26 Curves in \mathbb{R}^{3}.
Topological spaces

1. Tangent, principal normal and bimormal vectors. [kreyszig, Dit. geom.]
Let

$$
x: I \rightarrow \mathbb{R}^{3} \text {, }
$$

where $x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right), t \in I=\{a, b]$ be a curve C. Let also

$$
x=x(s)
$$

be a natural parametrization of x, that is

$$
x(s)=x(t(s)),
$$

where $t=t(s)$ is the inverse function to

$$
\begin{aligned}
S & =\int_{t_{0}}^{t}\left|x^{\prime}(t)\right| d t= \\
& =\int_{t_{0}}^{t} \sqrt{\left(x_{1}^{\prime}(u)\right)^{2}+\left(x_{2}^{\prime}(u)\right)^{2}+\left(x_{3}^{\prime}(u)\right)^{2}} d u .
\end{aligned}
$$

Remark 26.1 $x=x(t)$ is the normal parametrisation $(s=t)$ if $\left|\left|x^{\prime}(t)\right|=1\right.$ for every $t \in I$.

Dead 26.2 . The vector

$$
\vec{t}(s)=\lim _{h \rightarrow 0} \frac{x(s+h)-x(s)}{h}=\frac{d x}{d s}(s)=\dot{x}(s)
$$

is called the unit tangent vector to the curve C at the point $x(s)$.
j/ x is any (not normal) parametrization, then

$$
\vec{t}(t)=\frac{x^{\prime}(t)}{\left|x^{\prime}(t)\right|} .
$$

- The plain orthogonal to $\vec{t}(s)$ and passing through $x(s)$ is culled the normal plane. It can be represented in the form

$$
\dot{x}(s) \cdot z+x(s)=0, \quad z=\left(z_{1}, z_{2}, r_{3}\right) \in \mathbb{R}^{3} .
$$

Example 26.3 We consider the circular helix

$$
x(t)=(r \cos t, r \sin t, c t), \quad t \in I
$$

$\subset \neq 0$.

$$
\begin{aligned}
x^{\prime}(t) & =(-r \sin t, r \cos t, c) \\
\left|x^{\prime}(t)\right| & =\sqrt{r^{2} \sin ^{2} t+r^{2} \cos ^{2} t+c^{2}}= \\
& =\sqrt{r^{2}+c^{2}} \\
s(t) & =\int_{0}^{t} \sqrt{r^{2}+c^{2}} d t=\sqrt{r^{2}+c^{2}} t \\
t(s) & =\frac{1}{\left(\sqrt{r^{2}+c^{2}}\right.}=\text { in }=\frac{s}{w}
\end{aligned}
$$

$$
x(s)=\left(r \cos \frac{s}{w}, r \sin \frac{s}{w}, \frac{c}{w} s\right)
$$

$$
\vec{t}(s)=\left(-\frac{r}{w} \sin \frac{s}{w}, \frac{2}{w} \cos \frac{s}{w}, \frac{c}{w}\right)
$$

Def 26.4. The rate of change of the tangent

$$
k(s)=|\dot{t}(s)|=|\ddot{x}(s)|
$$

is called the curvature of the curve C at the point $x(s)$.

$$
\xi(t)=\frac{\left|x^{\prime}(t) \times x^{\prime \prime}(t)\right|}{\left|x^{\prime}(t)\right|^{3}}
$$

- The plane passing through $x(s)$ and is para le l to $\dot{x}(s)$ and $\ddot{x}(s)$ (id $\ddot{x}(s) \neq 0$) is called the osculating plane
The plain can be obtained as the limit of the planes passing through PP ,P as $P_{1}, P_{2} \rightarrow P$.

- The vector

$$
\vec{p}(s)=\frac{\dot{\vec{t}}(s)}{\left|\overrightarrow{t^{2}}(s)\right|}=\frac{\ddot{x}(s)}{|\ddot{x}(s)|}=\frac{1}{\zeta(s)} \ddot{x}(s)
$$

is culled the principal normal to the curve C at the point $x(s)$.

Example 26.3

$$
\begin{aligned}
& x(s)=\left(r \cos \frac{s}{w}, r \sin \frac{s}{w}, \frac{c}{w} s\right) \\
& \ddot{x}(s)=\left(-\frac{r}{w^{2}} \cos \frac{s}{w},-\frac{r}{w^{2}} \sin \frac{s}{w}, 0\right) \\
& r(s)=|\ddot{x}(s)|=\frac{r}{w^{2}}=\frac{r}{r^{2}+c^{2}} \\
& \vec{p}(s)=\left(-\cos \frac{s}{w},-\sin \frac{s}{w}, 0\right)
\end{aligned}
$$

Def. 26.5. The rector

$$
\vec{b}(s)=\vec{t}(s) \times \vec{p}(s)
$$

is called the binormal vector of C at the point $x(S)$.

