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Chapter 1

Main classes of sets

1.1 Semiring and Semialgebra

Let X be a fixed nonempty set. Assume that X # (. We next consider different classes of subsets
of the set X. The set X is called a fundamental set.

Notation 1.1.1. 2X denotes the family of all subsets of the set X including X and 0.
Definition 1.1.2. A nonempty class of sets H C 2X is called a semiring if
(i) {A,B} CH=—=ANBEH,

(i) {A,B} CH=>3neN 3{C),...,C,} CH, C;NC, =0, j#k:

n
A\B= ]G
k=1

A class H is called a semialgebra if H is a semiring and X € H.
Exercise 1.1.3. Let H be a semiring. Prove that 0 € H.

Exercise 1.1.4. Prove that the following class H is a semialgebra:
a)H=2%; b)H={0,X}; ¢ H={0,A,A° X}, ACX.

Exercise 1.1.5. Let X =R and H = {[a,b) : —e0c <a < b < o0} U{0}. Prove that H is a semiring.
Exercise 1.1.6. Let a; < by, a < b, be fixed numbers, X = [a;,b1) X [a2,b;) and
H={[oy,B1) x [0, B2) : ar < o < Pr < by, k=1,2}U{0}.
Show that H is a semiring.
Exercise 1.1.7. Let H; C 2% for k = 1,2, be a semiring. Prove that the class of sets
Hy xHy:={A; xAy: Ay € H, k=1,2}
is a semiring of subsets in the Cartesian product of X; x Xj.
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Exercise 1.1.8. Prove that the union of two sets from a semiring does not necessarily belong to

this semiring.

1.2 Ring and algebra

Definition 1.2.1. A nonempty class of sets H C 2% is called a ring if
(i) {A,B} CH=—=AUB€cH,; (ii){A,B}CH=—A\BcH.
A class H is said to be an algebra if H isaring and X € H.

Exercise 1.2.2. Let H be a ring. Prove that:
a)0cH; b){A,B} CH=—ANBEH,;
¢){A1,..., Ay} CH=Uj_Ar € Hand ;_Ax € H.

Exercise 1.2.3. Check that a ring of subsets is a semiring.

Exercise 1.2.4. Prove the following statements.
a) The class of all Jordan measurable subsets of X = R is a ring.

b) The class of all Jordan measurable subsets of X = [0, 1]? is an algebra.

Exercise 1.2.5. Prove that a nonempty class of sets H C 2% is a ring if and only if H is a semiring
and {A,B} CH = AUBEcH.

Exercise 1.2.6. Let H be an algebra and A € H. Show that A € H.
Exercise 1.2.7. Prove that a nonempty class of sets H C 2% is an algebra if and only if
{A,B}CH=—=AUBcHandAcH—=—A°cH.

Exercise 1.2.8. Let E be a class of subsets of X such that for any distinct sets A, B € E the equality
ANB =0 holds. Set

H:= {CJA/(Z neN, {A],...,AH}CE}U{@}.

k=1
Prove that H is a ring.
1.3 o-ring and c-algebra
Definition 1.3.1. A nonempty class of sets H C 2X is called a o-ring if
(i) {A1,A2,...,Ap,...} CH=U,_, Ay € H;

(i) {A,B} CH=>A\BcH.



A class H is said to be a c-algebra if H is a o-ringand X € H.
Exercise 1.3.2. Check that the classes 2X and {0, X} are o-algebras.
Exercise 1.3.3. Check that a o-ring is a ring.

Exercise 1.3.4. Let H be a o-ring. Prove that

{A1,Az,...,Ay,...} CH=> A, €EH.

n=1

Hint: Consider the set Ay \ (U;—2 (A1 \An)).

Exercise 1.3.5. A set A C R? is called symmetric if (x,x) € A = (—x1, —x2) € A. We assume

that the empty set is symmetric. Prove that the class of symmetric subsets of R? is a o-algebra.

Exercise 1.3.6.* Prove that there exists no o-algebra consisting of a countable number of ele-

ments.

Exercise 1.3.7. Let H, C 2%, k= 1,2, be o-rings and Hy x Hy := {A] x Ay : Ay € Hy k=1,2}.
Prove that the class H; x X3 is a semiring of subsets from X; x X,. Give an example which shows

that the class H; x H, is not always a ring.

1.4 Monotone class

Definition 1.4.1. A sequence of sets {A,, n > 1} is called monotone increasing if A, C A1,
n > 1. In that case, lim,, . A, := U, _ Ap-

A sequence of sets {A,, n > 1} is called monotone decreasing if A, D A, |, n > 1. In that
case, lim, A, 1= An-

Sequences which monotone increase or decrease are called monotone.
Exercise 1.4.2. Show that lim,,_,o.[0,n] = [0, +c0); lim,_,e[n, +-o0) = 0.

Definition 1.4.3. A nonempty class of sets H C 2% is said to be a monotone class if for every

monotone sequence {A,, n > 1} C H the set lim, A, belongs to H.
Exercise 1.4.4. Prove that a o-ring is a monotone class.
Exercise 1.4.5. Let X =R and
H:={[m,n]: {mn} CZ, m<n}U{(—oo,n|: n€Z}U{[n,+o): neZ}U{R}.
Check that H is a monotone class.

Theorem 1.4.6. A monotone ring is a G-ring.



Proof. Let H be a ring and a monotone class. Then Condition (ii) of Definition 1.3.1 is satisfied.

Let {A,, n> 1} C H. Since H is aring, we have

m
Vm>1: UAkEH.
k=1

Moreover,
m+1

vm>1: |(JAc | Ak
k=1 k=1

Since H is a monotone class,

m o m (o)
lim (UAk> €eH+ J (UM) = JAneH.
7 \k=1 m=1 \k=1

m=1

Consequently, Condition (i) of Definition 1.3.1 also holds. O

1.5 Minimal classes of sets

1.5.1 Minimal ring, algebra, o-ring, -algebra, monotone class containing a given
class of sets

Let X be a fundamental set and H be a class of subsets of X.

Definition 1.5.1. The following class of sets

rH)== (] K

K isring, KOH
is called the ring generated by the class H or the minimal ring containing the class H.
Remark 1.5.2. Rings containing the class H exists. For instance, the class 2X is aring and 2X D H.
Lemma 1.5.3. The intersection of any family of rings is also a ring.

Proof. Let{K;: t € T} be a family of rings. Then

{AByc (\K,=VteT: {AB}CK,

teT

=VteT: {AUB,A\B}CK, = {AUB, A\B}C K.
teT

Thus, the class ;7 K; is a ring. O
Lemma 1.5.3 implies the correctness of Definition 1.5.1, i.e. that the class r(H) is a ring.

Exercise 1.5.4. Prove that statements similar to Lemma 1.5.3 are true for:

a) algebra; b) o-ring; c) o-algebra; d) monotone class.



Exercise 1.5.5. Show that the intersection of semirings is not necessarily a semiring.

