Exam solutions

Each exercise is graded between 0 and 5 points.

1. Let (X, \mathcal{F}) be a measurable space and f, g be \mathcal{F}-measurable functions. Show that the set $\left\{x \in X: e^{f(x)} \geq g(x)\right\}$ belongs to \mathcal{F}.
Solution. The function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
F(x, y)=e^{x}-y, \quad(x, y) \in \mathbb{R}^{2}
$$

is Borel measurable because it is continuous. Hence, the composition $h(x):=F(f(x), g(x))=$ $e^{f(x)}-g(x), x \in X$, is an \mathcal{F}-measurable function. Therefore, the preimage

$$
h^{-1}([0, \infty))=\{x \in X: h(x) \in[0, \infty)\}=\left\{x \in X: e^{f(x)}-g(x) \geq 0\right\}
$$

belongs to \mathcal{F}.
2. Construct the σ-algebra on \mathbb{R} generated by the class $\{[0,2),\{3\}\}$.

Solution. The σ-algebra generated by the class $H:=\{[0,2),\{3\}\}$ is defined as follows:

$$
\begin{gathered}
\sigma(H)=\{\emptyset, \mathbb{R},[0,2),\{3\},[0,2) \cup\{3\},(-\infty, 0) \cup[2,+\infty) \\
(-\infty, 3) \cup(3,+\infty),(-\infty, 0) \cup[2,3) \cup(3,+\infty)\}
\end{gathered}
$$

3. Show that the set

$$
G=\left\{x=\left(\xi_{k}\right)_{k \geq 1} \in c_{0}: \xi_{k}<1, \forall k \geq 1\right\}
$$

is open in c_{0}. Is the set G open in c ? Justify your answer.
Solution. Let $x=\left(\xi_{k}\right)_{k \geq 1}$ be an arbitrary element of G. We will find $r>0$ such that the open ball

$$
B_{r}(x)=\left\{y=\left(\eta_{k}\right)_{k \geq 1} \in c_{0}:\|x-y\|=\max _{k \geq 1}\left|\xi_{k}-\eta_{k}\right|<r\right\}
$$

is contained in G. This will mean that G is open in c_{0}. So, we first remark that the sequence $\left(\xi_{k}\right)_{k \geq 1}$ converges to 0 , by the definition of the space c_{0}. Consequently, there exists $N \in \mathbb{N}$ such that for all $k \geq N$ it follows that $\left|\xi_{k}\right|<\frac{1}{2}$. In particular, $\xi_{k}<\frac{1}{2}$ for every $k \geq N$. We define $r:=\min \left\{1-\xi_{1}, \ldots, 1-\xi_{N-1}, \frac{1}{2}\right\}>0$. Then for all $y \in B_{r}(x)$ we have

$$
\eta_{k}=\eta_{k}-\xi_{k}+\xi_{k} \leq\left|\eta_{k}-\xi_{k}\right|+\xi_{k} \leq\|y-x\|+\xi_{k}<r+\xi_{k} .
$$

If $k<N$, then $r+\xi_{k} \leq 1-\xi_{k}+\xi_{k}=1$. For $k \geq N, r+\xi_{k} \leq \frac{1}{2}+\xi_{k}<\frac{1}{2}+\frac{1}{2}=1$. So, we have obtained that $\eta_{k}<1, k \geq 1$. This yields that $y \in G$ and, therefore, $B_{r}(x) \subset G$.

Hovewer, the set G is not open in c. Indeed, for every $x=\left(\xi_{k}\right)_{k \geq 1} \in G$ and $r>0$ one has that the vector $y=\left(\xi_{k}+\frac{r}{2}\right)_{k \geq 1}$ belongs to $B_{r}(x)=\{y \in c:\|y-x\|<r\}$, because the sequence $y=\left(\xi_{k}+\frac{r}{2}\right)_{k \geq 1}$ converges to $\frac{r}{2}$ and $\|y-x\|=\frac{r}{2}<r$. But y is not an element of G because $y \notin c_{0}$ (the sequence y does not converges to 0).
4. Show that the operator T defined on the space $C[0,1]$ by

$$
(T x)(t)=x(1)-x(t), \quad x \in C[0,1],
$$

is linear and find its norm.
Solution. Let $x, y \in C[0,1]$ and $\alpha, \beta \in \mathbb{R}$. Then

$$
\begin{aligned}
(T(\alpha x+\beta y))(t) & =(\alpha x+\beta y)(1)-(\alpha x+\beta y)(t)=\alpha x(1)+\beta y(1)-\alpha x(t)-\beta y(t) \\
& =\alpha(x(1)-x(t))+\beta(y(1)-y(t))=\alpha(T x)(t)+\beta(T y)(t) .
\end{aligned}
$$

So, the operator T is linear.
Let us compute the norm of T. For any $x \in C[0,1]$ we estimate

$$
\begin{aligned}
\|T x\| & =\max _{t \in[0,1]}|x(1)-x(t)| \leq \max _{t \in[0,1]}(|x(1)|+|x(t)|) \\
& =|x(1)|+\max _{t \in[0,1]}|x(t)| \leq\|x\|+\|x\|=2\|x\| .
\end{aligned}
$$

