % R? is said to besimply coveredby a family of curves
de ned by y = g(x;c), c 2 (c1; ), if each point (x;y) 2 D is contained in
exactly one of these curves. Such a family is calledfaliation of D. If a given
curve de ned by y = u(x) is contained in this family, that is u(x) = g(x; co),
€1 < Cg <cC1, then u is called embeddedn this family.

Lemma 3.4.1 (Existence of an embedding family). Let u 2 V \ C?[a; 1 be
a solution of the Euler equation. Suppose that the strict Legndre condition
fpp(x;u(x);uo(x)) > 0 is satis ed on [a;b and that the second variation
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hEQu)A; Al is positive on (V i V) nf0Og. Then there exists a foliationv(*),
jtj <2, of D.(u), provided + and 2 are suzxciently small. Every element of
this foliation solves the Euler equation, andv(0) = u.

Proof. Consider the family of boundary value problems

%fvo(x;v;vcb = fy(x;v;v9 on (a;b (3.28)
v(a) = ug+!? (3.29)
v = up+ (3.30)

where?! is a constant,? 2 (j 2;2), 2> 0. De ne the mapping
M(v;t): C’la;H £ (i 22) 7' Cla;HE£ RER

by 0
i I y00x v v+ fu(x;v;vO
M(v;t)= @ v(a)i Uai
v(b) i upi *

We seek a solutionv(t) of M(v;t) = 0. Since M (v(0);0) = 0, where
v(0) = u, and M (u; 0) de ned by
0 1
i (RhY%+ sh
My(u;0)h = @ h(a) A
h(b)

is a regular mapping from C?[a; b 7! C[a;H £ R £ R, it follows from an
implicit function theorem, see [28], for example, that there exists a unique
solution

v(X;1)= u+ v i(x)+ r(x;1) (3.32)

of (3.28), (3.29), (3.29), wherer 2 Cl([a;H £ (j %2)), r(x;1) = oft),
lim:y gra(x;) = 0, uniformly on [ a;b], and v; is the solution of the Ja-
cobi boundary value problem.

i d_i[R(x;u;u() vi+S(kuu)v = 0 on(ab
vi@ = 1
v(h = 1:
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The solution vy is positive on [a; b. To show this, we set® (x) = max fj vi(x);0g,

then
Zy

[i (RVY® + Sv3] dx

o
|

a

Zy

(Rv® %+ Sv3) dx
az
= (R3® + S32) dx
fi vi(x)>0g
b
= (R3® + S3?) dx:
a
It follows that 3 = 0, i. e., vi(x) , 0 on [a;b. Assume there is a zero
Xo 2 (a;b) of vi(x), then vdxp) = 0. Consequently v(x) ~ 0 on [a; b, which
contradicts the boundary conditions.
Finally, for given (x;y) 2 D+(u), £ > 0 suzciently small, there exists a
unique solution® = 1 (x;y) of v(x;1)j y =0 since vi (x; 0) = v1(x) > 0 on

[a; b]. 2

Let v(x;1) be the solution of (3.28){(3.31). SetF(x;*) = v{x;!). From
the previous lemma we have that for given k;y) 2 D.(u) there exists a
unique ! = 1(x;y) which de nes the curve of the foliation which contains
(x;y). Set

©(xy) = F(x* (Xy));
and consider the vector eldA = (Q;i P), where

P(xy) f(Xy;0(%Y)) i O y)fp(Xy; ©(Xy))
Q(x;y) fo(X;y; ©(X;y)):

Lemma 3.4.2 (Hilbert's invariant integral). Suppose thatC, is a curve in
D.(u) dened byy = v(x), v2 C[a; [, v(a) = us and v(b) = up. Then, the
integral 7

U(v) = P(xy)dx + Q(x;y)dy;

Cv

is independent ofv.