Definition 1.5.6. The following classes of sets

a(H) := N G, or(H):= N G,
G is algebra, GDH G is o-ring, GDH
ca(H) := N m(H) = N G
G is o-algebra, GDH G is monotone class, GDH

are called the algebra a(H), the o-ring or(H), the c-algebra ca(H) and the monotone class
m(H) generated by H, respectively.
The classes a(H), or(H), ca(H) and m(H) are also called the minimal algebra, the minimal

o-ring, the minimal c-algebra and the minimal monotone class containing H, respectively.

Exercise 1.5.7. Let X be a finite set and H = {{x} : x € X}. Show that r(H) = a(H) = or(H) =
ca(H) =2X.

Exercise 1.5.8. Prove that

a) H CH, C a(Hl) — a(Hl) = a(Hz);
b)H, CH; C Ga(Hl) - Ga(Hl) = Ga(Hz).

Exercise 1.5.9. Let a set B C X be fixed. Prove that cr(HNB) = or(H) NB. Here ENB :=
{ANB: A € E} for aclass of sets E.
Hint: Check that 6r(H)NB D HNB and 6r(H)NB is a o-ring.

Exercise 1.5.10. Show that ca(ca(H)) = ca(H).
Theorem 1.5.11. Let H be a semiring. Then

I’(H):{LnJAki neN, {Al,...,An}CH}.

k=1

Proof. Let M :={U;_Ax: n€N, {Ay,...,A,} CH}. Then we have H C M C r(H). Let us
prove that the class M is a ring. Indeed, for sets {A,B} C M the set AU B belongs to M according
to the definition of the class M. If {A,B} C M, then

n m
A= UAk, B= UBJ’ {Al,...,An;Bl,...,Bm}CH,
k=1 =1

and

A\B= (kLnJlAk> \ (L”J Bj) = ﬁ(Ak\Bj)-

j=1 k=1j=1

Since H is a semiring, one can assume that

ArNAj=0, BNB;j=0, k#j.



Moreover,

!
AN\B;j = JCijr. {Cir} CH, 1=1(kj); CrNCijs=0, r#s.

r=1

Thus, A\ B = U N4, U1 Cjr -

Exercise 1.5.12. Let H = {A;,A,,...,A,} C X. Prove that:
a) a(H) consists of at most 22" sets; b) a(H) = ca(H).
Hint: Consider sets of the form A; NAyN---NA,, where A equals Ay or X \ A forevery | <k <n.
Exercise 1.5.13. The minimal semiring p(H) containing a class H is the semiring which con-

tains the class H and is contained in any semiring which contains the class H. Let H = {(—e0,a] :
a € R}. Show that p(H) = {(a,b] : —= <a<b < +}U{0}.

1.5.2 Borel sets

Let (X,d) be a metric space, ¢ be a class of all open in (X,d) subsets of X.
Definition 1.5.14. The o-algebra Z(X) = ca(¥) is called the c-algebra of Borel sets.

Exercise 1.5.15. Let (X,d) be a separable metric space and H = {B(x,r) : x € X, r > 0}, where
B(x,r):={y€ X : d(x,y) <r}. Prove that Z(X) = ca(H).
Hint: Check that H C 4 C 6a(H).

Exercise 1.5.16." Let (X,d) be a separable metric space. Prove that there exists a countable class
of sets H C 2% such that ca(H) = B(X).

Exercise 1.5.17. Let (X,d) be a separable metric space and .% be a class of all closed in (X,d)
subsets of X. Prove that

BX)=o0ca(F)=0a({B(x,r): xeX, r>0}),
where B(x,r) = {y € X : d(x,y) <r}.

Exercise 1.5.18. Prove that:
a) any one-point set is a Borel set;

b) any countable set is a Borel set.

Exercise 1.5.19. Let 2 := %(R) be the o-algebra of Borel sets on R with the distance d(x,y) =
|x —yl|, {x,y} C R. Prove the the following sets are Borel:

a) the set of rational numbers Q;

b) the set of irrational numbers R \ Q;

¢) (a,b], {a,b} CR,a < b;

d) The set of all real numbers whose decimal representation contains infinitely many times the
digits 4.



Exercise 1.5.20. Prove that

B =0ca({(—,d]: a€R})=0ca({—,a]: acQ})
=oca({(a,b]: —e<a<b< +oo}).

Exercise 1.5.21." Let (X,d) be a separable metric space. Prove that (X ) has at most continuum

cardinality.

1.5.3 Monotone class and o-ring generated by a ring

Theorem 1.5.22. Let H be a ring of subsets of X. Then or(H) = m(H).

Proof. Since or(H) is a monotone class, we have the inclusion m(H) C or(H), according to the
definition of m(H).

Let us prove that m(H) is a ring. For every B € m(H) we consider the following class of sets
L(B):={CcX: {BUC, B\C,C\B}Cm(H)}.
The following two statements hold.
(i) Since H is aringand H C m(H), one has VA € H: H C L(A).
(i) VB € m(H) : L(B) is a monotone class.

Let us prove the second statement. Let {C, : n > 1} C L(B), C, C Cyy1, n > 1. Then for every

n > 1 we have

C,UB CCpy1 UB, C,\BCGCyi1\B, B\CpCB\Cpi;
{BUC,, B\C,, C,\ B} C m(H).

Since m(H) is a monotone class, we have

m(H) > O(c UB) = (G c,,) UB,
n=1 n=1

m(H) 5 |J(C\B) = ([] cn> \B,
n=1 n=1

m(H) > O(B\C (Uc)
n=1

Hence |J,,_, C, € L(B). Similarly, one can check that (,,_; C,inL(B) for a decreasing sequence
{C,: n> 1} from L(B). The statement (ii) is proved.



Since L(A) is a monotone class for all A € H, by (ii), and H C L(A), by (i), we obtain
VA€ H: m(H) C L(A)
— VA VC, Gm(H) : {AUCl, A\Cl, Ci \A} Cm(H)
= HCL(C;)=VCiem(H): m(H) CL(Cy)
- V{Cl,CQ} C m(H) : {C1 UG, Ci\ G, Cz\cl} C m(H).
Thus, m(H) is a ring. By Theorem 1.4.6, m(H) is a o-ring. So, or(H) C m(H). Consequently,

or(H) =m(H). O

Exercise 1.5.23. Let H be an algebra of sets. Prove that ca(H) = m(H).



Chapter 2

Functions of sets. Measures

2.1 The main classes of functions of sets

Let X be a fixed nonempty set and H C 2% be a non-empty class of sets of X. The object of

investigation of the measure theory are functions of the form
u: H— (—007 +°°)

which satisfy special requirements. Length, area, and volume defined for some classes of sets of
the line, plane, and space, respectively, are real examples of such functions. The charge of parts
of the space in an electric field is another type of example. Those examples lead to a narrow, but
important for mathematics, class of functions. For instance, the area is nonnegative, the area of a
figure consisting of a union of two nonintersecting parts is equal to the sum of areas of those parts
and so on. The special requirements for functions of sets mentioned above particularly consist
in the transfer of properties of real functions of sets to an abstract situation and particularly are
related to the mathematical necessity.

