

Exam solutions

Each exercise is graded between 0 and 5 points.

1. Let (X, \mathcal{F}) be a measurable space and f, g be \mathcal{F} -measurable functions. Show that the set $\{x \in X : e^{f(x)} \ge g(x)\}$ belongs to \mathcal{F} .

Solution. The function $F: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$F(x,y) = e^x - y, \quad (x,y) \in \mathbb{R}^2,$$

is Borel measurable because it is continuous. Hence, the composition $h(x) := F(f(x), g(x)) = e^{f(x)} - g(x), x \in X$, is an \mathcal{F} -measurable function. Therefore, the preimage

$$h^{-1}([0,\infty)) = \{x \in X : h(x) \in [0,\infty)\} = \{x \in X : e^{f(x)} - g(x) \ge 0\}$$

belongs to \mathcal{F} .

2. Construct the σ -algebra on \mathbb{R} generated by the class $\{[0,2), \{3\}\}$.

Solution. The σ -algebra generated by the class $H := \{[0, 2), \{3\}\}$ is defined as follows:

$$\sigma(H) = \{ \emptyset, \mathbb{R}, [0, 2), \{3\}, [0, 2) \cup \{3\}, (-\infty, 0) \cup [2, +\infty), (-\infty, 3) \cup (3, +\infty), (-\infty, 0) \cup [2, 3) \cup (3, +\infty) \}.$$

3. Show that the set

$$G = \{x = (\xi_k)_{k \ge 1} \in c_0 : \xi_k < 1, \forall k \ge 1\}$$

is open in c_0 . Is the set G open in c? Justify your answer.

Solution. Let $x = (\xi_k)_{k \ge 1}$ be an arbitrary element of G. We will find r > 0 such that the open ball

$$B_r(x) = \left\{ y = (\eta_k)_{k \ge 1} \in c_0 : \|x - y\| = \max_{k \ge 1} |\xi_k - \eta_k| < r \right\}$$

is contained in G. This will mean that G is open in c_0 . So, we first remark that the sequence $(\xi_k)_{k\geq 1}$ converges to 0, by the definition of the space c_0 . Consequently, there exists $N \in \mathbb{N}$ such that for all $k \geq N$ it follows that $|\xi_k| < \frac{1}{2}$. In particular, $\xi_k < \frac{1}{2}$ for every $k \geq N$. We define $r := \min \{1 - \xi_1, \ldots, 1 - \xi_{N-1}, \frac{1}{2}\} > 0$. Then for all $y \in B_r(x)$ we have

$$\eta_k = \eta_k - \xi_k + \xi_k \le |\eta_k - \xi_k| + \xi_k \le ||y - x|| + \xi_k < r + \xi_k.$$

If k < N, then $r + \xi_k \le 1 - \xi_k + \xi_k = 1$. For $k \ge N$, $r + \xi_k \le \frac{1}{2} + \xi_k < \frac{1}{2} + \frac{1}{2} = 1$. So, we have obtained that $\eta_k < 1$, $k \ge 1$. This yields that $y \in G$ and, therefore, $B_r(x) \subset G$.

Hovewer, the set G is not open in c. Indeed, for every $x = (\xi_k)_{k \ge 1} \in G$ and r > 0 one has that the vector $y = (\xi_k + \frac{r}{2})_{k \ge 1}$ belongs to $B_r(x) = \{y \in c : ||y - x|| < r\}$, because the sequence $y = (\xi_k + \frac{r}{2})_{k \ge 1}$ converges to $\frac{r}{2}$ and $||y - x|| = \frac{r}{2} < r$. But y is not an element of G because $y \notin c_0$ (the sequence y does not converges to 0).

4. Show that the operator T defined on the space C[0, 1] by

$$(Tx)(t) = x(1) - x(t), \quad x \in C[0, 1],$$

is linear and find its norm.

Solution. Let $x, y \in C[0, 1]$ and $\alpha, \beta \in \mathbb{R}$. Then

$$(T(\alpha x + \beta y))(t) = (\alpha x + \beta y)(1) - (\alpha x + \beta y)(t) = \alpha x(1) + \beta y(1) - \alpha x(t) - \beta y(t) = \alpha (x(1) - x(t)) + \beta (y(1) - y(t)) = \alpha (Tx)(t) + \beta (Ty)(t).$$

So, the operator T is linear.