Proof. We show that Py = Qy in -. This follows by a straightforward
calculation. We have

Py = fy+f,0yi ©fpi O(fpy + fppCy)
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Thus

The right hand side is zero inD.(u). To show this, let (xo;Yo) 2 D.(u) be
given, and consider the curve of the foliation de ned by

yAx) = ©(xy(x))
y(Xo) Yo

We recall that

O(xy) = F(xc(xy))
F (x; c(x;y(x)))
O(x;y(x));

if y(x) de nes a curve of the foliation, sincec(x;y) =const. along this curve.
Then

yd(Xo)
y*¥xo)

©( Xo;Yo)
© x(X0; Yo) + © y(Xo; Yo)yAXo)
© x(Xo0; Yo) + © y(Xo; Yo)©(Xo; Yo):

Inserting y{xo) and y°xo) from above into the Euler equation, which is
satis ed along every curve of the foliation,

fyi foxi fpyy®i fppy®=0;
we obtain that Py i Qx =0 at (Xo;Yo) 2 D+(u). 2
On the weak local minimizer u in consideration we have
E(u) = U(u) (3.32)

since
Zy
[f (x; u(x); ©(x; u(x)) i ©(x; u(x))f p(X; u(x); A(X; u(x))

zf fp(x; u(x); uqx)) uqx)] dx
i f (x;u(x); uqx)) dx:

a

We recall that uqx) = ©( x; u(x)).

U(u)
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De nition.  The function
ECGy;pa)= f(sy;a)i FOGy;p)+(pi af p(X;y;p)

is called Weierstrass excess function

Corollary.  Suppose thatf ,o(x;y;p) , 0 for all (x;y) 2 D+(u) and for all
p2R,thenE , Oin D.(u)£ RE£ R.

Theorem 3.4.1. Let u 2 V be a solution of the weak Euler equation, that
is of EEQu); Al =0 for all A2 Vi V. Suppose that

(i) fpp(x;u(x);ux)) > 0 on [a;H,

(i) EEQu)A;A > Oforall A2 (Vi V)nfOg,

(i) E(x;y;p;q), Oforall (x;y) 2 D4(u) and for all p; g2 R.

Then u is a strong local minimizer of E in V.

Proof. Let v2 V\ D.(u). From equation (3.32) and Lemma 3.4.2 we see
that

E(v)i E(u)

E(v)i U(u)

= E(V)i U(v)
z b
= [f Gviv9 i f(xv; Ox;v)

SO0V i VOFp(%; v; ©(x; v))] dx
i E(x; v(X); ©(x; v); V9 dx

0:

5

EXAMPLE: Set V = fv2 C0;1]: v(0)=0; v(l)=1gand forv2 V
Z, c a
E(v) = . VO)? i (v(x)? dx:

The solution of the Euler equation is u = sin x=sinl, provided | 6 kY%
k = 81;82;:::: Assumption (iii) of the above theprem is satis ed since
E(x;y;p;0) = (pi )2, and assumption (i), that is (; (A% A?) dx> 0 for
all A2 (Vi V)nfOg holds if the lowest eigenvalue, 1 = (¥4=)? of j A= A
on (0;1), A(0) = A(l) =0 satises , 1 > 1, see Theorem 3.3.2. Thusi is a
strong local minimizer of E in V if 0 <l <%,

In fact, u is a strong global minimizer ofE in V if 0 <| <%, see an exercise.
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3.4.1 Exercises

R . . .
1. Suppose that ” (RAZ + SA2) dx > 0 for all A2 (Vi V)nfog.
Show that there exists a unique solution of the Jacobi boundey value
problem

i %[R(X;U;U‘ﬁ v+ S(u;ud v g(x) on (a;b)
v(a)

v(b)

Va

Vi,

whereg 2 Cla; b and v,; vp 2 R are given.

2. Show that the solution u of the example de nes a global strong mini-
mizer of E in V.
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3.5 Optimal control

For a given function v(t) 2 U X2R™, to - t - t1, we consider the boundary
value problem

yAt) = f Gy () v(t); y(to) = x% y(t1) = x*; (3.33)
wherey 2 R", x% and x* are given, and
f:to;t1]E RTER™ 7! R":

In general, there is no solution of such a problem. Thereforave consider
the set of admissible controlsU,q de ned by the set of piecewise continu-
ous functionsv on [tp; t1] such that there exists a continuous and piecewise
continuously di®erentiable solution of the boundary value poblem. Such a
solution is continuously di®erentiable at all regular points of the control v.
A point t 2 (tg;t1) where v(t) is continuous is called aregular point of the
control v. We suppose that this set is not empty. Assume a cost functioal

is given by .
t1

E(v) = FO(ty(1); v(t) dt;

to

where
fO: [to;t1] ER"E£ R™ 7! R;

v 2 Ugg and y(t) is the solution of the above boundary value problem with
the control v.

