4. Measures: extension

1. Extension of a measure from servicing to the generated ring. Let X be a universal set and H & 2^X. We recal that a nonnegative and 5-additive function pl de fined on a semining H is called a measure. That is, a measure pi: H-> R has to satisfy the following properties 1) VAEN M(A)=0 $2/\forall A_n \in \mathcal{H}, n \geq 1, A_n \cap A_m = q$ $\mu(\widehat{U}|A_n) = \sum_{n \geq j} \mu(A_n).$ Today, me will discuss a possibility of exfension of a measure from a semiring to a t-ring. In this section, we consider the extension to a ring.

that H is a semiring. that Theorem 2.11 we will assume we also recall implies that $\mathcal{C}(\mathcal{H}) = \{ \bigcup_{k=1}^{n} \mathcal{A}_{k} : \mathcal{A}_{1}, \dots, \mathcal{A}_{n} \in \mathcal{H}, n \ge 1 \}$ Example 4.1 H = { [a, 6] : a < 6 3 U {Ø } $\mathcal{C}(\mathcal{H}) = \{ \bigcup_{k=1}^{n} \mathbb{L}a_{k}, b_{k} \} : a_{k} \mathcal{C}b_{k}, n \ge 1 \} \cup \{ \mathcal{O} \}$ Say, the set $\Sigma_{2}, 5) \cup [\overline{7}, 10] \cup [\overline{9}, 11] =$ = [2,5) U [7,11) & 2(H).

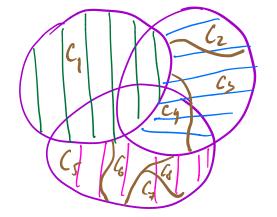
Theorem 4.2 Let je be a measure on a semiring H. The measure je can be extended to a measure on $\mathcal{Z}(u)$ and this extension is unique. Moreover, id a measure je is dimite (take dimite values), then the extension is dimite.

extension is given as follows This A E Z(H), i.e. A = ÜAr, Ar EH. Let

We hirst remark that there exists

$$C_1, C_2, ..., C_m \in H$$
 s.t. $C_k \cap C_j = \emptyset$
and
 $A = \bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} C_k$ (4.1)

Then


$$\mu(A) := \sum_{k=1}^{m} \mu(C_k)$$
Let us explain (4.1):

us explain (4.1):

$$A = \bigcup_{k=1}^{3} A_k = A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus (A_1 \cup A_2))$$

 $u_{k=1}$
 $u_$

= C1 U U C8.

written as....

2. Outer measure Ded 4.3 A function 2 : 2 -> (-∞, +∞] is called an outer measure if: (i) $\lambda^*(\phi) = 0$, λ^* is nonnegative (ii) VA, Ant 2^x, AC ÜAn

 $\lambda^{*}(A) \leq \sum_{n=1}^{\infty} \lambda^{*}(A_{n}) \quad (\sigma - semiad differently)$

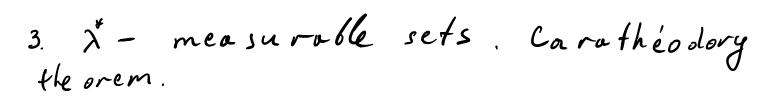
Def 4.4 Let μ be a measure on a ring $R \subseteq 2^{\times}$. For any $A \notin 2^{\times}$ set

 $\mathcal{M}^{*}(A) = \begin{cases} 0, & A = \phi \\ in \phi \left\{ \sum_{n=1}^{\infty} \mu(A_{n}) : A_{n} \in \mathcal{R}, n \geq 1, A \subseteq \bigcup_{n=1}^{\infty} A_{n} \right\}, \\ of lerwise. \end{cases}$

Theorem 4.5 pt is an outer measure on R. Proof We only need to show that for any A, $An \in 2^{\times}$, $n \ge 1$, $A \subseteq \tilde{U}A$, $n \ge 1$ we have $\mu^*(A) \stackrel{\sim}{=} \stackrel{\infty}{\underset{n=1}{\overset{\sim}{\to}}} \mu^*(A_n)$ it is enough to show this only in the case pet (An) < 200, n 21. Let EZO. According to Ded 4.4. VAn J Br ER, kal s.t.