Thus, $\|T\| \leq 2$. We next take $x(t)=-1+2 t, t \in[0,1]$. Since the graph of the function x is a segment that connects the points $(0,-1)$ and $(1,1)$, we trivially have

$$
\|x\|=\max _{t \in[0,1]}|-1+2 t|=1
$$

Since $(T x)(t)=x(1)-x(t)=1-(-1+2 t)=2-2 t, t \in[0,1]$, the graph of $T x$ is a segment connectiong the points $(0,2)$ and $(1,0)$. Therefore, we can conclude that

$$
\|T x\|=\max _{t \in[0,1]}|2-2 t|=2
$$

Hence, $\|T\|=2$.
5. Check if the linear functional

$$
f(x)=\sum_{k=1}^{\infty} \frac{\xi_{k}}{\sqrt{k}}, \quad x=\left(\xi_{k}\right)_{k \geq 1} \in l^{\frac{4}{3}}
$$

is continuous on $l^{\frac{4}{3}}$.
Solution. To check that f is continuous, it is enough to show that f is a bounded linear functional. We take $p=\frac{4}{3}$. Then for $q=4, \frac{1}{p}+\frac{1}{q}=1$. Using the Hölder inequality, we obtain

$$
|f(x)|=\left|\sum_{k=1}^{\infty} \frac{\xi_{k}}{\sqrt{k}}\right| \leq \sum_{k=1}^{\infty} \frac{\left|\xi_{k}\right|}{\sqrt{k}} \leq\left(\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{\frac{4}{3}}\right)^{\frac{3}{4}}\left(\sum_{k=1}^{\infty} \frac{1}{(\sqrt{k})^{4}}\right)^{\frac{1}{4}}=\|x\|_{l^{\frac{4}{3}}}\left(\sum_{k=1}^{\infty} \frac{1}{k^{2}}\right)^{\frac{1}{4}}
$$

Since the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges, we have that f is bounded and, hence, continuous. Another way to solve this exercise is to conclude that the element $y=\left(\frac{1}{\sqrt{k}}\right)_{k \geq 1}$ belongs to the dual space $l^{4}=\left(l^{\frac{4}{3}}\right)^{\prime}$ because $\sum_{k=1}^{\infty} \frac{1}{(\sqrt{k})^{4}}<+\infty$. This, immediately gives that f is continuous.
6. Let T be a linear operator on l^{2} defined by

$$
T x=\left(\xi_{1}, 2 \xi_{2}, \xi_{3}, 2 \xi_{4}, \xi_{5}, 2 \xi_{6}, \xi_{7}, \ldots\right), \quad x=\left(\xi_{k}\right)_{k \geq 1} \in l^{2}
$$

(even coordinates are multiplied by 2). Find and classify the spectrum of T.
Solution. We first find all $\lambda \in \mathbb{C}$ for which the operator $T-\lambda I$ is not injective. Consider the equation

$$
\begin{equation*}
T x-\lambda x=\left(\xi_{1}-\lambda \xi_{1}, 2 \xi_{2}-\lambda \xi_{2}, \xi_{3}-\lambda \xi_{3}, 2 \xi_{4}-\lambda \xi_{4}, \ldots\right)=0 \tag{1}
\end{equation*}
$$

Hence, for $\lambda=1$ the vector $x=(1,0,0,0, \ldots) \in l^{2}$ is a nontrivial solurion to (1), and for $\lambda=2$ the vector $x=(0,1,0,0, \ldots) \in l^{2}$ is a nontrivual solution to (1). Consequently, the points $\lambda=1$ and $\lambda=2$ belong to the point spectrum $\sigma_{p}(T)$. If $\lambda \notin\{1,2\}$, then obviously (1) has only zero solution. Hence, we can conclude that there exists the inverse operator $R_{\lambda}=(T-\lambda I)^{-1}$ with $\mathcal{D}\left(R_{\lambda}\right)=\operatorname{Im}(T-\lambda I)$ for all $\lambda \notin\{1,2\}$. Moreover, for every $y=\left(\eta_{k}\right)_{k \geq 1} \in \mathcal{D}\left(R_{\lambda}\right)$

$$
R_{\lambda} y=\left(\frac{\eta_{1}}{1-\lambda}, \frac{\eta_{2}}{2-\lambda}, \frac{\eta_{3}}{1-\lambda}, \frac{\eta_{4}}{2-\lambda}, \ldots\right) .
$$

We remark that $\mathcal{D}\left(R_{\lambda}\right)=l^{2}$. Indeed, for every $y=\left(\eta_{k}\right)_{k \geq 1} \in l^{2}$, we take

$$
x=\left(\frac{\eta_{1}}{1-\lambda}, \frac{\eta_{2}}{2-\lambda}, \frac{\eta_{3}}{1-\lambda}, \frac{\eta_{4}}{2-\lambda}, \ldots\right) .
$$