The functions f; f © are assumed to be continuous int{y;v) and contin-
uously di®erentiable in ¢;y). It is not required that these functions are
di®erentiable with respect tov.

Then the problem of optimal control is

vryg:; E(v): (3.34)

A piecewise continuous solutionu is called optimal control and the contin-
uous and piecewise continuously di®erentiable solution of the associated
system of boundary value problems is said to be amptimal trajectory .
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3.5.1 Pontryagin's maximum principle

The governing necessary condition for this type of problemss the following
maximum principle, see Pontryagin et al. [48]. Set

H(ty;v;po;p) = pof °(Gy;v) + o f (G y;v)i;

wherepp 2 R and p 2 R". This function H is called Hamilton function
associated to the above optimal control problem.

Theorem 3.5.1 (Pontryagin's maximum principle). Let u(t) be a piecewise
continuous solution of the maximum problem, and le(t) be the associated
continuous and piecewise continuously di®erentiable tragory. Then there
exists a constantpy and a continuous and piecewise continuously di®eren-
tiable vector function p(t), not both are zero, such that

(i) p(t) is a solution of the linear system

Pt = i Hx(&x(8); u(t); po; p(1)); (3.35)
in all regular points.
(ii) In all regular points t of the optimal control u(t) we have

H (t; x (t); u(t); po; p(t)) , H(t;x(t);Vv; po;p(t)) for all v2 U:

(i) po=1 or pp=0.
De nition.  The vector function p(t) is called adjoint function.

Remarks. (i) In the case that we do not prescribe the endpointx?®, which

is called the free endpoint case, then we have to add in (i) theadditional

endpoint condition p(t;) = 0. For this case of a free endpoint there is an
elementary proof of the Pontryagin maximum principle, see kelow.

(ii) If the endpoint condition is y(t;) , x%,thenp(t;), 0, and if the optimal

trajectory satis es x(t1) > 0, then p(t;) = 0.

3.5.2 Examples

Example: Consumption versus investment
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This example was taken from [55], pp. 78. Suppose that the adissible set
of controls isV =[0; 1], the cost functional is given by
Zt
E(v)= U@ v(t) dt
0

and the di®erential equation and the boundary conditions whch de nes the
trajectory y: [0;T] 7! R are

yAt) = v(t); y(0) = xo; ¥(T), X
We suppose additionally that

Xo<X1<Xo+ T: (3.36)

For the utility function U(s), 0 - s< 1, we assumeU 2 C2, U%> 0 and
U%< 0.

Economic interpretation: x(t) level of infrastructure at time t,

u(t) level of investment in infrastructure at t,

1 u(t) level of consumption att,

[0; T] planning period.

The Hamilton function is here
H = poUi )+ pv;
then equation (3.35) is given by
pYt) = i Hx:

SinceH does not depend ory we nd that p(t) = c¢= const: andc, 0, see
the second remark above. Thus, ifu(t) is an optimal control then we have
in regular points t the inequality

H=pU(li u(t)+ cut), pU@Qij v)+ cv forall v2[0;1] (3.37)

We recall that the nonnegative constantspp and ¢ are not simultaneously
zero. SinceHyy = poU%1i u), wherepg, 0 andU%=< 0, we nd from the
maximum property (3.37) three cases:

() u=0is a maximizer of H, then H, - 0O atu=0,

(i) u= a, wherea, 0 <a< 1, is a constant maximizesH, then H, = 0 at
u= a,
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(i) u=1is a maximizer of H, then H, , O atu = 1.

