Problem sheet 9

Solutions has to be uploaded into Moodle:
https://moodle2. uni-leipzig.de/mod/assign/view. php? id=1087868
until 22:00, June 17.

1. [1 points] If $T \neq 0$ is a bounded linear operator, show that for any $x \in \mathcal{D}(T)$ such that $\|x\|<1$ we have the strict inequality $\|T x\|<\|T\|$.
2. [3 points] Let $T: \mathcal{D}(T) \rightarrow Y$ be a linear operator. Show that

$$
\|T\|:=\sup _{x \in \mathcal{D}(T),} \frac{\|T x\|}{\|x\|}=\sup _{x \in \mathcal{D}(T),\|x\|=1}\|T x\|
$$

3. [3 points] Show that the operator $T: l^{\infty} \rightarrow l^{\infty}$ defined by $T x=\left(\eta_{k}\right)_{k \geq 1}, \eta_{k}=\frac{\xi_{k}}{k}, k \geq 1$, $x=\left(\xi_{k}\right)_{k \geq 1}$, is linear and bounded. Compute its norm.
4. [3 points] Compute the norm of the linear operator $T: C[0,1] \rightarrow C[0,1]$

$$
(T x)(t)=\int_{0}^{t} s x(s) d s, \quad t \in[0,1] .
$$

5. [4 points] Using the definition, compute the norm of the following functional f on c_{0} :

$$
f(x)=\sum_{k=1}^{\infty} \frac{\xi_{k}}{3^{k}}, \quad x=\left(\xi_{k}\right)_{k \geq 1} \in c_{0} .
$$

6. [3+3 points] Compute norms of the following functionals:
a) $f(x)=\int_{0}^{1} t^{3} x(t) d t$ on $L^{4}[0,1]$;
b) $f(x)=\sum_{k=1}^{\infty} \frac{\xi_{k}}{\sqrt{k!}}$ on l^{2}.
7. [4 bonus points] Find the norm of the functional defined on $C[-1,1]$ by

$$
f(x)=\int_{-1}^{0} x(t) d t-2 \int_{0}^{1} x(t) d t
$$

8. [5 bonus points] Show that a linear functional is continuous on a normed space if and only if its kernel is closed.
