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Abstract

The large deviations theory is one of the key techniques of modern probability. It concerns
with the study of probabilities of rare events and its estimates is the crucial tool required to handle
many questions in statistical mechanics, engineering, applied probability, statistics etc. The course
is build as the first look at the theory and is oriented on master and PhD students.

1 Introduction and some examples

1.1 Introduction

We start from the considering of a coin-tossing experiment. Let us assume that we toss a fair coin.
The law of large numbers says us that the frequency of occurrence of “heads” becomes close to 1

2 as the
number of trials increases to infinity. In other words, if X1, X2, . . . are independent random variables
taking values 0 and 1 with probabilities 1

2 , i.e. P {Xk = 0} = P {Xk = 1} = 1
2 , then we know that for

the empirical mean 1
nSn = X1+···+Xn

n

P
{∣∣∣∣ 1nSn − 1

2

∣∣∣∣ > ε

}
→ 01, n→∞,

or more strongly
1

n
Sn →

1

2
a.s.2, n→∞.

We are going stop more precisely on the probabilities P
{∣∣ 1

nSn −
1
2

∣∣ > ε
}

. We see that this events
becomes more unlikely for large n and their probabilities decay to 0. During the course, we will
work with such kind of unlike events and will try to understand the rate of their decay to zero.
The knowledge of decay of probabilities of such unlike events has many applications in insurance,
information theory, statistical mechanics etc. The aim of the course is to give an introduction to one
of the key technique of the modern probability which is called the large deviation theory.

Before to investigate the rate of decay of the probabilities P
{∣∣ 1

nSn −
1
2

∣∣ > ε
}

, we consider an
example of other random variable where computations are much more simpler.

Let ξ1, ξ2, . . . be independent identically distribyted random variables. We also assume that

E ξ1 = µ ∈ R,
Var ξ1 = σ2 > 0,

1according to the weak law of large numbers
2according to the strong law of large numbers
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and denote Sn = ξ1 + · · ·+ ξn. Then the weak law of large numbers says that

1

n
Sn → µ in probability, as n→ +∞,

that is, for all ε > 0 one has P
{∣∣ 1

nSn − µ
∣∣ ≥ ε} → 0 as n → +∞. This convergence simply follows

from Chebyshev’s inequality. Indeed,

P
{∣∣∣∣ 1nSn − µ

∣∣∣∣ ≥ ε} ≤ 1

ε2
E
(

1

n
Sn − µ

)2

=
1

ε2
Var

(
1

n
Sn

)
=

σ2

nε2
→ 0, n→ +∞. (1)

Estimate (1) shows that the rate of convergence must be at least 1
n , but this estimate is too rough.

Later we will see that those probabilities decay exponentially fast. Let us demonstrate it on a particular
example.

Example 1.1. Let ξ1, ξ2, . . . be independent normal distributed random variables with mean µ = 0
and variance σ = 1 (shortly ξk ∼ N(0, 1)). Then the random variable Sn has the normal distribution
with mean 0 and variance n. This implies 1√

n
Sn ∼ N(0, 1).

Now we can consider for x > 0

P
{

1

n
Sn ≥ x

}
= P

{
1√
n
Sn ≥ x

√
n

}
=

1√
2π

∫ +∞

x
√
n
e−

y2

2 dy ∼ 1√
2πx
√
n
e−

nx2

2 , n→ +∞,

by Exercise 1.1 below. Thus, we have for x > 0

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= lim

n→∞

1

n
ln

1√
2πx
√
n
e−

nx2

2

= − lim
n→∞

1

n
ln
√

2πx
√
n− lim

n→∞

x2

2
= −x

2

2

due to Exercise 1.2 3).

Remark 1.1. By symmetry, one can show that

lim
n→∞

1

n
lnP

{
1

n
Sn ≤ x

}
= −x

2

2

for all x < 0. Indeed,

lim
n→∞

1

n
lnP

{
1

n
Sn ≤ x

}
= lim

n→∞

1

n
lnP

{
− 1

n
Sn ≥ −x

}
= lim

n→∞

1

n
lnP

{
1

n
Sn ≥ −x

}
= −(−x)2

2

because −ξk ∼ N(0, 1) for k ≥ 1.

Exercise 1.1. Show that ∫ +∞

x
e−

y2

2 dy ∼ 1

x
e−

x2

2 , x→ +∞.