 $A_n \subseteq \bigcup_{k=1}^{\infty} B_{k,n}$

and


$\sum_{k=1}^{\infty} \mu(B_{k,n})$	< pr * (A_n) + $\frac{C}{2}$	ι.,
			÷,
		м" (An)	μ*(A.)+ ε

Hence, ACÜAnCÜÜB_{k,n}

By	Def. 4.4. $\mu^*(A) \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu(B_{k,n}) < \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \sum_{n=1}^{\infty} \right)^{\frac{1}{2}}$
	$= \sum_{n \neq j} \mu^*(A_n) + \mathcal{E} .$

Making E-> O+, we have $\mu^*(A) \leq \sum_{n=1}^{\infty} \mu^*(A_n).$

Oed. 4. 6. The function per from Det. 4.4. is called the outer measure generated by the measure p.

Det 4.7. Let χ^* le an outer measure on χ^* A set A is called χ^* -measurable, if

Remark 4.8 Ny the definition of outer measure the inequality $\lambda^*(B) \leq \lambda^*(B \cap A) + \lambda^*(B \setminus A)$ is always true, since BG (BNA) U (BA). Theorem 4.9 (Cara the odory) Let 2t be an outer measure on 2 and S be

an outer measure on 2° and S be a class of all χ^{+} -measurable sets. Then the class S is a τ -algebra

and λ^* is a measure on S (that is, λ^* is σ -additive on S)
Det 4.10. A measure pe on a t-algebra H is called complete it
$\forall A \in H s.t. \mu(A) = 0$
we have that any subset $C \subseteq A$ also lelongs to H. (In this case, $\mu(C) = 0$ by monotonicity)
Proposition 4.11. Under the assumptions of Theorem 4.9, the measure X is complete on S.
Proof Let $A \notin S$ and $\chi^*(A) = 0$, $C \subseteq A$. We need to show that $C \notin S$. We need to check (4.2) for C.
Let B E 2 ^x . By the monotonicity of λ^* (it directly follows from the definition of λ^*)
$\lambda^*(B) \ge \lambda^*(B \cap C') \ge \lambda^*(B \cap A^c) =$
= $\lambda^*(B \cap A) + \lambda^*(B \cap \overline{A}) = \lambda^*(B),$
since $0 \leq \lambda'(B \cap A) \leq \lambda'(A) = 0$.

Similarly, $o = \lambda^*(B \cap C) = \lambda^*(A) = 0$ $So, \lambda^*(B) = \lambda^*(B \wedge C) = \lambda^*(B \setminus C) + \lambda^*(B \wedge C)$ 4. m^{*} - measurability of sets from the ring. Let R be a ring and pe be a measure on R. Let also pet be the outer measure generated by pe. Let S be a class of all pt-measurable subsets of X. We also denote $\overline{\mu}(A) = \mu^{*}(A), A \in \mathcal{S}.$ By the Caratheodory theorem Sis a 5-algebra and juis a measure on S. Theorem 4.12 $R \subseteq S$ and the measure μ is the extension of μ to S, that is, $\mu(A) = \mu(A) \forall A \in R$. Proof I. We first show that VAER $\mathcal{M}^{\#}(A) = \mu(A).$ $A \subset A \cup \emptyset \cup \emptyset \cup \dots = \bigcup A_{\varepsilon}$ $\mathcal{M}^{\#}(A) \leq \sum_{\varepsilon = 1}^{\infty} \mu(A_{\varepsilon}) = \mu(A).$ Since