We will further consider functions taking the value +oo. For example, it is natural to assume

that the length of the real line equal 4-co. We will assume that
(+00) + (+0) = 4o0; Va€R: a< 4o, a+o0:=+oo+a:=+oo.
Definition 2.1.1. A function u : H — (—oo, 4o9] is called:
(i) nonnegative, if YA€ H: u(A)>0;

(ii) finitely semiadditive, (or simply semiadditive) if

VneN Y{A,...,A,} CH, | JAx€H: /.L(UAk>§Zu(Ak);
k=1 k=1

10



11
(iii) finitely additive (or simply additive) if

VneN V{Ay,...,A,} CH, |JAx€H, AjNA =0, j#k:
k=1

n n
T (UAk> =) H(Aw;
k=1 k=1
(iv) countably semiadditive (or o-semiadditive), if

V{A,: n>1}CH, OAnGHi H(OAn> < i.u(An);

n=1 n=1

(v) countably additive (or c-additive), if

V{A,: n>1}CH, | JA,€H, AjNA=0, j#k:

n=1
u (Om) = iu(An);
n=1 n=

(vi) monotone, if V{A,B} CH, ACB: u(A) <u(B);
(vii) finite, if VA € H: p(A) < too;
(viii) o-finite, if

HAn:n>1}CH: (JA,=X and Vn>1: p(A,) < 4oo.

n=1

Exercise 2.1.2. Assume that € H, a function u is additive and exists a set A € H such that
WU(A) < —+eo. Prove that p(0) =0.

Exercise 2.1.3. Assume that @ € H, u(0) =0 and u is c-additive on H. Prove that u is additive
onH.
Hint: Use the equality AUB=AUBUQU---UQU....

Remark 2.1.4. We will not consider functions ¢ which take the value +oo at every set from H.

2.2 Measures. Basic properties of measures

Definition 2.2.1. A nonnegative o-additive function defined on a semiring is called a measure.
Exercise 2.2.2. Let u be a measure. Prove that p(0) = 0.

Exercise 2.2.3. Prove that a measure is an additive function.
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Exercise 2.2.4.* Let X = {x],x2,...,Xy,...} and H = 2X . For a family of nonnegative numbers
Pn, 1 > 1, satisfying Y° | p, = 1 define u(A) := Y. \ ca P, A € H. Prove that i is a measure on
H.

Exercise 2.2.5. Let X = [0,1]?, H be an algebra of all Jordan measurable subsets of X and the

function u is the Jordan measure on H. Check that 1 is a nonnegative additive function on H.
Theorem 2.2.6. Let R be a ring and U be a measure on R. Then
1) u is monotone on R;
2) V{A,B} CR, ACB, U(A) < +oo:
H(B\A) = u(B) — u(A);
3) If{A,B} C R and at least one of the values |L(A), 1(B) is finite, then

H(AUB) =u(A)+u(B)— u(ANB);
4) If{A,By1,...,B,} CRand A C J;_, By, then

u(A) < Y u(Bo);
k=1

5) W is o-semiadditive on R.
Proof. 1) Let {A,B} C Rand A C B. Then
B=AU(B\A), AN(B\A)=0.
Using the additivity and the nonnegativity of the measure (U, one has
W(B) = u(A)+u(B\A) > u(A). (2:2.1)
2) If u(A) < +oo, then equality (2.2.1) yields
H(B\A) = u(B) - p(A).
3)If u(A) < 4e0 and p(B) < oo, then (AN B) < oo, according to 1). Moreover,
AUB=(A\(ANB))UB, (A\(ANB))NB=0.
Hence, using the additivity of the measure u and 2), we have

H(AUB) = u(A\(ANB))+u(B) = u(A) —u(ANB)+ u(B).
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4) By 1) and the additivity of u, we have

n n—1
MM<#(UBQ:u<&U@ABQW&\wﬂBmU~U<&\UBQ>
k=1

k=1

n—1 n
= W(B1)+u(B2\B1) +1(Bs\ (B1UB2)) + -+ 1 (B,,\ (U3k>> <Y 1(By).

k=1

5) Similarly to the proof of 4), we obtain

(39) (3o () B ) B

by the o-additivity of the measure . Here we assume that U/?; 1Ax :=0. O

Remark 2.2.7. Properties 1)-4) of Theorem 2.2.6 is valid for any nonnegative and additive func-
tion U.

Exercise 2.2.8. Prove that a nonnegative, additive and o-semiadditive function tt on aring R is a

measure on R.
Hint: Let {A,: n>1} CR, U,_;An €R, AyNA, =0, m+# n. From the monotonicity and additivity of ;1 we

have
u <UAk> >u <UAk> =Y uA), n>1.
k=1 k=1 k=1

Exercise 2.2.9. Let u be a measure on a 6-ring H and for {A,: n> 1} CH mu(A,) =0,n>1.

Prove that
u(UAJ:0
n=1

Hint: Use the o-semiadditivity of a measure.

Exercise 2.2.10. Let 1 be a measure on a c-algebra H. Let u(X) = 1 and a family of sets
{A,: n>1} C H satisfy u(A, = 1), n > 1. Prove that

’ (m> .

Hint: Use De Morgan’s law and Exercise 2.2.9.

Exercise 2.2.11. Let u be an additive finite function of a ring R. Prove that for every sets A1,A;, A3

from R the following inequality

K(A1UA2 UA3) = (A1) 4+ 1(A2) + p(A3)
— ‘U(Al mAz) — [.L(Al ﬁA3) — [.L(Az ﬂA3) —I—[,L(Al NA; ﬁA3)

holds.
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Exercise 2.2.12. Let y be a measure on an algebra H C 2¥ and p(X) = 1. Prove the following
statement. If a family of sets {A,,...,A,} C H satisfies the inequality

M(A) +--+u(A,) >n—1,

u<mA> -0

Exercise 2.2.13." Let i be a measure on a 6-algebra H C 2X. Let also pt(X) = 1 and a family of
sets {A, : n>1} C H satisfy

then

Consider the set .
Bo— {x ex: ¥ belong to a finite number of }

setsAp,, n>1, orx € U,_;An
Prove that B € H and u(B) = 1.
Hint: Notice that B° =, _; Uy~ An and use the monotonisity and the c-semiadditivity of the measure . The

set B is the set of all points x which belongs to the infinite number of sets from {A, : n > 1}.

2.3 Continuity of measure

Theorem 2.3.1 (Continuity from below). Let R be a ring and L be a measure on R. Then for every

increasing sequence {A, : n > 1} such that\J;,_, A, € R one has

(0] e

Proof. 1L.If 3ng : p(A,,) = +oo, then for every n > ng such that p(A,) = 4o we have

A(0x)-

by the monotonicity of ¢ on R. Consequently, the statement holds.
II. Let (A,) < +eo for all n > 1. By the o-additivity of u and Property 2) of Theorem 2.2.6,

we obtain

d

1Cs

An> :‘U(AlU(Az\A])U--~U(An\An_1)U...)

= u(Ar)+ i H(A\ A1) = p(Ar) + lim Zn: (1(Ak) = 1(Ag-1))
=2 k=2
= lim p1(A,)
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Exercise 2.3.2. Prove that a nonnegative, additive and continuous from below function on a ring

1S a measure.