Exercise 1.2. Let (an)n≥1 and (bn)n≥1 be two sequences of positive real numbers. We say that they
are logarithmically equivalent and write an ' bn if

lim
n→∞

1

n
(ln an − ln bn) = 0.
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1. Show that an ' bn iff bn = ane
o(n).

2. Show that an ∼ bn implies an ' bn and that the inverse implication is not correct.

3. Show that an + bn ' max{an, bn}.

Exercise 1.3. Let ξ1, ξ2, . . . be independent normal distributed random variables with mean µ and
variance σ2. Let also Sn = ξ1 + · · ·+ ξn. Compute limn→∞

1
n lnP

{
1
nSn ≥ x

}
for x > µ.

1.2 Coin-tossing

In this section, we come back to the coin-tossing experiment and compute the decay of the probability
P
{

1
nSn ≥ x

}
. Let, us before, X1, X2, . . . be independent random variables taking values 0 and 1 with

probabilities 1
2 and Sn = X1 + · · ·+Xn denote their partial sum. We will show that

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= −I(x) (2)

for all x ≥ 1
2 , where I is some function of x.

We first note that for x > 1

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= −∞.3

Next, for x ∈
[

1
2 , 1
]

we observe that

P
{

1

n
Sn ≥ x

}
= P {Sn ≥ xn} =

∑
k≥xn

P {Sn = k} =
1

2n

∑
k≥xn

Ckn,

where Ckn = n!
k!(n−k)! . Then we can estimate

1

2n
max
k≥xn

Ckn ≤ P {Sn ≥ xn} ≤
n+ 1

2n
max
k≥xn

Ckn. (3)

Note that the maximum is attained at k = bxnc, the smallest integer ≥ xn, because x ≥ 1
2 . We denote

l := bxnc. Using Stirling’s formula

n! = nne−n
√

2πn

(
1 +O

(
1

n

))
,

we have

lim
n→∞

1

n
ln max
k≥xn

Ckn = lim
n→∞

1

n
lnC ln = lim

n→∞

1

n
(lnn!− ln l!− ln(n− l)!)

= lim
n→∞

(
lnn− 1− l

n
ln l +

l

n
− n− l

n
ln (n− l) +

n− l
n

)
= lim

n→∞

(
l

n
lnn+

n− l
n

lnn− l

n
ln l − n− l

n
ln(n− l)

)
= lim

n→∞

(
− l
n

ln
l

n
− n− l

n
ln
n− l
n

)
= −x lnx− (1− x) ln(1− x),

3we always assume that ln 0 = −∞
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because l
n = bxnc

n → x as n→ +∞. This together with estimate (3) implies

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= − ln 2− x lnx− (1− x) ln(1− x)

for all x ∈
[

1
2 , 1
]
.

So, we can take

I(x) =

{
ln 2 + x lnx+ (1− x) ln(1− x) if x ∈ [0, 1],

+∞ otherwise.
(4)

4

Remark 1.2. Using the symmetry, we have that

lim
n→∞

1

n
lnP

{
1

n
Sn ≤ x

}
= −I(x) (5)

for all x ≤ 1
2 . Indeed,

lim
n→∞

1

n
lnP

{
1

n
Sn ≤ x

}
= lim

n→∞

1

n
lnP

{
n

n
− 1

n
Sn ≥ 1− x

}
= lim

n→∞

1

n
lnP

{
(1−X1) + · · ·+ (1−Xn)

n
≥ 1− x

}
= −I(1− x) = −I(x)

because Xk and 1−Xk have the same distribution.

Theorem 1.1. Let ξ1, ξ2, . . . be independent Bernoulli distributed random variables with parameter
p for some p ∈ (0, 1), that is, P {ξk = 1} = p and P {ξk = 0} = 1 − p for all k ≥ 1. Let also
Sn = ξ1 + · · ·+ ξn. Then for all x ≥ p

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= −I(x),

where

I(x) =

{
x ln x

p + (1− x) ln 1−x
1−p if x ∈ [0, 1],

+∞ otherwise.
4The picture was taken from [dH00]
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Exercise 1.4. Prove Theorem 1.1.