Then $x \in l^{2}$, because

$$
\begin{align*}
\|x\|^{2} & =\frac{\left|\eta_{1}\right|^{2}}{|1-\lambda|^{2}}+\frac{\left|\eta_{2}\right|^{2}}{|2-\lambda|^{2}}+\frac{\left|\eta_{3}\right|^{2}}{|1-\lambda|^{2}}+\frac{\left|\eta_{4}\right|^{4}}{|2-\lambda|^{2}}+\ldots \\
& \leq \max \left\{\frac{1}{|1-\lambda|^{2}}, \frac{1}{|2-\lambda|^{2}}\right\}\|y\|^{2}<\infty, \tag{2}
\end{align*}
$$

and $T x-\lambda x=y$. So, $y \in \operatorname{Im}(T-\lambda I)=\mathcal{D}\left(R_{\lambda}\right)$. Hence, $\mathcal{D}\left(R_{\lambda}\right)=l^{2}$ for all $\lambda \in \mathbb{C} \backslash\{1,2\}$. Similarly as in (2), we obtain

$$
\left\|R_{\lambda} y\right\|^{2} \leq \max \left\{\frac{1}{|1-\lambda|^{2}}, \frac{1}{|2-\lambda|^{2}}\right\}\|y\|^{2}
$$

So, R_{λ} is a bounded linear operator on l^{2}. Thus, $\mathbb{C} \backslash\{1,2\} \subset \rho(T)$. Consequently, $\rho(T)=\mathbb{C} \backslash\{1,2\}, \sigma_{p}(T)=\{1,2\}, \sigma_{c}(T)=\emptyset$ and $\sigma_{r}(T)=\emptyset$.
7. Let $T: \mathcal{D}(T) \rightarrow L^{2}[0,+\infty)$ be defined by

$$
(T x)(t)=\sqrt{t} x(t), \quad t \geq 0, \quad x \in \mathcal{D}(T)
$$

where $\mathcal{D}(T)=\left\{x \in L^{2}[0,+\infty): \int_{0}^{\infty} t|x(t)|^{2} d t<+\infty\right\}$. Check whether T is closed.
Solution. We will show that the operator T is closed. We take any sequence $\left\{x_{n}\right\}_{n \geq 1}$ from $\mathcal{D}(T)$ such that $x_{n} \rightarrow x$ and $T x_{n} \rightarrow y$ in $L^{2}[0, \infty)$.

We know that the convergence

$$
\left\|x_{n}-x\right\|^{2}=\int_{0}^{\infty}\left|x_{n}(t)-x(t)\right|^{2} d t \rightarrow 0, \quad n \rightarrow \infty
$$

implies that $\left|x_{n}-x\right|^{2} \xrightarrow{\lambda} 0, n \rightarrow \infty$ (see Problem sheet 5, Ex. 6), where λ denotes the Lebesgue measure on $[0, \infty)$. Hence $x_{n} \xrightarrow{\lambda} x$. Thus, there exists a subsequence $\left\{n_{k}\right\}_{k \geq 1}$ such that $x_{n_{k}} \rightarrow x$ a.e. on $[0, \infty)$ as $k \rightarrow \infty$, that is, there exists a Borel set $\Phi \subset[0, \infty)$ with $\lambda\left(\Phi^{c}\right)=0$ and $x_{n_{k}}(t) \rightarrow x(t), k \rightarrow \infty$, for all $t \in \Phi$. Consequently, $\left(T x_{n_{k}}\right)(t)=\sqrt{t} x_{n_{k}}(t) \rightarrow \sqrt{t} x(t)=: \tilde{x}(t), k \rightarrow \infty$, for all $t \in \Phi$. Hence, $T x_{n_{k}} \rightarrow \tilde{x}$ a.e. on $[0, \infty)$ as $k \rightarrow \infty$.
Similarly, one can conclude that $T x_{n} \xrightarrow{\lambda} y, n \rightarrow \infty$. Thus, there exists a susequence $\left\{n_{k_{j}}\right\}_{j \geq 1}$ of $\left\{n_{k}\right\}_{k \geq 1}$ such that $T x_{n_{k_{j}}} \rightarrow y$ a.e. on $[0, \infty)$ as $j \rightarrow \infty$. This implies that

$$
T x_{n_{k_{j}}} \rightarrow \tilde{x} \text { a.e. and } T x_{n_{k_{j}}} \rightarrow y \text { a.e. }
$$

as $j \rightarrow \infty$. By the uniqueness of the limit, $\tilde{x}=y$ a.e. So, $\tilde{x}(t)=\sqrt{t} x(t)=y(t)$ for almost all $t \in[0, \infty)$. Therefore, $x \in \mathcal{D}(T)$, because $\int_{0}^{\infty} t|x(t)|^{2} d t=\int_{0}^{\infty}|y(t)|^{2} d t<+\infty$ and $y=T x$.