Let us compute the norm of T. For any $x \in C[0, 1]$ we estimate

$$\|Tx\| = \max_{t \in [0,1]} |x(1) - x(t)| \le \max_{t \in [0,1]} (|x(1)| + |x(t)|)$$
$$= |x(1)| + \max_{t \in [0,1]} |x(t)| \le \|x\| + \|x\| = 2\|x\|.$$

Thus, $||T|| \leq 2$. We next take x(t) = -1 + 2t, $t \in [0, 1]$. Since the graph of the function x is a segment that connects the points (0, -1) and (1, 1), we trivially have

$$||x|| = \max_{t \in [0,1]} |-1 + 2t| = 1.$$

Since (Tx)(t) = x(1) - x(t) = 1 - (-1 + 2t) = 2 - 2t, $t \in [0, 1]$, the graph of Tx is a segment connection the points (0, 2) and (1, 0). Therefore, we can conclude that

$$||Tx|| = \max_{t \in [0,1]} |2 - 2t| = 2.$$

Hence, ||T|| = 2.

5. Check if the linear functional

$$f(x) = \sum_{k=1}^{\infty} \frac{\xi_k}{\sqrt{k}}, \quad x = (\xi_k)_{k \ge 1} \in l^{\frac{4}{3}},$$

is continuous on $l^{\frac{4}{3}}$.

Solution. To check that f is continuous, it is enough to show that f is a bounded linear functional. We take $p = \frac{4}{3}$. Then for q = 4, $\frac{1}{p} + \frac{1}{q} = 1$. Using the Hölder inequality, we obtain

$$|f(x)| = \left|\sum_{k=1}^{\infty} \frac{\xi_k}{\sqrt{k}}\right| \le \sum_{k=1}^{\infty} \frac{|\xi_k|}{\sqrt{k}} \le \left(\sum_{k=1}^{\infty} |\xi_k|^{\frac{4}{3}}\right)^{\frac{3}{4}} \left(\sum_{k=1}^{\infty} \frac{1}{(\sqrt{k})^4}\right)^{\frac{1}{4}} = \|x\|_{l^{\frac{4}{3}}} \left(\sum_{k=1}^{\infty} \frac{1}{k^2}\right)^{\frac{1}{4}}.$$

Since the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, we have that f is bounded and, hence, continuous.

Another way to solve this exercise is to conclude that the element $y = \left(\frac{1}{\sqrt{k}}\right)_{k \ge 1}$ belongs to the dual space $l^4 = (l^{\frac{4}{3}})'$ because $\sum_{k=1}^{\infty} \frac{1}{(\sqrt{k})^4} < +\infty$. This, immediately gives that f is continuous.

6. Let T be a linear operator on l^2 defined by

$$Tx = (\xi_1, 2\xi_2, \xi_3, 2\xi_4, \xi_5, 2\xi_6, \xi_7, \dots), \quad x = (\xi_k)_{k \ge 1} \in l^2,$$

(even coordinates are multiplied by 2). Find and classify the spectrum of T.

Solution. We first find all $\lambda \in \mathbb{C}$ for which the operator $T - \lambda I$ is not injective. Consider the equation

$$Tx - \lambda x = (\xi_1 - \lambda \xi_1, 2\xi_2 - \lambda \xi_2, \xi_3 - \lambda \xi_3, 2\xi_4 - \lambda \xi_4, \dots) = 0.$$
(1)

Hence, for $\lambda = 1$ the vector $x = (1, 0, 0, 0, ...) \in l^2$ is a nontrivial solution to (1), and for $\lambda = 2$ the vector $x = (0, 1, 0, 0, ...) \in l^2$ is a nontrivial solution to (1). Consequently, the points $\lambda = 1$ and $\lambda = 2$ belong to the point spectrum $\sigma_p(T)$. If $\lambda \notin \{1, 2\}$, then obviously (1) has only zero solution. Hence, we can conclude that there exists the inverse operator $R_{\lambda} = (T - \lambda I)^{-1}$ with $\mathcal{D}(R_{\lambda}) = \operatorname{Im}(T - \lambda I)$ for all $\lambda \notin \{1, 2\}$. Moreover, for every $y = (\eta_k)_{k \geq 1} \in \mathcal{D}(R_{\lambda})$

$$R_{\lambda}y = \left(\frac{\eta_1}{1-\lambda}, \frac{\eta_2}{2-\lambda}, \frac{\eta_3}{1-\lambda}, \frac{\eta_4}{2-\lambda}, \dots\right).$$