Exercise 1.5. Using (2) and (5) show that

∞∑
n=1

P
{∣∣∣∣Snn − 1

2

∣∣∣∣ ≥ ε} <∞,

for all ε > 0. Conclude that Sn
n →

1
2 a.s. as n→∞ (strong low of large numbers).

(Hint: Use the Borel-Cantelly lemma to show the convergence with probability 1)

2 Cramer’s theorem

2.1 Comulant generating function

The aim of this section is to obtain an analog of Theorem 1.1 for any sequeness of independent
identically distributed random variables. In order to understand the form of the rate function I, we
will make the following computations, trying to obtain the upper bound for P

{
1
nSn ≥ x

}
.

Let ξ1, ξ2, . . . be independent identically distributed random variables with mean µ ∈ R. Let also
Sn = ξ1 + · · ·+ ξn. We fix x ≥ µ and λ > 0 and use Chebyshev’s inequality in order to estimate the
following probability

P
{

1

n
Sn ≥ x

}
= P {Sn ≥ xn} = P

{
eλSn ≥ eλxn

}
≤ 1

eλxn
E eλSn =

1

eλxn

n∏
k=1

E eλξk =
1

eλxn

(
E eλξ1

)n
.

Thus, we have

lim
n→∞

1

n
lnP {Sn ≥ xn} ≤ lim

n→∞

1

n
ln e−λxn + lim

n→∞

1

n
ln
(
E eλξ1

)n
= −λx+ ϕ(λ), (6)

where ϕ(λ) := lnE eλξ1 . We also remark that −λx+ ϕ(λ) ≥ 0 for all λ ≤ 0, according to Exercise 2.2
below. Therefore, the inequality

lim
n→∞

1

n
lnP {Sn ≥ xn} ≤ −λx+ ϕ(λ)

trivially holds for every λ ≤ 0. Taking infimum over all λ ∈ R, we obtain

lim
n→∞

1

n
lnP {Sn ≥ xn} ≤ inf

λ∈R
{−λx+ ϕ(λ)} = − sup

λ∈R
{λx− ϕ(λ)} .

Later we will see that the function sup
λ∈R
{λx− ϕ(λ)} plays an important role, namely, it is exactly

the rate function I.

Definition 2.1. Let ξ be a random variable on R. The function

ϕ(λ) := lnE eλξ, λ ∈ R,

where the infinite values are allowed, is called the logarithmic moment generating function or
comulant generating function associated with ξ.
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Example 2.1. We compute the comulant generating function associated with Bernoulli distributed
random variables ξ with parameter p = 1

2 . So, since P {ξ = 1} = P {ξ = 0} = 1
2 , we obtain

ϕ(λ) = lnE eλξ = ln

(
eλ·1

1

2
+ eλ·0

1

2

)
= − ln 2 + ln

(
eλ + 1

)
, λ ∈ R.

Example 2.2. In this example, we will compute the comulant generating function associated with
exponentially distributed random variable ξ with rate γ. We recall that the density of ξ is given by
the following formula

pξ(x) =

{
γe−γx if x ≥ 0,

0 if x < 0.

So,

ϕ(λ) = ln

∫ ∞
0

eλxγeγxdx = ln

∫ ∞
0

γe−(γ−λ)xdx = ln

(
− γ

γ − λ
e−(γ−λ)x

∣∣∣∣∣
∞

0

)
= ln

γ

γ − λ

if λ < γ. For λ ≥ γ trivially ϕ(λ) = +∞. Thus,

ϕ(λ) =

{
ln γ − ln(γ − λ) if λ < γ,

+∞ if λ ≥ γ.

Exercise 2.1. Show that the function ϕ is convex5.

Solution. In order to show the convexity of ϕ, we will use Hölder’s inequality.6 We take λ1, λ2 ∈ R
and t ∈ (0, 1). Then for p = 1

t and q = 1
1−t

ϕ(tλ1 + (1− t)λ2) = lnE
[
etλ1ξe(1−t)λ2ξ

]
≤ ln

([
E eλ1ξ

]t [
E eλ2ξ

]1−t
)

= t lnE eλ1ξ + (1− t) lnE eλ2ξ = tϕ(λ1) + (1− t)ϕ(λ2).

Exercise 2.2. Assume that a random variable ξ has a finite first moment E ξ = µ and let ϕ be the
comulant generating function associated with ξ. Show that for every x ≥ µ and all λ ≤ 0

λx− ϕ(λ) ≤ 0.

