Problem sheet 11

Solutions has to be uploaded into Moodle: https://moodle2. uni-leipzig. de/mod/assign/view. php? id=1104170 until 22:00, July 1.

Here all Hilbert spaces are considered over the scalar field \mathbb{C}.

1. [3 points] Let T be a bounded linear operator on a Hilbert space H. Show that $(\operatorname{Im} T)^{\perp}=$ $\operatorname{ker} T^{*}$, where $\operatorname{Im} T=\{T x, x \in H\}$.
2. [3 points] Let $k(t, s), t, s \in[0,1]$, be a continuous function and let the operator T act on $L^{2}[0,1]$ by the formula

$$
(T x)(t)=\int_{0}^{1} k(t, s) x(s) d s, \quad t \in[0,1] .
$$

Find the adjoint operator T^{*}.
3. [3 points] Let S, T be bounded linear operators on a normed space X. Show that for every $\lambda \in \rho(S) \cap \rho(T)$ one has

$$
R_{\lambda}(T)-R_{\lambda}(S)=R_{\lambda}(T)(S-T) R_{\lambda}(S)
$$

4. [3 points] Let T be a linear operator on l^{2} defined by $T x=\left(\xi_{2}, \xi_{1}, \xi_{3}, \xi_{4}, \xi_{5}, \ldots\right)$ (permutation of first two components). Find and classify the spectrum of T.
5. [4 points] Let $X=C[0, \pi]$ and define $T: \mathcal{D}(T) \rightarrow X$ by $T x=x^{\prime \prime}$, where

$$
\mathcal{D}(T)=\left\{x \in X: x^{\prime}, x^{\prime \prime} \in X, x(0)=x(\pi)=0\right\} .
$$

Show that $\sigma(T)$ is not compact.
6. [5 points] Let

$$
a(t)= \begin{cases}t & \text { if } t \in[0,1], \\ 1 & \text { if } t \in(1,2] .\end{cases}
$$

Find and classify the spectrum of the operator $(T x)(t)=a(t) x(t)$ acting on $C[0,2]$.
7. [6 bonus points] Let T be the left-shift operator on l^{2} defined as follows

$$
T x=\left(\xi_{2}, \xi_{3}, \ldots\right), \quad x=\left(\xi_{k}\right)_{k \geq 1} \in l^{2} .
$$

Find the spectrum of T.