Now, let A & Ü An, Ant R, nz1.
Then
$A = \tilde{U} (A \wedge A_n) .$ $F_R = F_R \cdot F_R $
By the monotonicity of pland the 5-semiadditivity
$\mu(A) \in \sum_{n=1}^{\infty} \mu(A \cap A_n) \in \sum_{n=1}^{\infty} \mu(A_n)$
Hence, $\mu(A) \in \mu^{\nu}(A)$.
Consequently, $\mu(A) = \mu^{*}(A)$.
I. We show that R = S. Let AER, and EZO. We consider any set
and Ero. We consider any set BCX, pr(B) <+ w and show that
$\mu^{*}(B) \geq \mu^{*}(B \cap A) + \mu^{*}(B \setminus A).$
According to Der. 4.4.
JANER, n21 s.t. BEÜAN
$\mathcal{M}^{*}(\mathcal{B}) + \mathcal{E} > \sum_{n=1}^{\infty} \mathcal{\mu}(\mathcal{A}_{n})$

So,
$$\mu^{*}(A) + E > \sum_{n \neq i} \mu(A_n) = dditivity of A$$

$$= \sum_{n \neq i} \left(\mu(A_n \cap A) + \mu(A_n \setminus A) \right) \ge dx_{n \neq i}$$

$$\geq \mu^{*}(B \cap A) + \mu^{*}(B \setminus A),$$
Sing $B \cap A \in \bigcup A_n \cap A, B \setminus A \in \bigcup A_n \setminus A.$
This and Remark 4.8 implies that
 $\mu^{*}(B) = \mu^{*}(B \cap A) + \mu^{*}(B \setminus A).$
4. Lebesgue measure.
Let $X = R, H = \{(a, b], a \in b \ni \cup 10\}$
(H is a semiring). Define
 $\lambda(\phi) = 0; \lambda((a, b \exists)) = b - a, a \in b$
Then, by Corollary 3.13, λ is a measure
on H. Next, by Th. 4.2 there
exists an extension of λ to the
ring $\Sigma(H)$ gene roted by H.
Next, let S be the class of all
 π -me as urable subjects of $X = R.$

The Caratheodory theorem implies that S is a 5-algebra and 2" is a mea sure on S. Moreover, Th. 4.12 implies that

$$H \subset \chi(H) \subset S$$

Since, B(R) is the smallest 5-algebra which contains all sets from H, we have $B(R) \subset S$.

Kence, HCT(H) CD(R)CS.

We also remark that λ^* is the extension of λ from $\mathcal{C}(\mathcal{H})$ to S by Th 4.13.

Det 4.13 · sets drom S are called Le besque measurable sets.

• The measure & Letined on S is called the Lebesgue measure on IR. Remark 4.14. The extension of 2 to D(R) is unique.

Remark 4.15 We can define the hebespice
measure on
$$\mathbb{R}^{d}$$
, taking
 $H = \{(a_1, b_1 3 \times \dots \times (a_n, b_n 3) : a_n < b_n, b_{n-1}, \dots, y \cup \frac{1}{d}\}\}$
and
 $\lambda(\emptyset) = 0; \quad \lambda((a_1, b_1 3 \times \dots \times (a_n, b_n 3)) =$
 $= (b_1 - a_1) \cdot \dots \cdot (b_n - a_n).$
Example 4.16 a) Let $x \in \mathbb{R}$. Then
 $\{x\} = \bigcap_{n=1}^{\infty} (x - \frac{1}{n}, x]$
By Th. 3.10
 $\lambda(\{x\}) = \lim_{n \to \infty} \lambda((x - \frac{1}{n}, x]) =$
 $= \lim_{n \to \infty} \frac{1}{n} = 0.$
b) $\lambda(Q) = \lambda(\bigcup_{n=1}^{\infty} 1 \times a_n) =$
 $= \sum_{n=1}^{\infty} \lambda(\{x, a_n\}) = \sum_{n=0}^{\infty} 0 = 0,$
where $Q = \{x_1, x_2, x_3, \dots\}$ is the
sch of rational numbers.