Theorem 2.3.3. Let R be a ring and | is a measure on R. Then for every decreasing sequence
{A,: n>1} such that 1(A) < 4o and (,,_; An € R one has

() e

Proof. According to Theorem 2.3.1, we obtain

n (Al \ ﬁAn> =Uu <D(Al \An)> :r}glc}o.u(Al \An)
n=1

n=2

Since (A;) < +oo, we get

(ﬂA > = lim (1(A1) — u(An)),
n—yoeo
by Property 2) of Theorem 2.2.6. O

Exercise 2.3.4. Let X = N, R = 2" and y be a measure on R defined by the equalities u(0) = 0
and pu({k}) =1, k € N. We consider the following sets

Ap={nn+1,...}, Ay DApt1, n>1; ﬂAnZ(D.

Check that
( A ) # lim u(Ap)."
Exercise 2.3.5. Prove that nonnegative and additive function defined on a ring which takes finite

values and is continuous from above at the set () is a measure.

Exercise 2.3.6. Give an example of a ring R and a measure { such that there exists decreasing
sequence {A, : n>} C R with t(A,) = +oo satisfying the following property:
Q) U (=1 An) = Foo; b) f (21 4n) =05 ©) 0 < (V321 An) < oo

Exercise 2.3.7." Let u be a measure on a ring R and a sequence of sets {4, : n >} C R satisfy

the following conditions

H(A) <+eo, (VAsER, Vni,m €N In3 €N: A, CA,NA,,.

(ﬂA ) inf p(4,).

I'This shows that the condition {(A;) < oo is essential in Theorem 2.3.3.

Prove that
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Exercise 2.3.8. For any sequence {A, : n > 1} of subsets of a set X
limA, = J (A, limA,:=[)JA«
oo n=1k=n e n=1k=n
are called lower and upper limits of the set {4, : n > 1}, respectively. If
limA, = limA, =: limA,,
H—soo n—eo n—yeo

then the sequence {A, : n > 1} is called convergent. Let |1 be a measure on a c-algebra .# of

subsets from X and {A, : n > 1} be a sequence of subsets from .%. Prove that
u (limAn> < lim p(A,).
n—oo n—oo
Under the additional condition u (|, An) < oo, prove that
u(TmA,) > T u(a,).
n—oo Nn—oo
This implies that for a convergent sequence {A, : n > 1} satisfying u (U, _; A,) < +oc one has

u <limA,,> = lim p1(Ay).

n—yoo

2.4 Examples of measures

The example of a measure defined on a G-algebra of all subsets of a countable set X from Exer-
cise 2.2.4 is important for different fields of mathematics such as a probability theory.

In this section, we will consider other important examples of measures.

Theorem 2.4.1. Let R be a ring of all Jordan measurable subsets of R¢ and u be a Jordan measure

on R. Then the function U is c-additive on R.

Proof. Let
{Ap:n>1}CR, A:=|JA,€R, ANA,=0, n#m.

n=1
L. Let U,_;An C A, then
N
n=1

by the monotonicity of i on R. Since u is additive on R,

N
Y- ) < )

Hence

oo

Y 1(An) < p(A). (2.4.1)

n=1
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II. Let € > 0 be a fixed number. We consider R? as a metric space with the Euclidean distance.
According to the construction of the Jordan measure, for a set A € R there exist a closed set F € R

and an open set G € R such that
FCACG, and u(G)—u(F)<e.

Moreover,

H(A) < u(F)+e. (2.4.2)
Similarly, for every n > 1 and A, € R there exist an empty set G, € R such that

Ay C Gy and  U(Gy)— p(Ay) < 25 (2.4.3)

Note that
FcA=JA,c |G

n=1 n=1
This implies that the closed and bounded set F', which is a compact set, is covered by {G,, : n > 1},
ie. F C >, G,. Since F is compact, there exists a number N € N such that F  [J¥_, G,. So,

this inclusion, the monotonicity and the semiadditivity of 1 on R yield

n N
wF)<p <UAH> < ;“(Gn)'

n=1

Consequently, by (2.4.3),

N € o
TR (ran)+3;) < Y i) +e

From this inequality and (2.4.2) implies that

oo

n(A) < ¥ nA,) +2e.

n=1

Since € is any positive number, we can send € to 0. Thus,
1(A) <) u(An). (2.4.4)

Using (2.4.1), and (2.4.4), we obtain
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Corollary 2.4.2. Let X = R. Define the sigma ring &) as
Py ={(a,b]: —o<a<b< 4o} U{0}.
Let the function i on &\ be defined by the following equality
w(@):=0, u((a,b)):=b—a, (a,bl e 2.
Then U is a measure on &).

Proof. u is the restriction of the one-dimensional Jordan measure on &. O
Corollary 2.4.3. Let X = R%. Define the sigma ring > as
Py ={(a1,b1] X (az,by] : —o0 < ap < by < 4o, k=1,2}U{0}.
Let the function L on &7, be defined by the following equality
1(0):=0, wu((ar,b1] x (az,ba]):= (b1 —a1)(ba—az), (ai,bi]x (az,by] € P5.
Then W is a measure on ;.

Proof. u is the restriction of the two-dimensional Jordan measure on &7;. O

Theorem 2.4.4. For X = R and the semiring & define
Ap(0):=0, Ap((a,b]) :=F(b)—F(a), (a,b] € P,

where F is a nondecreasing and right continuous function on R. Then the function Ar is a measure

on A.

Proof. The function Ar is nonnegative and additive on &?;. We prove that Ar is o-additive on &?;.
Let

oo

{(an,bp) : n>1} C 21,  (an,bn) N (am,bm) =0, n#m, U(an,bn]:(a,b]eﬂl.

n=1
I. Using the definition of a semiring, we obtain

N m
YN>1: (a,b]\|J(an,ba] = JCr, {Ci: k=1,....m}C 2, GNC;=0, k#j.
k=1

n=1
Consequently, for each N we have

m

N
(a,b] = U (an, by U U Cx.
k

n=1 =1
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Hence, by the additivity of Az on &2, we obtain the equality

N m
Ar((a,b]) = ;lp((an,bn]) +k; Ar (Cy).

Thus,
N
YN > 1: Ar((a,b]) = Y Ar((an, b)),
n=1
and, consequently,
Ae((a,b]) > Y Ap((an,by)). (2.4.5)

IL. Since F is right continuous, we obtain
Ve >0 3d' € (a,b): F(d)—F(a)<e
— Ar((a.b)) — Ar((d b)) = F(b)— F(a)— (F(B) — F(d))  (2:46)
=F(d)—F(a) <&

Vn>1 3. > by F(b;)—F(bn)<§
e 2 ((an ) — A ((am b)) = F(B) — Flan) — (F(b) ~ F(@)  247)

— F(b,) = F(by) < 25

We note that the following inclusions

oo oo

[d,b] C (a,b] = U (an,bn) C U(an, )

n=1 n=1
hold. Since [@',b] is a compact set in R,
N N
E'NE N: [a/,b} C U(a’”b;l) - U(Cl,“ :’l]
n=1 n=1

Next the semiadditivity Az yields

el ) < Y Ar(an ) < ilxz:((an,bm.

