23. Compact linear operators
24. Definition and properties of compact linear operators on normed spaces.
Let X be a normed space. We first recall that a set $F \subset X$ is compact if every open cover of F contains a finite subcover, that is, for every family of open sets $\left\{G_{\alpha}\right\}$ such that $F \subset \cup G_{\alpha}$ there exists $\left\{G_{\alpha}, \ldots G_{\alpha_{n}}\right\}$ such that

$$
F \subset \bigcup_{k=1}^{n} G_{2_{k}}
$$

Th 23.1 F is compact in x it every sequence $\left\{x_{n}\right\}_{n \geqslant 1} \subset F$ has a convergent in F subsequence, that is $\}\left\{x_{n_{k}}\right\}_{k \geqslant 1}$ such that $x_{n_{k}} \rightarrow x \in F$.

Det.23.2 A set $F \subset X$ is called relatively compares id \bar{F} is compact
Every bounded set in a dinite-dimensional normed space is relatively compact.

Exercise 23.3 Show that, F is relatively compact it and only it $\forall\left\{x_{n}\right\}_{n \geqslant 1} C F$ there exists a subsequence $\left\{x_{n_{k}}\right\}_{k=1}$
such that $x_{n_{k}} \rightarrow x$ (where not necessarily $x \in F$).
Ded 23.4 Let X, Y be normed spaces. A_{n} operator $T: X \rightarrow Y$ is called a compact linear operator it T is linear and it for every bounded subset $M \subset X$, the image $T(M)$ is relatively compuet.

Since every compact set is bounded. So, every compact operator is bounded because the image of the sphere $\{x:\|x\|=1\}$ is relatively compuct and hence, bounded.

Th 23.5 (Compactness criterion) Let X and Y be normed space and $T: X \rightarrow Y$ be a linear operator. Then T is compact it it maps every bounded sequence $\left\{x_{n}\right\}_{n \geq 1}$ in X onto a sequence $\left\{T x_{n}\right\}$ in Y which has a convergent subsequence, that is,
$\forall\left\{\left.x_{n}\right|_{n \geqslant 1}-6\right.$ ounded $\left(f C:\left\|x_{n}\right\| \leq C \quad \forall_{n} \geqslant 1\right)$
\Rightarrow there exists subsequence $\left\{T x_{n_{k}} \int_{k \geq 1}\right.$ of $\left\{T x_{n}\right\}_{n \geqslant 1}$ s.t.

$$
T x_{n_{k}} \rightarrow y \text { in } Y \text {. }
$$

Th 23.6. Jd $T: X \rightarrow Y$ be rounded and $\operatorname{Im} T=T(X)$ is finite dimensional, then T is compact
Example 23.7. Take $x=y=l^{2}$.over field K

$$
T x=\left(2 \xi_{1}, \xi_{2}, \xi_{3}+\xi_{4}, 0,0,0, \ldots\right)
$$

The operator T is compuct. Indeed,

$$
T(x)=\left\{\left(\eta_{1}, \eta_{2}, \eta_{3}, 0,0, \ldots\right): \eta_{1}, \eta_{2}, \eta_{3} \in K\right\}
$$

- 3-dim. subspace of e^{2}.

By Th. 23.6 T_{x} is compact.
Th 23.8. Let $\left\{T_{n}\right\}_{n \geqslant 1}$ be a sequence of compact linear operators from a normed space X into a Banach space Y Id $T_{n} \rightarrow T$ in $B(x, y)$ then T is compact.
Example 23.9. We consider $X=Y=e_{2}$ and

$$
T x=\left(\xi_{1}, \frac{\xi_{2}}{2}, \frac{\xi_{3}}{3}, \ldots .\right)
$$

Let us prove that T is compact.
Take

$$
T_{n} x=\left(\xi_{1}, \frac{\xi_{2}}{2}, \frac{\xi_{3}}{3}, \ldots, \frac{\xi_{n}}{n}, 0,0, \ldots\right) .
$$

Then T_{n} is bounded and $\operatorname{dim}\left(T_{n}(x)\right)=n$. So, by Th. 23.6 it is compact. Let us compute $\left\|T-T_{n}\right\|$.

$$
\begin{aligned}
& \left\|\left(T-T_{n}\right) x\right\|^{2}=\left\|\left(0,0, \ldots, 0, \frac{T_{n+1}}{n+1}, \frac{[n+2}{n+2}, \ldots\right)\right\|^{2}= \\
& =\sum_{k=n+1}^{\infty} \frac{\xi_{k}^{2}}{(n+1)^{2}} \leq \frac{1}{(n+1)^{2}} \sum_{k=n+1}^{\infty} \xi_{k}^{2} \leq \frac{1}{(n+1)^{2}}\|x\|^{2} .
\end{aligned}
$$

Hence, $\left\|T-T_{n}\right\| \leq \frac{1}{n+1} \rightarrow 0, n \rightarrow \infty$.