SinceHy = | ppUY1i u)+ c, we have for regulart: if
u(t) = 0; thenc- poUYL); (3.38)
O<u(t) < 1; then ppUYLi u(t) = c; (3.39)
u(t) = 1; then poUY0) - c: (3.40)

We show that pg = 1. If not, then pg = 0. Then u = 1 is a maximizer
of H for all t. It follows from the di®erential equation x{t) = u(t) = 1
that x(t) = t+ Xo, thus x(T) = T + Xo. The assumption (3.36) implies
that the optimal trajectory satises x(T) > x ;. This case is covered by
Section 3.5.3 (free endpoint) below. In this case we have = p(T) = 0.
Sincepp = 1, the Hamilton function H = U(1j v)+ cv is strictly concave,
which implies that there exists a unique maximizer ofH in [0; 1] which does
not depend oft sinceH is independently oft. Then the optimal control is
u(t) = u® = const;, u” 2 [0; 1].

We have u® > 0. If not, then we get from xYt) = u(t), x(0) = Xo, that
Xx(T) = Xo, a contradiction to the assumption (3.36).

The inequality u® > 0 implies that ¢ > 0, see (3.38)-(3.40). Therx(T) = xj:
If Xx(T) >x 1, then p(T) = c=0, see the remark above.

If u® = 1, then there is no consumption, which contradicts the side con-
dition (3.36) since in this casex(t) = t+ Xgo. Thus x(T) = T + Xq, a
contradiction to x(T), XgandXx; <T + Xg.

We get nally that u® 2 (0; 1), which implies that x(t) = xo+ u®t. Thus we
have

X1i Xo
u(t) = u®=
(t) T
sincex(T) = X1, and the associated optimal trajectory is given by
X1i Xo
X(t) = Xo+ t:
() = Xo T

Example: Workers versus capitalists

This example was taken from [55], pp. 222. Suppose that we havtwo
admissible sets of controlsu(t) 2 U =[a;b, 0<a<b< 1,andv(t)2 V =
[0; 1], and two cost functionalsW and C given by
Zq

u(t)K (t) dt;
pa

(@i vt i u(t)K(t) dt:

W (u; v)

C(u;v)
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and the di®erential equation and the boundary conditions wh¢h de ne the
trajectory K (t): [0;T]7! R are

KYt)= v()(@ i u(t)K(t); K(©O)= Ko> 0; K(T) free:

That is, no assumption on the nal state is posed. We suppose atitionally

that
1

1i b:

1
T> = dT>
IDan

Economic interpretation: K (t) capital stock of the rm. Rate of production
is proportional to K,

u(t)K (t) share of prot of the workers,

(1 u(t)K(t) protofthe rm,

v(t)(1 i u(t))K (1) is investment of the company and the rest (1 v(t))(1 i
u(t))K (t) remains for consumption of the rm.

We are looking for a Nash equilibrium, that is, for piecewise continuous
controls u®(t) 2 U, v°(t) 2 V such that

W (v ., W(u;v®) forallu2 U
C(u®;v®) ., C(u%v) forall v2V:

Suppose there exists a Nash equilibrium, then the associadeHamilton func-
tions are given by, if pg = 1:

Hw
Hc

uk + pvi(t)(1j uwK
Ti V@i V@)K +avli U)K

where p and g are the associate adjoint functions.

A discussion similar to the previous example leads to the fdbwing result,
exercise or [55], pp 224,
Caseb, 1=2. Sett®= T 1=(1i b), then

u*(t)
u®(t)

a; Vi(t)=1 if t2][0;t9;
b: V(t)=0 if t2 (t°T]:

Caseb < 1=2. Set
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then

u(t)
vi(t)

a if t2 [0:t%;u(t) = b if t 2 (t99T];
1 if t2[0;t%;v(t) =0 if t2 (tOT]:
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3.5.3 Proof of Pontryagin's maximum principle; free end-
point

Here we prove Theorem 3.5.1, wher@g := 1, and the boundary conditions
in (3.33) are replaced byy(tg) = x°, no condition at t;. The proof is close
to a proof given in [24].