Using inequalities (2.4.6) and (2.4.7), we have the following inequality
oo 8 oo

Ar((ab) < 2r((@ b)) e < B (Ar((@nsbul) + ;) +e = Y. Ar((ansbu]) +22.
n= n—=

Making € — 0+, we obtain

Ar((a,b]) < Ar((an, by)).

(g

3
Il
—_

This together with (2.4.5) implies

gk

Ar((a,b]) = ) Ar((an, ba))-

3
Il
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Exercise 2.4.5. Let G € C(R) NBV(R), and for X = R and the semiring &,
VG(Q) =0, VG((aab]) = G(b) _G(a)7 (aab] €.

Prove that vg is a o-additive function on &;.



Chapter 3

Extension of measures

3.1 Extension of a measure from semiring to the generated ring
Let X be a fundamental set.

Definition 3.1.1. Let & C 2%, y; : & — (—oo, +o0], k = 1,2. The function y is called an extension
of the function u; (u; is called the restriction of ), if

6 C&, and VAeé: w(A)=u(A).

Theorem 3.1.2. Let u be a measure on a semiring &?. The measure W can be extended to a
measure on r(Z?) by a unique way. Moreover, this extension is finite (G-finite) if W is finite (C-

finite, resp.).

Proof. 1. Definition of the extension. For A € r(%?) we have
n
A:UCk7 {C17"°7Cn}c<@7 Ckmclzwa k#.}
k=1

Set
A(A):= Y p(G).
k=1

The function fi is well-defined. Indeed, let us consider other representation of A

m
A=Dj, {Di,....,Dy}C P, DiND;=0, k#j.
j=1
Then forany 1 <k <n, 1< j<mwe have
m n
Ci=CGnA=|J(&nD;), Dj=AnD;=J(CGND;).
j=1

k=1

21
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Furthermore, the sets {Ck NDj: 1<k<n, 1<j< m} C & are disjoint. Using the additivity of
U on &, we obtain
u
1 J

i (G D) i# (O(Qﬁ@')) = iH(DJ)
Jj=1 k=1

Jj=1 Jj=1

M:
s

Y u(G) =
k=1

bl
Il

1

(CkﬁDj)>

I
I M=

Note that the extension i is additive on r(Z?).

II. Uniqueness of the extension. Let A be an additive extension of the measure p to r(%?). Then

for every set A € r(%?) we have an expression
U v {C1,...,Ci} C P, CGNCj=0, k+#j.

Consequently,
n n
S RIS WICTRYTE

11l o-additivity of the extension. Let

{Ay: n>1}Cr(P), AnNA=0, m#n; A:=|]JA,€r(2).

n=1
Then
m
A=JBj, {Bi,....Ba}C P, BNB;=0, k#],
j=1
and forany n > 1
r(n)
Ay = Uan7 {Cn,ly-'-aCn,r(n)} C 1@, Cn,kﬂCn,jzma k?é]
k=1

Using first the o-additivity of g on &2 and then the additivity of fi on (<), we get

m

1(Bj) =Y u(BjNA) = f‘,u (B HG Uan>

Jj=1 J= n=1k=1

=i
I

M= T

o r(n) m oo r(n) 00
u(U U(Bjmcn,k)) :ZZ “(Bjﬂcn,k):Zﬁ(An)

n=1k=1 j=1n=1k=1 n=1

j=1
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3.2 Outer measure

Definition 3.2.1. A function 1* : 2X — (—o0, 40| is called the outer measure, if

(i) A*(0) =0 and A* is a nonnegative function
(i) V{A, Ay, n>1} C 25, AC U™ An A5(A) < T A*(An).

n=1

Exercise 3.2.2. Prove that an outer measure is monotone and semiadditive on 2%.

Hint: For A,B€2X, AC Bwehave AC BUQU---UQU...

Definition 3.2.3. Let u be a measure on a ring R of subsets of X. For every set A € 2% we set

0 ifA=0,
* = inf if there exists at least one such a sequence,
wA): {4, n>1}CR AcUr Ay nZIIJ( ) a
+o0 otherwise.

Theorem 3.2.4. The function W* from Definition 3.2.3 is an outer measure.

Proof. Condition (i) of Definition 3.2.1 is satisfied. We check Condition (ii). Let
{A, Ay, n>1}C2%, Ac |JAn

It is enough to consider the case where u*(A,) < +eo, n > 1. According to Definition 3.2.3 and

the definition of the infimum, we have

Ve>0Vn>13{B,;: j=1} CR, |JBu;DAs:
j=1

Z By ;) < p( )‘i‘%

j:
Hence, using the inclusion
U UB,,jhm D UA DA
n=1 j=1
and Definition 3.2.3, we obtain

oo oo

piA) < i Y u(Bnj) < Y H(A)+e.

n=1

3
Il
~.
Il
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Remark 3.2.5. The function u* from Definition 3.2.3 is called the outer measure generated by

the measure L.
Exercise 3.2.6. Let X =R, & = {(k,k+1]: k€ Z}U{0} and
A0):=0, A((k,k+1]):=1, keZ.
Prove that A is a measure on 2. Let A be the extension of A to 7(%). Construct the outer measure

A* generated by the measure A. Find 1* ({1}), 1*((3,2)). and 1*(N).

3.3 A*-measurable sets. Carathéodory theorem

Definition 3.3.1. Let A* be an outer measure on 2X. A set A C 2% is called A*-measurable, if
VBCX: A*(B)=A"(BNA)+A"(B\A).
Remark 3.3.2. 1. We note that B\ A = BNA® and A° = X \ A.
2. For any sets A,B C X we have B= (BNA)U(B\A), and, consequently,
A*(B) < A" (BNA)+A*(B\A), (3.3.1)
by the semiadditivity of the outer measure A*.
Exercise 3.3.3. Show that a set A is A*-measurable if and only if
YUCA VYV CA®: A (UUV)=A"(U)+A*(V).

Exercise 3.3.4. Define a class of all A* measurable sets for the outer measure A* from Exer-
cise 3.2.6.

Answer: It is the class consisting of at most countable union of sets from . The set (%, 1} is not A*-measurable.

Theorem 3.3.5. Let A* be an outer measure on 2% and . be the class of all A*-measurable sets.

Then the class . is a 6-algebra and the restriction of A* to . is a measure.
Proof. 1. . is an algebra. We note that 0 € . because
VBCX: A*(BNO)+A*(B\0) =A"(0)+A"(B) =A*(B).
Let A € .. Then A° € . also because
VBCX: A*(BNA)+A*(B\A®) =A"(BNA°)+ A" (BNA)=A"(B).
Take G, F € .. Then for every B C X we have

A*(B) = |A*-measurability of G| = A*(BNG) + A" (BN G°)

(3.3.2)
= |A"-measurability of F| =A"(BNG)+A*(BNG°NF)+ A" (BNG NF°),
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A*(BN(GUF)) = |A*-measurability of G| = A*(BN(GUF)NG)+A*(BN(GUF)NG")

=A"(BNG)+A*(BNFNG).
(3.3.3)
By (3.3.2) and (3.3.3), we obtain the following equality

A*(B) =A"(BN(GUF))+A*(BN(GUF)°).
Thus, GUF € .7, and, consequently,
GNF =(G°UF)e., G\F=(GNF)eZ.

