

Problem sheet 5

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=1049936 until 22:00, May 20.

Let (X, \mathcal{F}) denote a measurable space and λ be a measure on \mathcal{F} . All functions considered here are \mathcal{F} -measurable.

- 1. [3 points] Let $X = \mathbb{R}$, $\mathcal{F} = \mathcal{B}(\mathbb{R})$ and λ be the Lebesgue measure on \mathbb{R} . Let also $f \in L(\mathbb{R}, \lambda)$. Show that the function $\varphi(x) := \int_{(-\infty, x]} f(t)\lambda(dt), x \in \mathbb{R}$, is continuous on \mathbb{R} .
- 2. [3 points] Let $f \in L(X, \lambda)$ and $\int_A f d\lambda = 0$ for all $A \in \mathcal{F}$. Show that $f = 0 \lambda$ -a.e.
- 3. [2 points] Let $f_n \to f \lambda$ -a.e. and $f_n \to g \lambda$ -a.e. Show that $f = g \lambda$ -a.e.
- 4. [4 points] Assume that $f: X \to \mathbb{R}$ satisfies the following property: for every a > 0

$$\lambda \left(\{ x \in X : |f(x)| \ge a \} \right) = 0.$$

Show that $f = 0 \lambda$ -a.e.

Hint: Prove and use the equality $\{x \in X : f(x) \neq 0\} = \bigcup_{n=1}^{\infty} \{x \in X : |f(x)| \ge \frac{1}{n}\}.$

- 5. [3+3 points] Let $f_n \stackrel{\lambda}{\to} f$.
 - (a) Show that $|f_n| \xrightarrow{\lambda} |f|$.
 - (b) Let additionally $\lambda(X) < +\infty$ and $g : \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that $g(f_n) \xrightarrow{\lambda} g(f)$.
- 6. [3+3 points] Let $f_n, n \ge 1$, be non-negative functions.
 - (a) Show that for every $\varepsilon > 0$

$$\varepsilon\lambda\left(\left\{x\in X:\ f_n(x)\geq\varepsilon\right\}\right)\leq\int_X f_nd\lambda.$$

- (b) Check that the convergence $\int_X f_n d\lambda \to 0$ implies $f_n \stackrel{\lambda}{\to} 0$.
- 7. [5+2 bonus points] Let $\lambda(X) < +\infty$.
 - (a) Prove that $f_n \to f \lambda$ -a.e. if and only if

$$\forall \varepsilon > 0 \ \lambda \left(\bigcup_{k=n}^{\infty} \left\{ x \in X : |f_k(x) - f(x)| \ge \varepsilon \right\} \right) \to 0, \quad n \to \infty.$$

Hint: Consider the set $\bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} \left\{ x \in X : |f_j(x) - f(x)| \ge \frac{1}{k} \right\}.$

(b) Show that the convergence of the series $\sum_{n=1}^{\infty} \lambda \left(\{x \in X : |f_n(x) - f(x)| \ge \varepsilon \} \right)$ for all $\varepsilon > 0$ implies that $f_n \to f \lambda$ -a.e.