

Problem sheet 6

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=1061024 until 22:00, May 27.

Let (X, \mathcal{F}) denote a measurable space and λ be a measure on \mathcal{F} . All functions considered here are \mathcal{F} -measurable.

1. (i) [3 points] Let $A \in \mathcal{F}$ and for every $n \ge 1$, functions $f_n \in L(A, \lambda)$ and are non-negative. Let also the series $\sum_{n=1}^{\infty} f_n$ converges λ -a.e. on A.¹ Show that

$$\sum_{n=1}^{\infty} \int_{A} f_{n} d\lambda = \int_{A} \left(\sum_{n=1}^{\infty} f_{n} \right) d\lambda.$$

(ii) [3 bonus points] Let X = [0, 1], $\mathcal{F} = \mathcal{B}([0, 1])$, λ be a Lebesgue measure on [0, 1]. Consider the integrable functions $f_1 = 2\mathbb{I}_{[0, \frac{1}{2}]}$, $f_n = \mathbb{I}_{[0, \frac{1}{n+1}]} - n\mathbb{I}_{(\frac{1}{n+1}, \frac{1}{n}]}$, $n \ge 2$. Show that the series $\sum_{n=1}^{\infty} f_n$ converges a.e. on [0, 1] but

$$\sum_{n=1}^{\infty} \int_0^1 f_n dx \neq \int_0^1 \left(\sum_{n=1}^{\infty} f_n\right) dx.$$

2. [3 points] Let $p_k, k \ge 1$, be a non-negative numbers satisfying the condition

$$\sup_{0< s<1} \sum_{k=1}^{\infty} \frac{\sin^2(sk)}{s^2} p_k < +\infty.$$

Prove that $\sum_{k=1}^{\infty} k^2 p_k < +\infty$.

Hint: Set $X = \mathbb{N}$, $\lambda(\{k\}) = p_k$, $k \in \mathbb{N}$, and use Fatou's lemma.

3. [4 points] Let $f:[0,1] \to \mathbb{R}$ be non-negative and Borel measurable. Compute

$$\lim_{n \to \infty} \int_0^1 x^{nf(x)} dx.$$

4. [3 points] Compute the sum $\sum_{n=1}^{\infty} \int_{1}^{+\infty} \frac{dx}{(1+x^2)^n}$.

5. [4 bonus points] Let F be a continuously differentiable non-decreasing function on \mathbb{R} with F' = f. Show that

$$\int_{A} g(x) dF(x) = \int_{A} g(x) f(x) dx$$

for every non-negative function g on \mathbb{R} and a Borel set A.

- 6. [2 points] Let $l_n^{\infty} := \mathbb{R}^n$ and $d(x, y) = \max_{k=1,...,n} |\xi_k \eta_k|, x = (\xi_k)_{k=1}^n, y = (\eta_k)_{k=1}^n \in l_n^{\infty}$. Show that (l_n^{∞}, d) is a metric space.
- 7. [2 points] Draw the balls $B_1(0)$ in the following metric spaces l_2^1 , l_2^2 and l_2^{∞} .
- 8. [2+2 points] Compute the distances between the functions $\cos x$ and $\sin x$, $x \in [0, 2\pi]$, in a) $C[0, 2\pi]$ and b) $L_2[0, 2\pi]$.

¹The series $\sum_{n=1}^{\infty} f_n$ converges λ -a.e. on A if the sequence of functions $S_n = \sum_{k=1}^n f_k$ converges λ -a.e. on A