Let u(t) be an optimal control and let ¢ 2 (tg;t1) be a regular point. We
de ne a new admissible controlu:(t), see Figure 3.14 by aneedle variation

7 (t) t6dei %¢l

u : éi 5S¢

u:=(t) = ;
® viooot2fei el

where2 > 0 is suzciently small and v 2 U. Let x:(t), see Figure 3.15, be

z

t-e t t 1 t

to

Figure 3.14: Needle variation

X ()

xé/xﬁ//

t-e t t 1 t

Figure 3.15: Variation of the trajectory
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the perturbed trajectory associated to u:(t) de ned by

%
X(t)_ ’ X(t) t0<t<(.; i 2 .
TTOX() ¢ 2<t<t g’

where x® denotes the solution of the initial value problem

yqt)
y(i ?)

f(Ly(t),u:(t)) ¢i 2<t<t g
X(¢i 2?):

Since

i x2(¢)? + o(2)

i x3e)? + o(?)

X2(¢éi 2) i Xa(¢)
X(&i 2)i x()

as2! 0, it follows that
x(¢)+ 2x%e) i xXe)+ o(?)

X(e)+ 2[f (eix(e);v)i F(eix(e);u(e)l+ o?)
X(¢)+ 2[f (&x(e)iv) i T (eix(e)u(e)]+ of?):

Xz(¢)

The previous equation is a consequence of:(¢) = x(¢) + O(2). We recall
that ¢ is a regular point. Set

w(eiV) = f(eixe)iv) i fleix(e)iu(e));
then the changed trajectory x:(t) on ¢ <t<t 1 is given by, see an exercise,
Xa(t) = Xx(t) + 2E(t; ¢)w(es V) + 0(3);
where £(t; ¢) is the fundamental matrix associated to the linear system

wqt) = f(tx(1); u(t) wt);

where
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We recall that £( t;t) = |, | the identity matrix, and w(t) = £( t;¢) ais the
solution of the initial value problem wqt) = f,w(t), w(¢) = a. We have
Z
<
E(u:)j E(u) = If Ot x2(t); v) i fO®t; x (t); u(t))] dt
&?

+ _tl [f O(t; x2(t); u(t)) i fO(t;x(t); u(t))] dt
= 2[fZ°(t°;x2(t“);v))i fO(t7; x(t7); u(t?)]
t1 3
G X @u);xe(t) i x(D)i
+o(jx2(t) j x(t)j) dt
= 2[f Oz(tn;xz(t“);v))i fO(t%: x(t%); u(t™))]
ta
+2 K26 x(t); u(t); y(0)i dt+ of2);
wheret® 2 [¢ % ¢l and y(t) := £( t;&)w(e; V).
From the assumption E (uz) - E(u), 2> 0, it follows

im > 0:

Combining this inequality with the previous expansion of E (uz) j E(u), we
obtain
Z,
FOeixev) i FO>esxe)iu(e)+  HEx(®);u(t);y(t)i dt- 0
¢

for every regular ¢, 2 (tp;t1). Then the theorem follows from the formula
Z,,
- HR(EX(O;u); v dt= B (6x(0)iue)ip()iih f(eix(&)iv)i )i
¢ (3.41)
where p(t) is the solution of the initial value problem

P =i fipi f5 p(ta) =0:

Formula (3.41) is a consequence of

Yt y(0)i + hp(t); yAb)i
ihflp;yiih f2:yi + hp;fyyi
ihf0:yi:

d_..
G PO
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3.5.4 Proof of Pontryagin's maximum principle; xed end-
point

Here we will prove Theorem 3.5.1, see [48], pp. 84. The follong proof is
close to [48] and to [3], where an important part of the proof éee Case (ii)
below) is sketched. See also [59] for a sketch of the proof. Weill give an
easy proof of Pontryagin's maximum principle. See also [21] pp. 75, for a
proof, based on Brouwer's xed point theorem.

