

Problem sheet 2

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=1012644 until 22:00, April 29.

- 1. [1+1+1 points] Let $X = \{0, 1, 2\}$ and $H = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$. Is the function $\mu : H \to \mathbb{R}$ a measure on H, where μ is defined as
 - (a) $\mu(\emptyset) := 0, \, \mu(\{0\}) = -1, \, \mu(\{1\}) = 2 \text{ and } \mu(\{0,1\}) = 1;$
 - (b) $\mu(\emptyset) := 0, \, \mu(\{0\}) = 1, \, \mu(\{1\}) = 2 \text{ and } \mu(\{0,1\}) = 3;$
 - (c) $\mu(\emptyset) := 0, \, \mu(\{0\}) = 1, \, \mu(\{1\}) = 2 \text{ and } \mu(\{0,1\}) = 1?$
- 2. [3 points] Show that a nonnegative, additive and continuous below¹ function μ on a ring H is a measure on H.
- 3. [4 points] Let μ be a measure on a σ -algebra $H \subset 2^X$ and $\mu(X) = 1$. For a family of sets $\{A_n : n \ge 1\} \subset H$ satisfying $\mu(A_n) = 1, n \ge 1$, show that $\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = 1$.
- 4. [4 points] Let μ be a measure on an algebra $H \subset 2^X$ and $\mu(X) = 1$. Let a family of sets $\{A_1, \ldots, A_n\} \subset H$ satisfy the following property

$$\mu(A_1) + \dots + \mu(A_n) > n - 1.$$

Show that $\mu(\bigcap_{k=1}^{n} A_k) > 0.$

5. [4+4 points] For a sequence $\{A_n : n \ge 1\}$ of subsets of X define

$$\lim_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k, \quad \lim_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.^2$$

Let μ be a measure on a σ -algebra $H \subset 2^X$ and $\{A_n : n \ge 1\} \subset H$.

- (a) Prove that μ (lim_{n→∞} A_n) ≤ lim_{n→∞} μ(A_n).
 (b) Let additionally μ (U[∞]_{k=1} A_k) < +∞. Show that μ (lim_{n→∞} A_n) ≥ lim_{n→∞} μ(A_n).
- 6. [3 bonus points] Show that a nonnegative, additive and σ -semiadditive function μ on a ring R is a measure on R.
- 7. [4 bonus points] Let μ be a measure on a σ -algebra $H \subset 2^X$ and $\mu(X) = 1$. Show that for every sequence $\{A_n : n \ge 1\} \subset H$ the equality

$$\sum_{n=1}^{\infty} \mu(A_n) < +\infty$$

implies $\mu\left(\lim_{n\to\infty}A_n\right) = 0.$

¹A function μ defined on a ring H is called **continuous below**, if for every increasing family $\{A_n : n \ge 1\} \subset H$ one has $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n)$

²The set $\lim_{n \to \infty} A_n$ consists of all points which belongs to A_n for all $n \ge n_0$ starting from some nomber n_0 . The set $\lim_{n \to \infty} A_n$ consists of all point which belongs to an infinite number of A_n .