II. 7 is a 6-algebra and the restriction of A* to ./ is a measure. Let {A,: n>1} C .. We
need to prove that | J,_; A, € .. Since . is an algebra, without loss of generality we may assume
that A,,NA, = 0, m # n. For every B C X we have

A*(BN(A1UA2)) =A"(BN(A1UA2)NA) + A% (BN (A1 UA2) NAT)
=A"(BNA|)+A"(BNAy),

by the A*-measurability of A;. The latter equality and the A*-measurability of A3 yield

W

A (BN(AjUAUA3)) = A*(BNA3) + A" (BN (A UAy)) Z (BNA).

Similarly, for each n > 1 we have the equality

A" (Bm UAk> = Z A*(BNAL). (3.3.4)
k=1

k=1
Using now the A*-measurability of (J;_; Ak, equality (3.3.4) and the monotonicity of the outer

measure, we obtain

A*(B) = A* (BﬂkgAk> +A* <Bﬁ (gAk> ) ZA (BNAy)+A* (Bﬂ <kLJlAk> ) .

Thus,

A*(B) =

I

A*(BNAY) + A <Bm (DAk> > (33.5)

k=1
The latter inequality is based on Property (ii) of Definition 3.2.1. According to (3.3.1), we can

A*(B)=A" (Bm OAk) +A* (Bm <0Ak> ) :
k=1 k=1

Hence, ;. Ax € -7, and inequality (3.3.4) becomes the equality. Setting in (3.3.4) B = Uy, Ax.

conclude that

we get

M(DM):EF@Q
k=1 k=1
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Exercise 3.3.6. Give an example of outer measure 1* on 2X such that . = {0, X }.

3.4 Complete measures
Definition 3.4.1. Let 1 be a measure on a ¢-algebra .. The measure u is called complete, if
VAe ¥, u(A)=0 VBCA: Be.”.

Remark 3.4.2. If A€ ., u(A) =0, B C A and B € ., then u(B) = 0, by the monotonicity of

measure.
Corollary 3.4.3. Under the conditions of Theorem 3.3.5, the measure A* is complete of .7 .

Proof. Let A € ., A*(A) =0 and C C A. By the monotonicity of the outer measure A* and the
A*-measureability of A, we have that for every B C X

A*(B) > A*(BNC) > A*(BNAS) = A*(BNA) + A*(BNAS) = A*(B),

since 0 < A*(BNA) < A*(A) = 0. Similarly, we can obtain the equality A*(BNC) = 0. Hence,
Ces. O

Exercise 3.4.4. Let u be a measure on a ¢-algebra ., and
A ={Aud: Ac.¥,IBc., u(B)=0,®C B}, p’(AUd):=pu(A), AUDc.7°.

Prove that .7 is a G-algebra and u° is a complete measure on .0,

3.5 Measurability of sets of the initial ring

If A* is a measure, then the class . of all A*-measurable sets is a o-algebra, according to Theo-
rem 3.3.5. However this o-algebra can be very poor. It is possible that . = {0,X }.
We now consider the case, where the outer measure [L* is generated by a measure u defined

on aring R. As above, . will be the class of all y*-measurable subsets of X. Denote also
A(A):==p*(A), Ac.
The measure [ is the extension of the measure u from the ring R to the o-algebra . if R C .%.

Theorem 3.5.1. R C . and the measure [l is the extension of the measure [ from the ring R to
the c-algebra & .
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Proof. 1. We first prove that
VAeR: pu*(A)=u(A).

Indeed, u*(A) < u(A) since A CAUQUOU.... Moreover, for each sequence {A,: n>1} CR,
A CU,-1A, wehave A = J,_;(ANA,). The o-additivity and the monotonicity of the measure u
on R yield the inequality

< ilu(AmA,,) < i}u(An)

Thus, according to Definition 3.2.3, u(A) < u*(A).
I RC .. Let A € R and € > 0 be fixed. We consider an arbitrary set B C X, u*(B) < +oo.
According to Definition 3.2.3

I{A,: n>1}CR: u*(B)+¢e> i,u(A,,)

n=1

Hence, by the additivity of the measure (t on R and Definition 3.2.3, we get
B)+¢e> Z (AyNA) + (A, NAY)) > u*(BNA) + u*(BNAS).

Making now € — 0+,
p(B) = w(BNA) + u*(BNAS).

This inequality and the simiadditivity of outer measure (3.3.1) implies the y*-measurability of the
set A. O

Exercise 3.5.2. Check that or(R) C ca(R) C ..

Exercise 3.5.3. Let i be a o-finite measure on a ring R. Then the outer measure (* on 2% and the

measure fil on . are o-finite.

Exercise 3.5.4.* For A € 2X we set

1nf{i {A,: n>1} C Y, UAnDA}.

n=1
Prove that u** = p*.
3.6 Uniqueness of extension

Let fi be the extension of a measure y from a ring R to the o-algebra . of all u*-measurable sets.

Since . is a o-algebra and R C ., we have that 6r(R) C ..

Theorem 3.6.1. The extension of G-finite measure UL from a ring R to 6r(R) is unique and c-finite.
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Proof. Let a measure A be an extension of i to or(R). We first assume that A and i are finite of
or(R). Set
O:={Acor(R): A(A)=0(A)}.

Then R C Q C or(R). The family of sets Q is a monotone class. Indeed, for a sequence

{Ap:n>1}CO A, CAp, n>1,

() s 3.

by Theorem 2.3.1. Hence |J;,_; A, € Q. Similarly, using the assumption of finiteness of one of the

we have

measures A, il and Theorem 2.3.1, one can check that the limit of a decreasing sequence of sets
from Q also belongs to Q.

Thus, m(R) C Q C or(R). Moreover, m(R) =

II. Let A € R be a set such that A(A) or fi(A) is finite. Then according to Part I. of the proof,
the measures A and i coincide on AN or(R) = or(ANR). Moreover, each set from or(R) is

or(R), according to Theorem 1.4.6.

contained in an union of countable number of sets from R which have a finite measure [i. O

Exercise 3.6.2." Prove that the measure I on .% is the complement of the measure {i considered

on or(R).
Remark 3.6.3. The condition of o-finiteness of the measure (t on R in Theorem 3.6.1 is essential.

See, e.g. The example in [Hal50, Section 3.13].