The idea is to use more than one needle variation of the givenpmiimal
control in order to achieve the “xed target x* with a perturbed trajectory. At
“rst, we transform problem (3.34) into an autonomous problem of Mayer's
type, i. e., we maximize a single coordinate of a new trajecty vector.
De ne the rst new coordinate by the initial value problem

y2 () =1; yne(to) = to;

which implies that yn+1 (t) = t. The second new coordinate is de ned by

Yo(t) = f (yn+1 (8);¥(1); V(1); Yo(to) =0:
Then the maximum problem (3.34) is equivalent to

max Yo(t1;V); (3.42)
v2Ugqq

whereyp(t) © yo(t;v). Set

then the new trajectory satis es the di®erential equation
YO= F(yiyn+1:V) (3.43)
and the boundary and initial conditions are

Yo(to) = 0; yn+1 (to) = to; Y(to) = x% y(t1) = x%; (3.44)

Let

De ne the Hamilton function by

H(Y;Yn+1:V; P) = WP F(Y;Yn+1:V)i:
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Suppose thatu is an optimal control, i. e., a solution of problem (3.42), ard
X is the associated trajectory satisfying

XO= F(x;Xns1;U) " Hp(X;Xns1;U); to<t<t g

We will show that there is a continuous and piecewise contimusly di®er-
entiable vector function P (t) 6 0 which solves

PAt) = i Hx (X Xns1;U;P); to<t<t g (3.45)
and at all regular pointst 2 (tg;t1)
H (X(t); Xn+1 (1); u(t); P (1)) . H(X(1); Xns1 (1); Vi P(1)) (3.46)

for all v2 U, and
po(t) = const:, O: (3.47)

We consider a nite set of needle variations at regular points¢; of the given
optimal control u(t) de ned by replacing u(t) by a constant v; 2 U on the
intervals [¢i i 2ai;¢i], wheretg < ¢ <tq, ¢ di®erent from each other,a; > 0
are xed and 2> 0 is suzciently small, see Figure 3.16. Consider the linear

V2

] t
to ti1-eag tl t2 ea, t2 1
Figure 3.16: Needle variations

system
WYt) = A(t) W(t); (3.48)
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where 0
fo  ¢eef?

Xn+1

fo+l geefprl

Xn+1

The matrix A(t) is piecewise continuous onfp;t1). As in the previous proof
we see that the perturbed trajectory is given by

S
Xa(t)= X(t)+ 2  @&£(t¢)W(a;vi)+ o(3); (3.49)
i=1

where £(t; ¢) is the fundamental matrix to the system (3.48) and
W(asvi) = F(X(a)vi)i F(X(a)iu(a)):

De ne for an s-tuple z = (¢1;:::;¢és), to < ¢éi <tu, ¢ are di®erent from each

NS
Cz;v)=fY2R™ : Y= af(ty;a)W(a;vi); & > 0g:
i=1

This set is a convex cone with vertex at the origin. Denote byZ(s) the set
of all s-tuples z from above and let V(s) be the set of all s-tuples v such
that the coordinates are in U. De ne the set

C=[ 221 [ 222(swv2v(s) C(ZV):

This set is a convex cone irR"*2 with vertex at the origin, see an exercise.
Consider therayL = r eg, r > 0, whereeg = (1;0;:::;0) 2 RN*2 |f
L is not in the interior of C, then we will prove the maximum principle by
using separation results for convex sets. IL is in the interior of C, then
we are lead to a contradiction to the assumption thatu is optimal. In this
case we will show by using Brouwer's xed point theorem that there is an
admissible needle variation which produces an associateddjectory X:(t)
such that the rst coordinate satis es Xo:z(t1) > X o(t1), where xo(t) is the
“rst coordinate of the trajectory X (t) associated to the optimal control u(t).

Case(i). L isnotintheinterior of C. From Theorem 2.6.1 and Theorem 2.6.2
it follows, see two of the following exercises, that there eists a vector P1 2
RN*2 P; 6 0, such that

hPy;yi- 0 forally2 CandhPy;regi, O: (3.50)



182 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Let | be the plane de ned by, see Figure 3.17,
'= fz2 R"2 : WPy;zi = 0g:

Consider the initial value problem

Figure 3.17: Separation ofCand L = reg

PYt) = i Fx (x(t);Xns1:u(t)) P(t); P(t1) = Pu:
Let 3( t;¢) be the fundamental matrix of this system, then
P(t)=2( tito) P(to); P(to)=2 '*(ts;to) P(ta):
Let t 2 (tg;t1) be a regular point of the optimal control u(t). Set
W (tv) = F(X(t); Xn+1 (1);V) i F(X(t); Xn+a (1); U(t)); (3.51)

wherev 2 U. Then
2E(t; )W (L v) 2 C;

where2 > 0. Then, see (3.50),
P (t1); E(ty; )W (L, v)i- O:

