

Problem sheet 3

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=1024020 until 22:00, May 6.

1. [1+3 points] Let $X = \mathbb{R}$. Consider the following semiring

$$H := \{(k, k+1]: k \in \mathbb{Z}\} \cup \{\emptyset\},\$$

and define a measure μ on H as follows

$$\mu(\emptyset) := 0, \quad \mu((k, k+1]) := 1, \quad k \in \mathbb{Z}.$$

Let the measure $\bar{\mu}$ be the extension of μ to the ring r(H) generated by H.

- (a) Compute $\bar{\mu}((0,1])$, $\bar{\mu}((1,2] \cup (5,6])$ and $\bar{\mu}((-1,3])$.
- (b) Construct the outer measure μ^* generated by $\bar{\mu}$ and compute $\mu^*\left(\left\{\frac{1}{2}\right\}\right), \ \mu^*\left(\left(\frac{1}{2}, \frac{3}{2}\right)\right)$ and $\mu^*(\mathbb{N})$.
- 2. [2 points] Let λ^* be an outer measure on 2^X . Show that a set $A \in 2^X$ is λ^* -measurable if and only if

 $\forall U \subset A \text{ and } \forall V \subset A^c \quad \lambda^*(U \cup V) = \lambda^*(U) + \lambda^*(V).$

- 3. [2 points] Let μ^* be the outer measure generated by a measure μ defined on a ring R, and let S denotes the set of all μ^* -measurable sets. Show that $\sigma r(R) \subset \sigma(R) \subset S$.
- 4. [3+3 points] Let $X = \mathbb{R}$ and λ be the Lebesgue measure. Denote by S the class of all Lebesgue measurable subsets of \mathbb{R} .
 - (a) Let $A \in S$, $\lambda(A) < +\infty$ and $f(x) := \lambda(A \cap (-\infty, x))$, $x \in \mathbb{R}$. Show that the function f is continuous on \mathbb{R} .
 - (b) Let A be a bounded set and $\lambda(A) > 0$. Prove that there for every $\alpha \in (0, \lambda(A))$ there exists $B \subset A, B \in S$ such that $\lambda(B) = \alpha$.
- 5. [1+2+2 points] Let $X = \mathbb{R}^2$ and λ be the Lebesgue measure. Denote by S the class of all Lebesgue measurable subsets of \mathbb{R}^2 . Show that
 - (a) a one-point set $\{(x, y)\}$ belongs to S and $\lambda(\{(x, y)\}) = 0$ for every $(x, y) \in \mathbb{R}^2$;
 - (b) the interval $I = \{(x, y) : x \in [a, b], y = 1\}$ belongs to S and $\lambda(I) = 0$ for every a < b;
 - (c) the line $L = \{(x, y) : x \in \mathbb{R}, y = 1\}$ belongs to S and $\lambda(L) = 0$;
 - (d) **[3 bonus points]** the set $F = \{(x, y) : 0 \le x \le 1, 0 \le y \le f(x)\}$ belongs to S and $\lambda(F) = \int_0^1 f(x) dx$, where f is a nonnegative continuous function on [0, 1].
- 6. [1+2 points] Let (X, \mathcal{F}) and (X', \mathcal{F}') be measurable spaces. Which functions $f : X \to X'$ are $(\mathcal{F}, \mathcal{F}')$ -measurable if a) $\mathcal{F}' = \{\emptyset, X'\}$; b) $X = [0, 1], \mathcal{F} = \sigma(\{[0, 1/2]\})$ and $X' = \mathbb{R}, \mathcal{F}' = \mathcal{B}(\mathbb{R})$.
- 7. [3 bonus points] Define the class of all μ^* -measurable sets, where μ^* is the outer measure from Exercise 1.
- 8. [2 bonus points] Fine an example of an outer measure λ^* on 2^X such that the class of all λ^* -measurable sets S equals $\{\emptyset, X\}$.