We remark that $\mathcal{D}(R_{\lambda}) = l^2$. Indeed, for every $y = (\eta_k)_{k \ge 1} \in l^2$, we take

$$x = \left(\frac{\eta_1}{1-\lambda}, \frac{\eta_2}{2-\lambda}, \frac{\eta_3}{1-\lambda}, \frac{\eta_4}{2-\lambda}, \dots\right).$$

Then $x \in l^2$, because

$$\|x\|^{2} = \frac{|\eta_{1}|^{2}}{|1-\lambda|^{2}} + \frac{|\eta_{2}|^{2}}{|2-\lambda|^{2}} + \frac{|\eta_{3}|^{2}}{|1-\lambda|^{2}} + \frac{|\eta_{4}|^{4}}{|2-\lambda|^{2}} + \dots$$

$$\leq \max\left\{\frac{1}{|1-\lambda|^{2}}, \frac{1}{|2-\lambda|^{2}}\right\} \|y\|^{2} < \infty,$$
(2)

and $Tx - \lambda x = y$. So, $y \in \text{Im}(T - \lambda I) = \mathcal{D}(R_{\lambda})$. Hence, $\mathcal{D}(R_{\lambda}) = l^2$ for all $\lambda \in \mathbb{C} \setminus \{1, 2\}$. Similarly as in (2), we obtain

$$||R_{\lambda}y||^{2} \le \max\left\{\frac{1}{|1-\lambda|^{2}}, \frac{1}{|2-\lambda|^{2}}\right\} ||y||^{2}.$$

So, R_{λ} is a bounded linear operator on l^2 . Thus, $\mathbb{C} \setminus \{1,2\} \subset \rho(T)$. Consequently, $\rho(T) = \mathbb{C} \setminus \{1,2\}, \sigma_p(T) = \{1,2\}, \sigma_c(T) = \emptyset$ and $\sigma_r(T) = \emptyset$.

7. Let $T: \mathcal{D}(T) \to L^2[0, +\infty)$ be defined by

$$(Tx)(t) = \sqrt{t}x(t), \quad t \ge 0, \quad x \in \mathcal{D}(T),$$

where $\mathcal{D}(T) = \{x \in L^2[0, +\infty) : \int_0^\infty t |x(t)|^2 dt < +\infty\}$. Check whether T is closed. Solution. We will show that the operator T is closed. We take any sequence $\{x_n\}_{n\geq 1}$ from $\mathcal{D}(T)$ such that $x_n \to x$ and $Tx_n \to y$ in $L^2[0, \infty)$.

We know that the convergence

$$||x_n - x||^2 = \int_0^\infty |x_n(t) - x(t)|^2 dt \to 0, \quad n \to \infty,$$

implies that $|x_n - x|^2 \xrightarrow{\lambda} 0$, $n \to \infty$ (see Problem sheet 5, Ex. 6), where λ denotes the Lebesgue measure on $[0, \infty)$. Hence $x_n \xrightarrow{\lambda} x$. Thus, there exists a subsequence $\{n_k\}_{k\geq 1}$ such that $x_{n_k} \to x$ a.e. on $[0, \infty)$ as $k \to \infty$, that is, there exists a Borel set $\Phi \subset [0, \infty)$ with $\lambda(\Phi^c) = 0$ and $x_{n_k}(t) \to x(t)$, $k \to \infty$, for all $t \in \Phi$. Consequently, $(Tx_{n_k})(t) = \sqrt{tx_{n_k}}(t) \to \sqrt{tx}(t) =: \tilde{x}(t), k \to \infty$, for all $t \in \Phi$. Hence, $Tx_{n_k} \to \tilde{x}$ a.e. on $[0, \infty)$ as $k \to \infty$.

Similarly, one can conclude that $Tx_n \xrightarrow{\lambda} y$, $n \to \infty$. Thus, there exists a susequence $\{n_{k_j}\}_{j\geq 1}$ of $\{n_k\}_{k\geq 1}$ such that $Tx_{n_{k_i}} \to y$ a.e. on $[0,\infty)$ as $j \to \infty$. This implies that

$$Tx_{n_{k_i}} \to \tilde{x}$$
 a.e. and $Tx_{n_{k_i}} \to y$ a.e.

as $j \to \infty$. By the uniqueness of the limit, $\tilde{x} = y$ a.e. So, $\tilde{x}(t) = \sqrt{t}x(t) = y(t)$ for almost all $t \in [0, \infty)$. Therefore, $x \in \mathcal{D}(T)$, because $\int_0^\infty t |x(t)|^2 dt = \int_0^\infty |y(t)|^2 dt < +\infty$ and y = Tx.