(Hint: Use Jensen’s inequality.7)

Exercise 2.3. Let ϕ be a comulant generating function associated with ξ. Show that the function ϕ
is differentiable in the interior of the domain Dϕ := {x ∈ R : ϕ(x) < ∞}. In particular, show that
ϕ′(0) = E ξ if 0 ∈ D◦ϕ.

(Hint: To show the differentiability of ϕ, it is enough to show that E eλξ, λ ∈ R, is differentiable. For the differen-

tiability of the latter function, use the definition of the limit, the dominated convergence theorem8 and the fact that the

function eεa−1
ε

=
∫ a
0
eεxdx increases in ε > 0 for each a ≥ 0.)

5A function f : R→ (−∞,+∞] is convex if for all x1, x2 ∈ R and t ∈ (0, 1), f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)
6Let p, q ∈ (1,+∞), 1

p
+ 1

q
= 1 and ξ, η be random variables. Then E (ξη) ≤ (E ξp)

1
p (Eηq)

1
q .

7For any random variable ξ with a finite first moment and a convex function f : R→ R, one has f(E ξ) ≤ E f(ξ).
8For the dominated convergence theorem see [Kal02, Theorem 1.21]
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2.2 Fenchel-Legendre transform

In this section, we discuss the Fenchel-Legendre transform of a convex function that apeared in the
previous secton. Let f : R→ (−∞,+∞] be a convex function.

Definition 2.2. The function
f∗(y) := sup

x∈R
{yx− f(x)}

is called the Fenchel-Legendre transform of f .

9

Fenchel-Legendre transformation: definition

10

Fenchel-Legendre transformation of a function f

Exercise 2.4. Show that the Fenchel-Legendre transform of a convex function f is also convex.
(Hint: Show first that the supremum of convex functions is a convex function. Then note that the function λx−ϕ(λ)

is convex in the variable x)

Exercise 2.5. Compute the Fenchel-Legendre transform of the comulant generating function associ-
ated with the Bernoulli distribution with p = 1

2 .

Solution. Let ξ be a Bernoulli distributed random variable with parameter p = 1
2 , i.e. P {ξ = 1} =

P {ξ = 0} = 1
2 . We first write its comulant generating function:

ϕ(λ) = − ln 2 + ln
(

1 + eλ
)

9It turns out that the Fenchel-Legendre transform of f∗ coincides with f (see e.g. [Swa12, Proposition 2.3]). The
picture was taken from [Swa12].

10The picture was taken from [Swa12].
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(see Example 2.1). In order to compute the Fenchel-Legendre transform of ϕ, we have to find the
supremum of the function

g(λ) := λx− ϕ(λ) = λx+ ln 2− ln
(

1 + eλ
)
, λ ∈ R,

for every x ∈ R. So, we fix x ∈ R and find

g′(λ) = x− eλ

1 + eλ
= 0.

Hence
λ = ln

x

1− x
if x ∈ (0, 1)

is a local maximum. Due to the convexity of ϕ, this point is also the global maximum. Consequently,

ϕ∗(x) = sup
λ∈R
{λx− ϕ(λ)} = x ln

x

1− x
+ ln 2− ln

(
1 +

x

1− x

)
= x lnx− x ln(1− x) + ln 2 + ln(1− x) = ln 2 + x lnx+ (1− x) ln(1− x), x ∈ (0, 1).

If x < 0 or x > 1 then ϕ∗(x) = +∞. For x = 0 and x = 1 one can check that ϕ∗(x) = ln 2.

Exercise 2.6. Show that the function ϕ∗ from the previous exercise equals +∞ for x ∈ (−∞, 0) ∪
(1,+∞) and ln 2 for x ∈ {0, 1}.

Compering the Fenchel-Legendre transformation ϕ∗ of the comulant generating function associated
with the Bernoulli distribution ξ and the rate function I given by (4), we can see that thay coinside.

Exercise 2.7. a) Show that the Fenchel-Legendre transform of the comulant generating function

associated with N(0, 1) coincides with x2

2 .

b) Show that the Fenchel-Legendre transform of the comulant generating function associated with
Bernoulli distribution with paramiter p ∈ (0, 1) coincides with the function I from Theorem 1.1.

c) Find the Fenchel-Legendre transform of the comulant generating function associated with expo-
nential distribution.