By Th 23.8, T is compact.
2. Spectral properties of compuct seld-adjoint operators.
\dot{y}_{n} this section, we will assume that H is a separable Hilbert space.

Th 23.10 Let $T: H \rightarrow H$ be a bounded linear operator. The following statements are equivalent.
a) T is compact
b) T^{\forall} is compact
c) id $\left\langle x_{n}, y\right\rangle \rightarrow\langle x, y\rangle \quad \forall y \in H$, then

$$
T x_{n} \rightarrow T x \text { in } H \text {. }
$$

d) there exists a sequence T_{n} of operators of finite rank (ie. $\operatorname{dim} T(u)<\infty$) such that

$$
\left\|T-T_{n}\right\| \rightarrow 0
$$

Th 23.21 (Hilbert -Schmidt theorem)
Let T be a self - adjoint compact operator. Then
(i) There exist an orthonormal basis consisting of eigenvectors of T
(ii) All eigenvalues of T are real and for every eigenvalue $\lambda \neq 0$ the care spouting eigenspace is finite dimensional (iii) Two eigenvalues of T that correspond to different eigenvalues are orthogonal (iv) id T has cocentable set od eigenvalues (not finite set) $\left\{\lambda_{n}\right\}_{n 21}$, then

$$
\lambda_{n} \rightarrow 0, n \rightarrow \infty
$$

Corollary 23.12. Let T be a compact seld-adjoint linear operator on a complex hilbert space H. There exists an orthonormal basis $\left\{e_{k}\right\}_{k \geqslant 1}$ such that

$$
T x=\sum_{n=1}^{\infty} \lambda_{n}\left\langle x, e_{n}\right\rangle e_{n}, \quad x \in n .
$$

3. Fredholm Alternative
we consider the equation

$$
\begin{equation*}
T_{x}-\lambda x=y, \tag{23.1}
\end{equation*}
$$

where T is compact selt-adjo int operator on a separable Hilbert space.
For this we will consider the homogeneous equation

$$
T x-\lambda x=0 \quad \text { (23.2) }
$$

Th 23.13 (i) Let $y \in H$ and $\lambda \neq 0$.
Then the original equation (23.1) has a solution itt

$$
\langle y, x\rangle=0
$$

for every solution x of (23.2).
(ii) Let $y \in H, \lambda \neq 0$. Suppose that equation (1) has at most one solution. Then
a) There exists a linear bounded ope rater

$$
(T-\lambda I)^{-1}: H \rightarrow H
$$

6) Equation (1) has the unique solution

$$
x=(T-\lambda I)^{-1} y .
$$

We are going to apply this result to the integral equation
(23.3) $\int_{a}^{b} K(t, s) x(s) d s-\lambda x(s)=y(t)$ $y, x \in L_{2}[a, 6], \lambda \in \mathbb{R}, \quad y, \lambda$ are given We also assume that

1) $L_{2}[a, b]$ is a Mil bent space over R;
2) K is continuous on $[a, b] \times[a, b]$;
3) $k(t, s)=k(s, t)$.

We define the operator on $L_{2}[1,6]$

$$
(T x)(t)=\int_{a}^{b} k(t, s) x(s) d s, t \in[a, b]
$$

One con show that T is a compact linear operator.
[See p. 242 Lemma 3 E. Zeivller. Applied functional analysis]

We also consider the homogere onus equation

$$
(23.4) \quad \int_{n}^{b} K(t, s) x(s) d 1-\lambda x(s)=0, \quad t \in[a, b]
$$

Th 23.14 (Fred holm alternative) Let $\lambda \neq 0$ and $y \in L_{2}[a, b]$ be given. Then
(i) $\dot{y} \sqrt{ } \lambda$ is not on eipenvalue od T, then the original equation (23.3) has a unique solution
(ii) $\dot{y} \sqrt{ } \lambda$ is an eigenvalue of T. Then (23.3) has a solution ct

$$
\int_{u}^{6} x(s) y(s) d s=0 \quad \forall x-\text { sol. of (23.4). }
$$

