Problem sheet 12

Solutions has to be uploaded into Moodle:
https://moodle2. uni-leipzig.de/mod/assign/view. php? id=1111128 until 22:00, July 8.

Here all Hilbert spaces are considered over the scalar field \mathbb{C}.
Let $E_{\lambda}, \lambda \in \mathbb{R}$, be a spectral family on an interval $[m, M]$ associated with self-adjoint linear operator T on a Hilbert space H. We recall that T admits the spectral representation

$$
\begin{equation*}
T=\int_{m-0}^{M} \lambda d E_{\lambda} \tag{1}
\end{equation*}
$$

For a continuous function $f:[m, M] \rightarrow \mathbb{R}$ one can define the operator (which is bounded and selfadjoint) $f(T)$ by the equality

$$
f(T):=\int_{m-0}^{M} f(\lambda) d E_{\lambda}
$$

1. [$\mathbf{3}$ points] Show that a bounded self-adjoint linear operator is positive if and only if its spectrum consists of non-negative real values only.
2. [6 points] Let $Y \neq\{0\}$ be a closed subspace of a Hilbert space H which does not coincide with H, and P be the orthogonal projection of H onto Y. Show that for every $\lambda \notin\{0,1\}$,

$$
(P-\lambda I)^{-1}=-\frac{1}{\lambda} I+\frac{1}{\lambda(1-\lambda)} P .
$$

Find the spectrum of P, spectral family associated with P and writhe the spectral representation (1) for P.
3. [6 points] Let an operator $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be represented, with respect to a canonical basis, by the matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Find the corresponding spectral family. Write the spectral representation (1) for T.
4. [6 points] Find $T_{\lambda}^{+}, \lambda \in \mathbb{R}$, and the spectral family $E_{\lambda}, \lambda \in \mathbb{R}$, associated with operator $T: l^{2} \rightarrow l^{2}$ defined by $T x=\left(\frac{\xi_{1}}{1}, \frac{\xi_{2}}{2}, \frac{\xi_{3}}{3}, \ldots\right), x=\left(\xi_{k}\right)_{k \geq 1}$. Write the spectral representation (1) for T.
5. [6 bonus points] For the multiplication operator $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ defined by

$$
(T x)(t)=t x(t), \quad t \in[0,1],
$$

compute $\sin T$.