Exercise 2.8. Suppose that ϕ∗ is the Fenchel-Legendre transform of the cumulant generating function
of a random variable ξ with E ξ = µ. Show that

(i) ϕ∗(x) ≥ 0 for all x ∈ R. (Hint: Use the fact that ϕ(0) = 0)

(ii) ϕ∗(µ) = 0. (Hint: Use (i) and Jensen’s inequality to show that ϕ∗(µ) ≤ 0)

(iii) ϕ∗ increases on [µ,∞) and decreases on (−∞, µ]. (Hint: Use the convexity of ϕ∗ (see Exercise 2.4) and

(ii))

(iv) ϕ∗(x) > 0 for all x 6= µ. (Hint: Get a contradiction with the assumption ϕ∗(x) = 0 for x > µ)

(v) Show that ϕ∗ strictly increases on {x ≥ µ : ϕ∗(x) < ∞} and strictly decreases on {x ≤ µ :
ϕ∗(x) <∞}. (Hint: Use (iv) and the convexity of ϕ∗)
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2.3 Cramer’s theorem

The goal of this section is to prove the Cramer’s theorem.

Theorem 2.1 (Cramer). Let ξ1, ξ2, . . . be independent identically distributed random variables with
mean µ ∈ R and comulant generating function ϕ. Let also Sn = ξ1 + · · ·+ ξn. Then, for every x ≥ µ

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= −ϕ∗(x),

where ϕ∗ is the Fenchel-Legendre transform of ϕ.

We will need the following lemma for the proof of Cramer’s theorem.

Lemma 2.1. Let ϕ be the comulant generating function associated with a random variable ξ. Let also
ϕ takes finite values on R. Then ϕ is continuously differentiable11 on R, ϕ′(0) = E ξ and

lim
λ→+∞

ϕ′(λ) = ess sup ξ.12 (7)

Proof. Using the dominated convergence theorem, similarly as in the solution of Exercise 2.3, one can
check that

d

dλ
E eλξ = E ξeλξ, λ ∈ R.

Therefore,

ϕ′(λ) =
E
[
ξeλξ

]
E eλξ

, λ ∈ R.

In particular, this trivially implies the equality ϕ′(0) = E ξ.
Let β := ess sup ξ. If P {ξ = β} > 0, then the limit of ϕ′(λ) can be simply computed as follows

lim
λ→+∞

ϕ′(λ) = lim
λ→+∞

E
[
ξeλξ

]
E eλξ

= lim
λ→+∞

e−λβE
[
ξeλξ

]
e−λβE eλξ

= lim
λ→+∞

E
[
ξe−λ(β−ξ)]

E e−λ(β−ξ) =
E ξI{ξ=β}
E I{ξ=β}

= β, (8)

by the dominated convergence theorem and the fact that e−λ(β−ξ) → I{ξ=β} a.s. as λ→ +∞.
If P {ξ = β} = 0, then the proof is more technical, where one needs to estimate the limit from

below by β − ε and then make ε→ 0+. We leave this as an exercise.

Exercise 2.9. Check equality (7) in Lemma 2.1.

Exercise 2.10. Let ϕ∗ be the Fenchel-Legendre transform of the comulant generating function of a
random variable ξ. Let also β = ess sup ξ <∞. Show that ϕ∗(x) = +∞ for all x > β.

Hint: Show that limλ→+∞(λx− ϕ(λ)) = +∞.

Proof of Theorem 2.1. The upper bound

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
≤ −ϕ∗(x)

11One can even prove that ϕ is infinitely differentiable function on R.

12ess sup ξ is defined as inf

{
sup
ω∈Ac

ξ(ω) : ∀A P {A} = 0

}
.
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was proved at the beginning of Section 2.1 (see inequality (6)).
We next prove the lover bound. For simplicity, we will assume that the comulant generating function

ϕ takes finite values on R. The case where ϕ(λ) = +∞ for some λ ∈ R can be found in [Kal02, p.
541]. By Lemma 2.1, the function ϕ is continuously differentiable on R with ϕ′(0) = E ξ1 = µ and
limλ→+∞ ϕ

′(λ) = ess sup ξ =: β. Since ϕ′ is continuous, for any y ∈ (µ, β) we can choose λ0 > 0 such
that ϕ′(λ0) = y, by the intermediate value theorem.

