Problem sheet 7

Solutions has to be uploaded into Moodle:
https://moodle2. uni-leipzig.de/mod/assign/view. php? id=1071497 until 22:00, June 3.

Let (X, d) denote a metric space.

1. [$2+2$ points] Justify the terms "open ball" and "closed ball" by proving that
a) any open ball is an open set;
b) any closed ball is a closed set.
2. $[\mathbf{2}+\mathbf{2}$ points $]$ Check if the following sets are open in $C[0,2]$.
a) $A=\{x \in C[0,2]: x(0)<0, x(1)>0\}$;
b) $B=\left\{x \in C[0,2]: \int_{0}^{2}|x(t)| d t<1\right\}$.
3. [3 points] Prove that the space l_{n}^{p} is separable for every $p \geq 1$.
4. [3 points] Using the definition, show that the map $T: l^{\infty} \rightarrow l_{2}^{p}$ defined by the equality

$$
T x=\left(\xi_{1}, \xi_{3}\right), \quad x=\left(\xi_{k}\right)_{k=1}^{\infty} \in l^{\infty}
$$

is continuous for every $p \geq 1$.
5. [3 points] If $\left\{x_{n}\right\}_{n \geq 1}$ is a Cauchy sequence in X and has a convergent subsequence, say, $x_{n_{k}} \rightarrow x$. Show that $\lim _{n \rightarrow \infty} x_{n}=x$.
6. [5 points] Consider the metric space c_{0} consisting of all sequences $x=\left(\xi_{k}\right)_{k=1}^{\infty}$ which converge to 0 . A metric on c_{0} is defined as $d(x, y)=\max _{k \geq 1}\left|\xi_{k}-\eta_{k}\right|, x=\left(\xi_{k}\right)_{k=1}^{\infty}, y=\left(\eta_{k}\right)_{k=1}^{\infty} \in c_{0}$. Prove that c_{0} is complete.
7. [1 points] Show that the set of all real numbers \mathbb{R} with the metric $d(x, y)=|\arctan x-\arctan y|$, $x, y \in \mathbb{R}$, is not a complete metric space.
8. [4 bonus points] We define a map $T: c \rightarrow \mathbb{R}$ as follows $T x=\lim _{k \rightarrow \infty} \xi_{k}, x=\left(\xi_{k}\right)_{k=1}^{\infty} \in c$. Is the map T continuous? Justify your answer.
9. [5 bonus points] Consider the metric space $C^{1}[0,1]$ of all continuously differentiable functions on $[0,1] .{ }^{1}$ Define the metric on $C^{1}[0,1]$ as follows

$$
d(x, y)=\max _{t \in[0,1]}|x(t)-y(t)|+\max _{t \in[0,1]}\left|x^{\prime}(t)-y^{\prime}(t)\right|, \quad x, y \in C^{1}[0,1] .
$$

Show that $C^{1}[0,1]$ is a complete metric space.

[^0]
[^0]: ${ }^{1}$ Remark that the derivative of a function x can be defined only at inner points of the interval $[0,1]$. So, we cannot define the derivative at points 0 and 1 . Hence, one needs to assume that a function x is continuously differentiable on $[0,1]$ if x is the restriction of a continuously differentiable function on \mathbb{R}.