3.7 Approximation theorem
Theorem 3.7.1. Let u be a G-finite measure on a ring R and i be its extension to 6r(R). Then
VA€ or(R), f(A) <4 Ve>0 3CeR: A((A\C)U(C\A)) <€

Proof. Let u* be the outer measure generated by the measure p. Remark that fi = u* on or(R).
Let € > 0 be fixed. According to the definition of the outer measure for ji(A) = u*(A) and the

number £, we have

3{A,: n>1}CR, UA DA: f(A)+= >Zu iﬁ(An)
n=1

n=1

Hence, using the o-additivity and the monotonicity of the measure jiI, we obtain for every n > 1

[L(A)+;>ﬂ<6Ak> 2[1(0Ak>. G.7.1)

k=1 k=1
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Moreover, by the continuity of the measure fi from below,

(59wl
k=1 T \k=1

no oo
Ing > 1: ﬂ(UAk>+Z>[L(UAk>. (3.7.2)
k=1 k=1

LetC := UZ(’:lAk. Then inequalities (3.7.1) and (3.7.2) yield

Ft(C\A)Sﬂ<< Ak) \A> <
e (30) (3]
k=1 k=1

Exercise 3.7.2. Let u* be the outer measure generated by a measure y defined on a ring R and

¥ (X) < +oo. Prove that

Therefore,

)

[NSNI

Cs TCs

O]

AcY < Ve>03ICeR: u* ((A\C)U(C\A)) <e.

3.8 Lebesgue measure on the real line
LetX =R, &) = {(a,b] : —0c <a < b < 4o} U{0} be a semiring of subsets of R and
A(0):=0, A((a,b]):=b—a, (a,b] € P.

The values of A at a set from &) is the length of this set. According to Corollary 2.4.2, the
function A is a measure on &?;. By Theorem 3.1.2, the function A can be uniquely extended to
a measure on r(Z;). We denote this extension also by A. Let 1* be the outer measure generated
by A and defined on all subsets of R, and .¥ be the class of all A*-measurable sets. According to

Theorem 3.3.5, the class .7 is a o-algebra and A* is a measure on ..

Definition 3.8.1. Sets from the o-algebra . are said to be Lebesgue measurable sets and the
measure A* on . (further denoting by A) is called the Lebesgue measure (or one-dimensional

Lebesgue measure).

The following inclusions
PrCr(P) CcBR)CS

hold. Thus, all Borel sets are Lebesgue measurable. Let us consider some examples of Borel sets

on R and compute their Lebesgue measure.
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Example 3.8.2. For every x € R the one point set {x} belongs to #(R) because
{x} = ﬁ (x—l x]
= x|
n=1
According to Theorem 2.3.3 and the fact that A ((x — 1,x]) = 1, we can conclude that
) = tim A [ () (x= L] ) = tim L 0
D= fimd{ () (e ) = fim =0

Therefore, any countable set A <R is a Borel set and its Lebesgue measure equals 0, according to
the o-additivity of A. In particular, A (Q) = 0. Moreover,

A(la,b)) =A({a})+A((a,b]) =0+ (b—a)=b—a, A((a,b))=b—a.
Example 3.8.3. Let G # 0 be an open subset of R. Then G is a Borel set. Then
G=J(o,Be), (&, Bj)N(ow,Bc) =0, j#k, o4 <P, k>1.
k>1
According to the o-additivity of the Lebesgue measure, we obtain
AG) =Y Al B)) = Y (Be— ).
k>1 k>1

Remark 3.8.4. Using the last equality as a definition, E. Borel constructed the extension of the
length to Z(R) in 1898.

Exercise 3.8.5. Prove that the length (the Borel measure) on the c-algebra of Borel sets Z(R) is

an incomplete measure.
Exercise 3.8.6. Check that the Borel set QN [0, 1] is not Jordan measurable.

Exercise 3.8.7.* The Cantor set. Let

w0 (12) <o o2,

J'—IJU 2+1J J’—IJ U 2+1J
2:=30 373 1) s Ini= g 3 T3l )s

The set J, is the union of 2" intervals of the length 37" each, n > 1. Let

oo

U:= ()

n=1
Prove that the closed set U has the cardinality of the continuum and is Jordan measurable. Prove

that all subsets of U also Jordan measurable. Show that the class Z(R) has the cardinality of the

continuum. Consequently, there exist Jordan measurable sets that are not Borel sets.
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Exercise 3.8.8." Represent the interval [0, 1) as the union of disjoint sets as follows. Two numbers
x and y from [0, 1) belongs the same set if and only if their difference x — y is a rational number.
From every set we take a number z. Let A denote the set of all such z. Show that the set A is not

Lebesgue measurable.
Hint: For r € [0,1)NQ set

Ari={x+r:xeA x+r<1}U{x+r—1: x€A, x+r>1}.
Prove that A, A =0, r # 1/, A*(A;) = A*(Ar), A= U,repo,1)ugAr

Exercise 3.8.9. Let # be the ring of all Jordan measurable sets on R. Prove that JZ" C ..

Exercise 3.8.10. Let {A,: n> 1} be a decreasing sequence of open subsets of [0, 1] such that
ig{l(An) > 0. Prove that | J;_; A, # 0.
nz

Exercise 3.8.11. LegA € ., a€ R, and B:=a+A :={a+x: x€ A}. Prove that B € . and
A(A) = A(B).

Exercise 3.8.12. Show that A (A) < oo for every bounded set A € #(R).

Exercise 3.8.13.% Let A (resp. As) be the set of all numbers of the interval [0, 1] whose decimal
representations do not contain the digit 3 (resp. decimal representations contain the digit 3 only a

finite number of times). Prove that
A, Ar e, A(Ag) =A(Ay).
Exercise 3.8.14. LetA € .7, A(A) < +o0and f(x) := A(AN(—o0,x)), x € R. Prove that f € C(R).
Exercise 3.8.15. Let A € . be a bounded set with A(A) > 0. Prove that
Vo€ (0,A(A)) 3BCA, Be.¥: A(B)=

Exercise 3.8.16.* Prove the existence of a set A € ., A(A) > 0, which contains no intervals

(a,B), o < B.

3.9 Lebesgue measure on R"”

LetX =R?,d €N,
d
Hak,bk —o < ap < by <o, 1 <k<m U{@}
k=1
be a semiring of subsets of R? and

d
/ld((l)) = 0, ld = (H ak,bk ) =

(by — ax).

=

k=1 k

1
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The case d = 1 was considered in Section 3.8. For d = 2 the function 4, is the area of rectangles
(ay,b1] x (az,by] from £2,. For d = 3 the function A3 is the volume of boxes (a;,b;| X (az2,b2] X
(a3,b3] from ;.

By Theorem 2.4.1, the function A, is a measure on the semiring &;. This measure can be
uniquely extended to the measure on r( %), denoted also by A4, according to Theorem 3.1.2. Let
A be the outer measure generated by A; and .#; be the class of all A;-measurable subsets of RY.

By the Caratheodory Theorem 3.3.5, the class . is a o-algebra and A is a measure on .%.

Definition 3.9.1. Sets from the c-algebra .7 are said to be Lebesgue measureable sets and the
measure A; on .7 (furthere denoting by A) is called the Lebesgue measure (or d-dimensional

Lebesgue measure).