Let ξ̃1, ξ̃2,. . . be independent identically distributed random variables with distribution

P
{
ξ̃i ∈ B

}
= e−ϕ(λ0)E

[
eλ0ξiI{ξi∈B}

]
, B ∈ B(R).

Then the comulant generating function ϕξ̃i associated with ξ̃i is defined by

ϕξ̃i(λ) = lnE eλξ̃i = ln
(
e−ϕ(λ0)E

[
eλ0ξieλξi

])
= ln e−ϕ(λ0) + lnE e(λ+λ0)ξi = ϕ(λ+ λ0)− ϕ(λ0).

Therefore, E ξ̃i = ϕ′
ξ̃i

(0) = ϕ′(λ0) = y. By the law of large numbers, we can conclude that for every

ε > 0

P
{∣∣∣∣ 1nS̃n − y

∣∣∣∣ < ε

}
→ 1, n→∞,

where S̃n = ξ̃1 + · · ·+ ξ̃n.
On the other side,

P
{∣∣∣∣ 1nS̃n − y

∣∣∣∣ < ε

}
= e−nϕ(λ0)E

[
eλ0(ξ1+···+ξn)I{| 1nSn−y|<ε}

]
= e−nϕ(λ0)E

[
eλ0SnI{| 1nSn−y|<ε}

]
≤ e−nϕ(λ0)eλ0n(y+ε)P

{∣∣∣∣ 1nSn − y
∣∣∣∣ < ε

}
= en(λ0(y+ε)−ϕ(λ0))P

{∣∣∣∣ 1nSn − y
∣∣∣∣ < ε

}
.

Consequently,

lim
n→∞

1

n
lnP

{∣∣∣∣ 1nSn − y
∣∣∣∣ < ε

}
≥ lim

n→∞

1

n
ln

[
e−n(λ0(y+ε)−ϕ(λ0))P

{∣∣∣∣ 1nS̃n − y
∣∣∣∣ < ε

}]
− (λ0(y + ε)− ϕ(λ0)) + lim

n→∞

1

n
lnP

{∣∣∣∣ 1nS̃n − y
∣∣∣∣ < ε

}
= −(λ0(y + ε)− ϕ(λ0)) ≥ − sup

λ∈R
{λ(y + ε)− ϕ(λ)} = −ϕ∗(y + ε).

Now, fixing any x ∈ [µ, β) and putting y := x+ ε, we get for small enough ε > 0

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
≥ lim

n→∞

1

n
lnP

{∣∣∣∣ 1nSn − y
∣∣∣∣ < ε

}
≥ −ϕ∗(x+ 2ε).

Since ϕ∗ is continuous on [µ, β) by convexity, we may pass to the limit as ε → 0+. Therefore, we
obtain the lower bound.

If x > β, then ϕ∗(x) = +∞ according to Exercise 2.10. Therefore, the lower bound holds.
For the case x = β <∞, we have that

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ β

}
= lim

n→∞

1

n
lnP {ξ1 = β, . . . , ξn = β}

= lim
n→∞

1

n
lnP {ξ1 = β}n = lnP {ξ1 = β} .

10
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We also compute the right hand side for the lower bound:

ϕ∗(β) = sup
λ∈R
{λβ − ϕ(λ)} Exe. 2.2

= sup
λ≥0
{λβ − ϕ(λ)} = sup

λ≥0

{
− lnE e−λβ − lnE eλξ1

}
= − inf

λ≥0

{
lnE e−λ(β−ξ1)

}
= lnP {ξ1 = β} .

For the last equality in the previous computations we have used the dominated convergence theorem
and the fact that e−λ(β−ξ1) ≥ I{ξ1=β}, λ > 0, and e−λ(β−ξ1) → I{ξ1=β} a.s. as λ→ +∞. This completes
the proof of the theorem.

Remark 2.1. Under the assumptions of Theorem 2.1, for every x ≤ µ

lim
n→∞

1

n
lnP

{
1

n
Sn ≤ x

}
= −ϕ∗(x). (9)

In order to obtain this equality, one needs to apply Cramer’s Theorem 2.1 to the family of random
variables 2µ− ξ1, 2µ− ξ2, . . . and show that ϕ∗2µ−ξ1(2µ− x) = ϕ∗(x), x ∈ R.