Since aT(t; SE(L ¢) = |, wherel is the identity matrix, see an exercise,
and from P(t1) =2&( tq;t)P(t) we obtain

P (t);W(t,v)i- O
Consequently, see the de nition (3.51) ofW (t; V),

H (X(1); Xn+1 (D5 u(t); P(1)) . H(X(1); Xn+a (1); v; P (1))
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for all v 2 U and for all regular points t 2 (to;t1).

Finally, from Hy, = O it follows that po(t) = const:, and from the second
inequality of (3.50) we get that pp, 0. Thus we can assume thafp, = 0 or

po = 1. This follows since we can replaceP; by P1=py in the considerations
above if pp > 0.

Case (ii). Suppose that L is in the interior of C. Then z° = ro€o, ro > 0,
is in the interior of C, and there aren + 2 linearly independent A' 2 C such
that z0 is an interior point of the closed simplexS de ned by

X2 _ X2
AL L, 0
i=1 i=1
see Figure 3.18. Let, j(z) are the (uniquely determined) barycentric coor-

L

o]

Figure 3.18: Simplex in consideration

dinates® of z2 S, then
X2 )
z= Li(2A'":
i=1

4In fact, barycentric Igoordinate%, Lo;ii1;, m of z2 R™ are called the real numbers in
the representation z = {';O ) ix' {10 .1 =1, where x%::i:x™ 2 R™ are given and the
m vectors x' | x°, 1 =1;:::;m are linearly ilgiependent. The m-dimensior@l simplex S
dened by suctpvectors is the set of all z =, m,.ix', where [, 1and ), =1
Thus zj x°=" [0, ,ix',where,;, Oand [, , - 1
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We recall that | {(z) are continuog,s inz, and z is in the interior of S if and
only if ,i(z) > O for everyi and {‘:12 .i(2) < 1. From the de nition of C

we see that

X . o
A= aE(tn )W (G v):
1=1
Consider needle variations of the optimal control at¢/ with associated, jal,
v|, where ¢/, aj and v| are xed, and

-2
ST

i=1

L ,i>0

SinceA' are continuous with respect toq‘, which are all regular by assump-
tion, we can assume that all¢/ are di®erent from each other. Then the
associated perturbed trajectory att = t1 is given by
X2 .
Xz(t) = X(t)+ 2 [+ b(;2)A"
i=1
wherebi(,;2) are continuous in, , for each xed2, 0<2 - 24, 25 suxciently
small, andy(,;2)! Oas?2! O, uniformly onf,k 2 R"*2 . Q. Jic L=
Let z be in the interior of S and let | j(z) are the associated barycentric
coordinates. Set
X2 :
az;?) = Li(@)+ b( (2);2)]A
i=1
X2 .
z+ b (2);9)AY
i=1
and consider for xed2, 0<2 - 2q, the mapping T : S 7! R"*2 dened by
T(z;2) =z q(z;2)+ 2%

This mapping is continuous in z and maps the closed ballB.{z°%) ¥ R"*2,
which is in the interior of S, into this ball, provided that 2j is suzciently
small. Brouwer's xed point theorem, see [8, 30, 22], says thathere is a
z° 2 Bfz°), z® = z°(?), such that T(z%2) = z°. Set,; = ,i(z°) in the
needle variation above, we get nally

Xz(t1) = X (t1) + 2roeo:
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3.5.5 Exercises
1. Consider the "Two sector model", see [55], p. 89. Supposéat the
admissible set of controls isV =[0; 1], the cost functional is given by
Zy
E(v) = y2(t) dt;
0

and the di®erential equations and the side conditions which € ne the
trajectory y: [0;T] 7! R? are

yit) = av(t)y(t); yi(0)=y?
ya(t) ali v(t)yi(t) y2(0)= vy3;

where a is positive constant and the initial data y9 and y9 are given.

