

Problem sheet 7

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=1071497 until 22:00, June 3.

Let (X, d) denote a metric space.

- [2+2 points] Justify the terms "open ball" and "closed ball" by proving that
 a) any open ball is an open set; b) any closed ball is a closed set.
- 2. [2+2 points] Check if the following sets are open in C[0, 2].

a)
$$A = \{x \in C[0,2] : x(0) < 0, x(1) > 0\};$$
 b) $B = \{x \in C[0,2] : \int_0^2 |x(t)| dt < 1\}.$

- 3. [3 points] Prove that the space l_n^p is separable for every $p \ge 1$.
- 4. [3 points] Using the definition, show that the map $T: l^{\infty} \to l_2^p$ defined by the equality

$$Tx = (\xi_1, \xi_3), \quad x = (\xi_k)_{k=1}^{\infty} \in l^{\infty}$$

is continuous for every $p \ge 1$.

- 5. [3 points] If $\{x_n\}_{n\geq 1}$ is a Cauchy sequence in X and has a convergent subsequence, say, $x_{n_k} \to x$. Show that $\lim_{n\to\infty} x_n = x$.
- 6. [5 points] Consider the metric space c_0 consisting of all sequences $x = (\xi_k)_{k=1}^{\infty}$ which converge to 0. A metric on c_0 is defined as $d(x, y) = \max_{k \ge 1} |\xi_k \eta_k|, x = (\xi_k)_{k=1}^{\infty}, y = (\eta_k)_{k=1}^{\infty} \in c_0$. Prove that c_0 is complete.
- 7. [1 points] Show that the set of all real numbers \mathbb{R} with the metric $d(x, y) = |\arctan x \arctan y|$, $x, y \in \mathbb{R}$, is not a complete metric space.
- 8. [4 bonus points] We define a map $T : c \to \mathbb{R}$ as follows $Tx = \lim_{k\to\infty} \xi_k$, $x = (\xi_k)_{k=1}^{\infty} \in c$. Is the map T continuous? Justify your answer.
- 9. [5 bonus points] Consider the metric space $C^{1}[0,1]$ of all continuously differentiable functions on [0,1].¹ Define the metric on $C^{1}[0,1]$ as follows

$$d(x,y) = \max_{t \in [0,1]} |x(t) - y(t)| + \max_{t \in [0,1]} |x'(t) - y'(t)|, \quad x, y \in C^1[0,1].$$

Show that $C^{1}[0, 1]$ is a complete metric space.

¹Remark that the derivative of a function x can be defined only at inner points of the interval [0, 1]. So, we cannot define the derivative at points 0 and 1. Hence, one needs to assume that a function x is continuously differentiable on [0, 1] if x is the restriction of a continuously differentiable function on \mathbb{R} .