- The plane parallel to \vec{t} and \vec{b} and passing through $x(s)$ is called the recti flying plane

Example 26.3

$$
\left.\begin{array}{l}
x(s)=\left(r \cos \frac{s}{w}, r \sin \frac{s}{w}, \frac{c}{w} s\right) \\
\vec{t}(s)=\left(-\frac{r}{w} \sin \frac{s}{w}, \frac{r}{w} \cos \frac{s}{w}, \frac{c}{w}\right) \\
\vec{p}(s)=\left(-\cos \frac{s}{w},-\sin \frac{s}{w}, 0\right) \\
\vec{b}(s)=\left|\begin{array}{cc}
\vec{i} & \vec{j} \\
-\frac{r}{w} \sin \frac{s}{w}, \frac{r}{w} \cos \frac{s}{w} & \frac{c}{w} \\
-\cos \frac{s}{w},-\sin \frac{s}{w}, & 0
\end{array}\right|= \\
=\left(\frac{c}{w} \sin \frac{s}{w},-\frac{c}{w} \cos \frac{s}{w}, \frac{r}{w}\right.
\end{array}\right)
$$

We next introduce torsion. Roughly speaking it has to measure the rate of the rotation of curve, that is, the rate of change of the osculating plane. Assume that $K(s)>0$.
Def 26.6. The scalar

$$
\pi(s)=-p(s) \cdot \dot{b}(s)=\frac{(\dot{x}(s), \ddot{x}(s), \dddot{x}(s))}{|\ddot{x}(s)|}
$$

is called the torsion of the curve C at the point $x(s)$.
Example 26.3.

$$
\begin{aligned}
& x(s)=\left(r \cos \frac{s}{w}, r \sin \frac{s}{w}, \frac{c}{w} s\right) \\
& \vec{p}(s)=\left(-\cos \frac{s}{w},-\sin \frac{s}{w}, 0\right) \\
& \vec{b}(s)=\left(\frac{c}{w} \sin \frac{s}{w},-\frac{c}{w} \cos \frac{s}{w}, \frac{r}{w}\right) \\
& \dot{\vec{b}}(s)=\left(\frac{c}{w^{2}} \cos \frac{s}{w}, \frac{c}{w^{2}} \sin \frac{s}{w}, \frac{1}{w}\right) \\
& a(s)=+\frac{c}{w^{2}}=\frac{c}{r^{2}+c^{2}} .
\end{aligned}
$$

Th 26.7. A curve (of class $\tau \geqslant 3$) with $\eta(s) \neq 0 \quad \forall s$ is a helix it $\pi=$ const, $\xi=$ coast. we remark that the rectors $\vec{t}, \vec{p}, \vec{b}$ form u basis. Consequently every vector can be rewritten as linear combination of this rectors. in particular we obtain

$$
\left(\begin{array}{c}
\dot{\vec{t}} \\
\dot{\vec{p}} \\
\dot{\vec{b}}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \gamma & 0 \\
-\gamma & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
\vec{t} \\
\vec{p} \\
\vec{b}
\end{array}\right)
$$

- the Frenet formulae.

Th 26.8 A curve with $r \neq 0$ belongs to a plane if $\sigma(s)=0 \forall s$.
Th 26.9 . It the curve C is given org on or bitrary parametrization, then

$$
\vec{t}(t)=\frac{x^{\prime}(t)}{\left|x^{\prime}(t)\right|}, \vec{p}(t)=\vec{b}(t) \times \vec{t}(t)
$$

$$
\begin{aligned}
& \vec{b}(t)=\frac{x^{\prime}(t) \times x^{\prime \prime}(t)}{\left(x^{\prime}(t) \times x^{\prime \prime}(t) \mid\right.} \\
& \xi(t)=\frac{x^{\prime}(t) \times x^{\prime \prime}(t)}{\left.\mid x^{\prime}(t)\right)^{3}} \\
& T(t)=\frac{\left(x^{\prime}(t), x^{\prime \prime}(t) x^{\prime \prime \prime}(t)\right)}{\left(x^{\prime}(t) \times x^{\prime \prime}(t)\right)^{2}}
\end{aligned}
$$

For the proof of the theorem see $p . \neq 2$ [O'Neill, Elem. dill. geom.].
2. Topological spaces Let X be a set and T be a class of subsets which satisties the following properties
(Tl) $\phi \in \sigma, x \in \sigma$
(T2) Any arbitrary (finite or infinite) union it sets from T belongs to σ
(T3) The intersection of a finitely many sets from σ belongs to σ.

Deft 26.9 The pair $(x, 5)$ is called a topological space, where σ satisties $(T 1)-(T 3)$. Sets from T are called open sets
Example 26.10 a) Let X be a metric space and T be a family of all open subsets from x. Then x is a topological space.
b) Take $x=[0,1]$ and

$$
\sigma=\{[0, b): b \in(0,1)\} \cup\{\phi, x\}
$$

Then X is also a to rological space. Def 26.11 A topological space (X, σ) is called Hausdord it $\forall x, y \in X$
$\exists A, B \in \sigma$ s.t. $A \cap B=\varnothing$ and $x \in A, g \in B$.

Def 26. 12 Let $(X, \sigma),\left(X^{\prime}, 9^{\prime}\right)$ be topological spaces. A function

$$
\phi: x \rightarrow x^{\prime}
$$

is continuous if $\forall A \in \sigma^{\prime}$

$$
f^{-1}(A) \in \sigma .
$$

Remark 26.13 if X, X^{\prime} are metric spaces, then $f: x \rightarrow x^{\prime}$ is continuous (as a function between metric spaces) it it is continuous according to Bed. 26.12.
Def 26.14 A map $f: X \rightarrow X^{\prime}$ is called a homeomorphism it
a) \& is bijection;
b) f and f^{-1} are continuous.

Let us consider a way of construction od topology. Assume that B is a collection of subsets from X such that
a) B covers X
b) $\forall B_{1}, B_{2} \in B$ and $x \in B_{1} A B_{2}$子 $B_{3} \in \operatorname{GB}$ s.t. $B_{3} \subset B_{1} \cap B_{2}$.

Then the collection of ar-bitrory (finite or infinite) unions of subsets
from B is a topology on X. This topology is called the topology generated $b_{y} B$ and B is called the base $\sqrt{ }$ this to pology.

