Prof. Dr. Peter Kunkel Fakultät für Mathematik und Informatik Universität Leipzig

Arbeitsblatt

Numerisches Praktikum

Thema

Ein Schnittebenenverfahren zur Lösung von ganzzahligen linearen Optimierungsproblemen.

Aufgabenstellung

Gegeben sei ein lineares Optimierungsproblem der Form

$$c^T x = \min!$$
 s. t. $Ax = b$, $x > 0$

mit $A \in \mathbb{R}^{m,n}$, $b \in \mathbb{R}^m$ und $c \in \mathbb{R}^n$. Gesucht ist eine optimale Lösung $x \in \mathbb{Z}^n$, sogenanntes ganzzahliges lineares Optimierungsproblem.

Man informiere sich über das sogenannte Schnittebenenverfahren zur Lösung solcher Probleme, implementiere es und teste es an Hand von

$$x_2 = \max!$$
 s. t. $-x_1 + x_2 + x_3 = 1$, $3x_1 + 2x_2 + x_4 = 12$, $2x_1 + 3x_2 + x_5 = 12$, $x \ge 0$, $x \in \mathbb{Z}^5$.

sowie einer Reihe von weiteren Problemen unterschiedlicher Größe.

Quellen

 \emptyset