5. Measurable functions.
6. Motivation of definition. idea of the introduction of the Lebesgue integral.
Let $X=[0,1]$ and $f:[0,1] \rightarrow \mathbb{R}$ be a function. Let us recall the definition of the Riemann integral.

We define the Riemann sums

$$
S_{n}=\sum_{k=1}^{n} d\left(j_{k}\right) \Delta x_{k}, \quad x_{k}=x_{k}-x_{k-1}
$$

We say that f is Riemann integrable if there exists the limit
(5.1) $\left.\lim _{\left|\Delta_{1}\right| \rightarrow 0} \sum_{k=1}^{n} f(\}_{k}\right) \Delta x_{k}, \quad|\Delta x|:=\operatorname{mox}_{k}\left|\Delta x_{k}\right|$ which does not depend on the chaise of ike\}. Limit (5.1) is called the Riemann integral of f and is denoted by

$$
\int_{0}^{1} d(x) d x
$$

Examplessi a) of f is a continuous
function, then t is Riemann integrable.
6) $f(x)= \begin{cases}1, & x \in \mathbb{Q} \cap[0,1], \\ 0, & x \in[0,1] \backslash Q .\end{cases}$

Thisdunction is not Riemann integrable since the limit depends on the chaise of $\left\{\xi_{k}, k=1, \ldots, n\right\}$. Indeed. id $\xi \in \in\left\{x_{k, 1}, x_{k}\right\}, k=1, \ldots, n$ are rational then

$$
\left.\sum_{k=1}^{n} d(\}_{k}\right) \Delta x_{k}=\sum_{k=1}^{n} 1 \Delta x_{k}=1
$$

if they are irrational, then

$$
\sum_{k=1}^{n} d\left(j_{k}\right) \Delta x_{k}=\sum_{k=1}^{n} 0 \Delta x_{k}=0 .
$$

Otter approach to the definition of the integral.

consequently, we un define the indegral as

$$
\left.\left.\operatorname{lom}_{\mid \log _{\mid} \rightarrow 0} \sum_{k=1}^{n} y_{k} \lambda\left(d^{-1}\left(c y_{k}, y_{k+1}\right)\right)\right)=\int_{a}^{e} f(x) \lambda \mid d x\right)
$$

Remark that $\int_{a}^{b} d(x) d x=\int_{a}^{b} d(x) \lambda(d x)$, if t is $w n t i n u o u s$. But the new definition is better.

$$
\begin{aligned}
& d^{-1}\left(\left[0, \frac{1}{n}\right)\right)=[0,1] \backslash \mathbb{Q} \\
& d^{-1}\left(\left[\frac{n}{n}, \frac{n+1}{n}\right)\right)=\mathbb{Q} \cap[0,1] \\
& d^{-1}\left(\left[\frac{k}{n}, \frac{k+1}{n}\right)\right)=\varnothing, \quad k \neq 0, n .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{k=0}^{n} \frac{k}{n} \lambda\left(d^{-1}\left(\left[\frac{k}{n}, \frac{k+1}{n}\right)\right)\right)= \\
& \quad=0 \cdot \lambda \frac{([0,1] \backslash \mathbb{Q})+\frac{1}{n} \lambda(\phi)+\ldots}{=1}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{n-1}{n} \lambda(\phi)+\frac{n}{n} \lambda(\underbrace{Q \cap[0,1]}_{=0})= \\
& =0 .
\end{aligned}
$$

Consequently

$$
\int_{0}^{1} d(x) d x=\lim _{x \rightarrow 0} 0=0 .
$$

From this upproock of the integral we need to be sure that we can compute the Lebesgue measure of sets

$$
A_{k}=d^{-1}\left(\left[y_{k}, y_{k+1}\right)\right)
$$

that is, the sets $A_{k}, k=1, \ldots, n$, has to be Lebesgue (or Bore) measurable sets.

Remark 5.3 Not all subsets of \mathbb{R}^{d} are Lebesgue measurable.
Banach - Turki "paradox":
Given a solid ball in 3-dimensional
space, there exists a decomposition od the bull into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original $b_{a l l}$

The Banach - Tarski "paradox" is a strong mathematical fact. We do not have any contradiction here since the pieces are not Lebesgue me asurable:

$$
V(B)=\sum_{k=1}^{n} \underbrace{V\left(A_{k}\right)}_{\Gamma}=2 V(B)
$$

does not exists.
So, we have no contradiction here.
2. Measurable functions. De finition.