2. Consider a model for "Growth that pollutes", see [55], pp. 92. Suppose
that the admissible set of controls isV = [0; 1], the cost functional is

given by ~
-
E(v)= . [(Qi v(t)yi(t) i by(t)] dt;
b is a positive constant, v(t) 2 V piecewise continuous, and the dif-

ferential equations and the side conditions which de ne the tajectory
y: [0;T] 7! R? are

v(t)ya(t); yi(0) = y9; ya(T) free;
yi(t); y2(0) = y9; ya(T) - y3;

y3(t)
y3(t)

where the datay? and y9 and yJ are given.

3. Consider a model for "Consumption versus investment", se [55], pp.
113. Suppose that the admissible set of controls i¥ =[0; 1], the cost
functional is given by

Z: s .
0

wherev(t) 2 V is piecewise continuous, and the di®erential equation
and the side conditions which de nes the trajectoryy : [0;T] 7! R are

yat) = v(t) y(t); y(0)= y°> 0; y(T) free:
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4. Show that the solution x: of the initial value problem, see the proof of
Pontryagin's maximum principle in the case of a free endpoin,

2qt) = f(tz(t);u(t); ¢ <t<ty
z(¢) = x(@)+ w(e;v+ o(?)
satis es

xz(t) = x(1) + 2E(t; e )w(e: V)

Hint: z := (@x=@Y_2=0 is the solution of the initial value problem

2q1t) = fx 2(1), 2(¢) = W(e; V.

5. Show that the mapping M (u;0), see the proof of Lemma 3.4.1, is
regular.

6. Letx : [to;t1] 7! R be aCl[tg;t1]-solution of the initial value problem

xqt)
x(¢)

where a is given and f is suzciently regular with respect to (t;x).
Show that there exists a solutiony(t) of

yqt) f(Ey(1) in(to;ta);
y(e) = a+?

f(tx(t)) in (torty);
a;

where! 2 (j 1o;10), 1> 0 suzciently small.

Hint: Consider the mapping
M(y;1): Cllto;t1] £ R7! Clt;t1] £ R

de ned by
H i ey
y(e)i aj 't ’

and apply an implicit function theorem, see for example [28]

M(y;*) =

7. Let K %2R" be a nonempty convex cone with vertex at the origin and
assumex 62cl K. Then there is ap 2 R" nf0g such that hp;xi > 0
andhp;yi- Oforally2clK.

Hint: Apply Theorem 2.6.1.
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Let K %2 R" be a nonempty convex cone with vertex at the origin, and
assumex 2 @K Then there is ap 2 R" nf0g such that hp;xi, 0 and
hp;yi- Oforally2 K.

Hint: Theorem 2.6.2 says that there argp 2 R" nf0Og and ® 2 R such
that hp;xi = ®and hp;yi- ®forally2 cl K.

. Show that the set C de ned in Section 3.5.4 is a convex cone with

vertex at the origin.

Let A(t) be a continuous N £ N-matrix, tg < t < t 1. Consider
the initial value problems wqt) = A(t)w(t), w(¢) = wo and vqt) =
i AT(t)Vv(t), v(¢) = Vo, where ¢ 2 (to;t1). Denote by £(t;¢) and
3( t;¢) the associated fundamental matrix, respectively. Show tkat
AT(t:¢)E(t;¢) = |, wherel denotes the identity matrix.

Hint: 1If t = ¢, then £(¢;¢0) =2 ¢:¢) = |. Let »2 RN, sety(t) =
a T(t; 0 )E(t;¢)» and show that yqt) = 0. Thus » =2 T(t;¢)E(t; ¢)»
for all »2 RN,

De ne the fundamental matrix for the linear system Y qt) = A(t) Y (t),
where A(t) is a piecewise continuousquadratic matrix.

See [29], pp. 10. LeK % R" be compact and convex and letF :
K 7! K be continuous. Show thatF admits a xed point by assuming
that there is a xed point if K is a ball § or an n-dimensional simplex
8.

Hint: Consider for x 2 § the mapping F (pk (X)), where px is the
orthogonal projection onto K .
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