

Problem sheet 1

Solutions has to be uploaded into Moodle: https://moodle2.uni-leipzig.de/mod/assign/view.php?id=995541 until 22:00, April 22.

- 1. [2 points] Prove that a nonempty class of sets $H \subset 2^X$ is a ring if and only if H is a semiring and $A \cup B \in H$ for every $A, B \in H$.
- 2. [2 points] Let H be a ring. Show that H is a semiring.
- 3. [3 points] Let $X = \mathbb{R}$ and the class $H \subset 2^X$ consists of all subsets with finite number of elements. Show that H is a ring. Is H a σ -ring? Justify your answer.
- 4. [4 points] Let X be an uncountable set, and let H be the class of subsets of X, which either are at most countable or have at most countable complements. Prove or disprove that H is a σ -algebra.

Hint: Use here the result of Exercise 11.

- 5. [1+1 point] Let $H_1, H_2, H \subset 2^X$.
 - (a) Show that the inclusion $H_1 \subset H_2$ implies $\sigma(H_1) \subseteq \sigma(H_2)$.
 - (b) Let $H \subset 2^X$. Show that $\sigma(H) = \sigma(\sigma(H))$.
- 6. [5 points] Let $B \subset X$ be fixed and $H \subset 2^X$. Show that $\sigma r(H \cap B) = \sigma r(H) \cap B$. Here $H \cap B = \{A \cap B : A \in H\}$ and $\sigma r(H) \cap B = \{A \cap B : A \in \sigma r(H)\}$.
- 7. [2 points] Let X = [0, 2] and $H = \{\{0\}, [0, 1)\}$. Construct r(H) and a(H).
- 8. [2 points] Let $H = \{(a, b] : -\infty < a < b < +\infty\} \cup \{\emptyset\}$. Show that $\sigma(H) = \mathcal{B}(\mathbb{R})$.
- 9. [4 bonus points] Show that there exists a class H consisting of countable number of sets from \mathbb{R}^2 such that $\mathcal{B}(\mathbb{R}^2) = \sigma(H)$.
- 10. [5 bonus points] Prove the Theorem 2.18 from Lecture note 2. Namely, let the class H consists of all open sets from \mathbb{R} . Show that $\mathcal{B}(\mathbb{R}) = \sigma(H)$.
- 11. [2 bonus points] Let for every $n \ge 1$ a set A_n contains countable number of elements. Show that $\bigcup_{n=1}^{\infty} A_n$ also contains a countable number of elements.