

Problem sheet 8

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=1078688 until 22:00, June 10.

Let X denote a normed space with norm $\|\cdot\|$.

- 1. [2 points] Prove that $||x||_p = (\sum_{k=1}^n |\xi_k|^p)^{\frac{1}{p}}$, $x = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$, is not a norm in \mathbb{R}^n for $0 and <math>n \ge 2$.
- 2. [2 points] Show that a closed ball

$$B_r(x_0) = \{x \in X : \|x - x_0\| \le r\}$$

in X is convex¹ for any $x_0 \in X$ and r > 0.

- 3. [3 points] Show that the convergences $x_n \to x$, $y_n \to y$ in X and $\alpha_n \to \alpha$ in the field K imply that $x_n + y_n \to x + y$ and $\alpha_n x_n \to \alpha x$ in X.
- 4. [3 points] Show that the closure \overline{Y} of a subspace Y of X is again a vector subspace.
- 5. [5 bonus points] Show that X must be complete, if absolute convergence of any series always implies convergence of that series in X.
- 6. [3 points] Show that in a Banach space, an absolutely convergent series is convergent.
- 7. [3 points] Let $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. Show that the product vector space $X = Y \times Z$ becomes a normed space if we define

 $||x|| = \max\{||y||_Y, ||z||_Z\}, \quad x = (y, z) \in X.$

Check also that a sequence $x_n = (y_n, z_n)$, $n \ge 1$, converges to x = (y, z) in X if and only if $y_n \to y$ in Y and $z_n \to z$ in Z.

- 8. Let X be a Banach space and B_n be a family of closed balls in X such that $B_{n+1} \subset B_n$, $n \ge 1$. Show that
 - (a) [5 points] there exists $x \in X$ such that $\bigcap_{n=1}^{\infty} B_n = \{x\}$, if radii r_n of the balls B_n converges to zero;
 - (b) [4 bonus points] $\bigcap_{n=1}^{\infty} B_n \neq \emptyset$ without the assumption that $r_n \to 0$.

$$\alpha x + (1 - \alpha)y \in A$$

for all $\alpha \in [0, 1]$.

¹A subset A of a vector space V is said to be *convex* if for every $x, y \in A$ it implies that