Let X, X^{\prime} be some sets, and

$$
\phi: x \rightarrow x^{\prime}
$$

be a map.
Bed 5.4. (i)For A $\subset X$ the set

$$
f(A)=\{f(x): x \in A\}
$$

is culled the image of A

(ii) For a set $A^{\prime} \subset X^{\prime}$ the set

$$
f^{-1}\left(A^{\prime}\right)=\left\{x \in X: f(x) \in A^{\prime}\right\}
$$

is called the preimage of A^{\prime}

Exercise 5.5. Show that
a) $f^{-1}\left(\bigcup_{k=1}^{n} A_{k}^{\prime}\right)=\bigcup_{k=1}^{n} f^{-1}\left(A_{k}^{\prime}\right)$
b) $f^{-1}\left(\bigcap_{k=1}^{n} A_{k}^{\prime}\right)=\bigcap_{k=1}^{n} f^{-1}\left(A_{k}^{\prime}\right)$
c) $f^{-1}\left(B^{\prime} \backslash A^{\prime}\right)=f^{-1}\left(B^{\prime}\right) \backslash f^{-1}\left(A^{\prime}\right)$, where $A_{k}^{\prime} \subset X^{\prime}, B_{1}^{\prime} A^{\prime} \subset X$ and $n \in \mathbb{N} \cup\{+\infty\}$. Solution a)

$$
\begin{aligned}
& f^{-1}\left(\bigcup_{k=1}^{n} A_{k}^{\prime}\right)=\left\{x: f(x) \in \bigcup_{k=1}^{n} A_{k}^{\prime}\right\}= \\
= & \bigcup_{k=1}^{n}\left\{x: f(x) \in A_{k}^{\prime}\right\}=\bigcup_{k=1}^{n} f^{-1}\left(A_{k}^{\prime}\right)
\end{aligned}
$$

Bed 5.6. If X is a set and F is a σ-algebra on X, then (X, F) is called a measurable space.

Ded 5.7. a) Let (x, F) and $\left(x^{\prime}, F^{\prime}\right)$ be measurable spaces and of: $X \rightarrow X^{\prime}$.

The Junction f is called $\left(F, F^{\prime}\right)$ measurable id

$$
\forall A^{\prime} \in \mathcal{F}^{\prime} \quad \phi^{-1}\left(A^{\prime}\right) \in \mathcal{F}
$$

6) In the case $X^{\prime}=\mathbb{R}, F^{\prime}=g(\mathbb{R})$, then ϕ is called \mathcal{F} - measurable
c) If additions lg $X=\mathbb{R}, \mathcal{F}=\beta(\mathbb{R})$, i.e. $f: \mathbb{R} \rightarrow \mathbb{R}$ and

$$
\forall A^{\prime} \in B(\mathbb{R}) \quad f^{-1}\left(A^{\prime}\right) \in B(\mathbb{R})
$$

then of is called Borel measurable.
Example 5.8 Let $X=\{0,1], F=\{0, x\}$

$$
x^{\prime}=\mathbb{R}, \quad \sigma^{\prime}=B(\mathbb{R})
$$

Then only constant functions are F-measurable. Indeed, we know that $A^{\prime}=\{y\} \in \mathcal{F}^{\prime}=B(\mathbb{R})$. So,

$$
d^{-1}\left(A^{\prime}\right) \in \mathcal{F}
$$

means that $f^{-1}(t y s)=\{x!f(x)=y\}=\varnothing$ or $[0,1]$

If means, that $f(x)=C, \forall x \in[0,1]$, where C is a constant.
Example 5.9 $\quad X=X^{\prime}=\mathbb{R}, \quad F=\mathcal{F}^{\prime}=\beta(\mathbb{R})$
$f(x)=x$. Then f is Bore measurable, since id $A^{\prime} \in \beta(\mathbb{R})$, then $\quad f^{-1}\left(A^{\prime}\right)=A^{\prime} \in B(\mathbb{R})$.
Remark 5.10 The definition of mensurability is very similar to one od definitions of contimity. Indeed, f is continue onus if and only if the preimage of every open set is an open set.
(For the measurability we require that the preimage ot any measurable set is me asurable)