The following inclusions
P, C r(@d) C %(Rd) C S

hold.
Exercise 3.9.2. Prove the following statements:
a) for every poing (x,y) € R? the one-point set {(x,y)} € . and A, ({(x,y)}) = 0;
b) aline segment I = {(x,y): a <x < b, y=c} belongs to .3 and A,(I) = 0;
¢) if /is aline in R?, then I € .%5 and A, () = 0;
d) the set I' = {(x, f(x)) : x € R} belongs to .#3 and A,(I") = 0, where f € C(R);

e) theset F ={(x,y): a<x<b, 0<y< f(x)} belongs to . and A,(F) :fabf(x)dx, where
f€C([a,b]), f(x) >0,x€ [a,b].

Exercise 3.9.3. Let
X=R? P={(a,b]xR: —o<a<b<4oo}U{0}, u®) :=0, u((a,b]xR):=b—a.

Prove that &7 is a semiring and U is a measure on &. Let u* be the outer measure generated by
w. Find p*(A) for the following sets:
DA={(xy): 0<x<Ly=xh bA={(xy): X+y <1}

Describe the class of all pt*-measurable functions.

Exercise 3.9.4. Let X = R?, . = .% and A, be the Lebesgue measure on .%5. We set
fO) =M (An{(xy): #+y*<?}), 120,

for aset A € .%. Prove that f € C([0,+o0)).
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Exercise 3.9.5. Let the conditions of the previous exercise are satisfied and, additionally, A»(A) <
+oo. Set

f@) =X ANn{(xy): tx—y* <0}), t>0.

Prove that f € C((0,+o0)).

Exercise 3.9.6. Prove that a set A C RY is Lebesgue measurable if and only if

Ve >0 dGopen, GDA: A;(G\A)<e.

3.10 Lebesgue-Stieltjes measure on the real line

Let X =R, # = {(a,b]: —eco<a<b< +e}U{0} and F : R — R be a nondecreasing right

continuous function. We set
A'F(w) ::Ov 2'F((aub]):F(b)_F(a)v (a7b]€<@1~

According to Theorem 2.4.4, the function Ar is a measure on &;. By Theorem 3.1.2, there exists
a unique extension of this measure to r(.%?;), which we will also denote by Ar. Let A/ be the outer
measure generated by Ar and .7 be the class of all A;-measurable subsets of R. By Caratheodory

Theorem 3.3.5, the class .7 is a o-algebra and A} is a measure on ..

Definition 3.10.1. Sets from the c-algebra .#F are said to be measurable and the measure A; on

SF (further denoted by Ar) is called the Lebesgue-Stieltjes measure.

The following inclusion
P C r(@l) C %(R) C SF

hold.
Exercise 3.10.2. Prove that
VxeR: {x} e and Ar({x})=F(x)—F(x—).
Exercise 3.10.3. Show that that there exists at most countable set J C R such that
Vxeld: Ar({x})>0.

Exercise 3.10.4. Prove that the measure Ay coincides with the Lebesgue measure A4 if F(x) = x,
xeR.

Remark 3.10.5. A similar definition to Definition 3.10.1 can be done for the Lebesgue-Stieltjes

measure on R?,
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3.11 Some general definitions

Definition 3.11.1. Let X be a fundamental set and .% be a c-algebra of subsets of X. The pair
(X,.7) is called a measurable space, and sets from .% are said to be measurable. Let 1 be a
measure on .% . The triple (X,.%, 1) is called a space with measure. If 1 (X) = 1, then u is called
a probability measure, and the space (X,.7, 1) is called a probability space.

The introduced terminology is common and we will use it hereinafter.



Chapter 4

Measurable maps and functions

4.1 Definition and examples

We first remind some facts related with the notion of map 7 : X — X', where X and X’ are some
sets.
The image of a set A C X under the map 7 is the set TA := {Tx: x €A}, T0O:=0.
The preimage of a set A’ C X’ under the map T is the set T 1A’ := {x: Tx € A’}, T~'0:=0.
Further elementary properties of images and preimages are listed in the exercises below. There

o denotes an arbitrary set of indices.

Exercise 4.1.1. Let Ay, C X for every o € @. Prove that
T(UAQ> = |J TAq.
acmw acw

Exercise 4.1.2. Let A, C X’ for every o € @. Prove the following equalities

T (U A&) =J17'4,, T <ﬂ AQ) = () T7'4,,

acw oacmw acw acw

T_l (A:)Cl \Aixz) = (T_lAiZl) \ (T_lAiZz) :

Exercise 4.1.3. Let %’ be a ¢ algebra of subsets of X’. Prove that the class of sets
T2 = {TflA’ A€ ﬁ’}

is a o-algebra of subsets of X.

Exercise 4.1.4. Let X = X' =R, .#’ = #(R). Find T~'.%’ in the following cases:
0, ifx<0, .
() Tx=x% (i) Tx=|x|, (ii)Tx=< "~ 1 t= , (iv) Tx=cosx; xeR.
x, ifx>0,
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Definition 4.1.5. Let (X,.%), (X',.%#") be measurable spaces and f : X — X’. The map f is called
(Z,.F')-measurable, if f~1.7' C F, that s,

VA e 7. (A e 7.
The map f is said to be .% -measurable in the case X' = R, %' = Z(R).
Exercise 4.1.6. Let % = 2X. Prove that any map f : X — X' is (%,.%')-measurable.

Exercise 4.1.7. Let .# = {0,X }. Which functions are .% -measurable?



Chapter 5

Appendix

5.1 Structure of c-algebras

Here we discuss the equivalence which is defined on the universal set X by the o-algebra of its
subsets. This will lead to the description of the finite o-algebra and can be a starting point for

studying of conditional measures.

Exercise 5.1.1. Let M be a class of subsets of X. We will say that x ~, y if and only if there exists
no such A € M that only one from x,y belongs to A. Prove that ~, is an equivalence relation on
X.

Exercise 5.1.2. Suppose that M is finite. Prove that all equivalence classes with respect to ~; can

be expressed as () Af, where e = +1and A! :=A, A" :=A° =X\ A.
AeM

Exercise 5.1.3. Assume that M is finite o-algebra. Prove that all equivalence classes with respect

to ~s belongs to M.
Let us denote by Hy, ..., H, the equivalence classes from the previous exercise.

Exercise 5.1.4. Check that under condition of the Exercise 5.1.3 every element of M is a union of

certain elements from Hy,...,H,,.

Exercise 5.1.5. Prove that for any finite o-algebra M there exists a natural number n such that the

number of sets in M equals 2".

Exercise 5.1.6. Let X be the Euclidean space R? and %(R?) be a Borel -algebra in R?. Prove

that equivalence classes for ~ z4) are one-point sets.
Let f be a function from X to Y and ./ be a c-algebra of subsets in Y.
Exercise 5.1.7. Check that the family
Ir={f"'A):Aea}

is a o-algebra of subsets in X.
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Exercise 5.1.8. Prove that equivalence classes for ~r can be described as f~!(Z), where Z are

equivalence classes for ~ .

Exercise 5.1.9.* Give an example of a set X and a o-algebra M of its subsets such that the

equivalence classes with respect to ~; do not belong to M.
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