

Problem sheet 10

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=1096518 until 22:00, June 24.

1. [2 points] If $x \perp y$ in an inner product space X, show that

$$||x + y||^2 = ||x||^2 + ||y||^2$$

- 2. [3 points] Show that for a sequence $\{x_n\}_{n\geq 1}$ in an inner product space the conditions $||x_n|| \rightarrow ||x||$ and $\langle x_n, x \rangle \rightarrow \langle x, x \rangle$ imply the convergence $x_n \rightarrow x$.
- 3. [4 bonus points] Let H be a Hilbert space, $M \subset H$ be a convex subset, and $\{x_n\}_{n\geq 1}$ be a sequence in M such that $||x_n|| \to d$, where $d = \inf_{x \in M} ||x||$. Show that $\{x_n\}_{n\geq 1}$ converges in H.

Hint: Use the parallelogram equality

- 4. [4 points] Let $\{e_1, \ldots, e_n\}$ be an orthonormal set in an inner product space X, where n is fixed. Let $x \in X$ be any fixed element and $y = \beta_1 e_1 + \cdots + \beta_n e_n$. Then ||x - y|| depends on β_1, \ldots, β_n . Show by direct calculation that ||x - y|| is minumum if and only if $\beta_k = \langle x, e_k \rangle$, $k = 1, \ldots, n$.
- 5. [4 points] Let $x_1(t) = t^2$, $x_2(t) = t$, $x_3(t) = 1$. Orthonormalize x_1, x_2, x_3 in this order in the space $L^2[-1, 1]$.
- 6. [5 points] Let M be a total set in an inner product space X. If $\langle v, x \rangle = \langle w, x \rangle$ for all $x \in M$, show that v = w.
- 7. [5 points] Let $\{e_k, k \ge 1\}$ be an orthonormal sequence in a Hilbert space H. Show that if

$$x = \sum_{k=1}^{\infty} \alpha_k e_k, \quad y = \sum_{k=1}^{\infty} \beta_k e_k,$$

then

$$\langle x,y\rangle = \sum_{k=1}^\infty \alpha_k \bar{\beta}_k$$

and the series converges absolutely.

8. [4 bonus points] Let $\{e_k, k \ge 1\}$ be an orthonormal sequence in a Hilbert space H, and let $M = \text{span } \{e_k, k \ge 1\}$. Show that for any $x \in H$ we have that $x \in \overline{M}$ if and only if x can be represented as

$$x = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$$