

Problem sheet 4

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=1035072 until 22:00, May 13.

Let (X, \mathcal{F}) denote a measurable space.

1. [3 points] Let X, X' be sets, and \mathcal{F}' be a σ -algebra on X'. Let also $f: X \to X'$ be a function. Show that the class of sets

$$f^{-1}(\mathcal{F}') := \left\{ f^{-1}(A') : A' \in \mathcal{F}' \right\}$$

is a σ -algebra on X.

- 2. [2 points] Prove that every Borel measurable function $f : \mathbb{R} \to \mathbb{R}$ is also Lebesgue measurable.¹
- 3. [4 points] Let $f_k : X \to \mathbb{R}$, k = 1, ..., m, be \mathcal{F} -measurable functions. Consider $f(x) := (f_1(x), \ldots, f_m(x)), x \in X$. Show that the function $f : X \to \mathbb{R}^m$ is also \mathcal{F} -measurable, that is, $f^{-1}(A') \in \mathcal{F}$ for every $A' \in \mathcal{B}(\mathbb{R}^m)$.
- 4. [3 points] Let $f, g: X \to \mathbb{R}$ be \mathcal{F} -measurable. Show that $\{x \in X : f(x) \ge g(x)\}$ and $\{x \in X : f(x) = g(x)\}$ belong to \mathcal{F} .
- 5. [3 points] Let for a function $f : \mathbb{R} \to \mathbb{R}$ there exists the derivative f' on \mathbb{R} . Prove that f' is a Borel function.
- 6. [3 points] Let $f_1, f_2 : X \to \mathbb{R}$ be non-negative simple functions such that $f_1(x) \leq f_2(x), x \in X$. Using the definition of the Lebesgue integral show that

$$\int_A f_1 d\lambda \le \int_A f_2 d\lambda,$$

for all $A \in \mathcal{F}$.

7. [2 bonus points] Let functions $f, g : \mathbb{N} \to \mathbb{R}$ satisfy

$$f^{-1}(\mathcal{B}(\mathbb{R})) \subset g^{-1}(\mathcal{B}(\mathbb{R})).$$

Show that there exists a Borel function $F : \mathbb{R} \to \mathbb{R}$ such that $f(x) = F(g(x)), x \in \mathbb{N}$.

- 8. [2+2 points] Let $X = \mathbb{N}$, $\mathcal{F} = 2^{\mathbb{N}}$ and $\lambda(\emptyset) := 0$, $\lambda(A) := \sum_{n \in A} \frac{1}{n}$, $A \in 2^{\mathbb{N}}$. Show that
 - a) $f \in L(\mathbb{N}, \lambda)$ if and only if $\sum_{n=1}^{\infty} \frac{|f(n)|}{n} < +\infty;$
 - b) $\int_{\mathbb{N}} f d\lambda = \sum_{n=1}^{\infty} \frac{f(n)}{n}$ for $f \in L(\mathbb{N}, \lambda)$.

¹A function $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable if it is S-measurable, where S is the σ -algebra of all Lebesgue measurable subsets of \mathbb{R} .