Exercise 2.11. Check equality (9).

Exercise 2.12. Let ξ1, ξ2, . . . be independent identically distributed random variables. Consider a
non-negative Borel measurable function f : R→ [0,∞) such that E f(ξ1) ∈ (0,∞). Define the family
of independent random variables η1, η2, . . . with distribution

P {ηi ∈ B} =
1

C
E
[
f(ξi)I{ξi∈B}

]
, B ∈ B(R),

where C = E f(ξi) is the normalizing constant.

1. Find the distribution of η1, if ξ1 has the exponential distribution with parameter λ > 0, and
f(x) = e−αx, x ∈ R, where α > −λ is a positive constants.

2. Show that for every n ∈ N and Bi ∈ B(R)

P {η1 ∈ B1, . . . , ηn ∈ Bn} =
1

Cn
E
[
f(ξ1) . . . f(ξn)I{ξ1∈B1,...,ξn∈Bn}

]
.

3. Show that

E g(η1, . . . , ηn) =
1

Cn
E [f(ξ1) . . . f(ξn)g(ξ1, . . . , ξn)] ,

for any Borel measurable function g : Rn → R.

3 Definition of large deviation principle

3.1 Large deviations for Gaussian vectors

We recall that, in previous sections, we have investigated the decay of the probability P
{

1
nSn ≥ x

}
,

where Sn = ξ1+· · ·+ξn and ξk, k ∈ N, ware independent identically distributed random variables in R.
We start this section from some example of random variables in higher dimension and investigate the
decay of similar probabilities. This will lead us to the general concept of large deviation principle in the

11
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next section. We note that the case ξk ∼ N(0, 1) was very easy for computations (see Example 1.1).

So similarly, we take independent Rd-valued random element (or random vector) ηk = (η
(1)
k , . . . , η

(d)
k ),

k ≥ 1, with standard Gaussian distributions13. We will study the decay of the probability

P
{

1

n
Sn ∈ A

}
= P

{
1√
n
η ∈ A

}
= P

{
η ∈
√
nA
}
,

where A is a subset of Rd, Sn = η1 + · · ·+ ηn, and η has a standard Gaussian distribution.
The upper bound. We recall that the density of 1√

n
η is given by the formula

p η√
n

(x) =
(
√
n)d

(
√

2π)d
e−

n‖x‖2
2 , x = (x1, . . . , xd) ∈ Rd,

where ‖x‖2 = x2
1 + · · ·+ x2

d. Now, we can estimate

lim
n→∞

1

n
lnP

{
1√
n
η ∈ A

}
= lim

n→∞

1

n
ln

∫
A
p η√

n
(x)dx = lim

n→∞

1

n
ln

(
√
n)d

(
√

2π)d

+ lim
n→∞

1

n
ln

∫
A
e−

n‖x‖2
2 dx ≤ lim

n→∞

1

n
ln

∫
A

(
sup
y∈A

e−
n‖y‖2

2

)
dx

= lim
n→∞

1

n
ln

(
e
−n inf

x∈A
‖x‖2

2 |A|

)
≤ lim

n→∞

1

n
ln |A|+ lim

n→∞

1

n
ln e
−n inf

x∈A
I(x)

= − inf
x∈A

I(x) ≤ − inf
x∈Ā

I(x),

where I(x) := ‖x‖2
2 , Ā is the closure of A and |A| denotes the Lebesgue measure of A.

The lower bound. In order to obtain the lower bound, we assume that the interior A◦ of A is
non-empty and fix x0 ∈ A◦. Let Br(x0) =

{
x ∈ Rd : ‖x− x0‖ < r

}
denotes the ball in Rd with center

x0 and radius r. We estimate

lim
n→∞

1

n
lnP

{
1√
n
η ∈ A

}
= lim

n→∞

1

n
ln

∫
A
p η√

n
(x)dx ≥ lim

n→∞

1

n
ln

(
√
n)d

(
√

2πn)d

+ lim
n→∞

1

n
ln

∫
Br(x0)

e−
n‖x‖2

2 dx ≥ lim
n→∞

1

n
ln

∫
Br(x0)

e−
n(‖x0‖+‖x−x0‖)

2

2 dx

≥ lim
n→∞

1

n
ln

∫
Br(x0)

e−
n(‖x0‖+r)

2

2 dx = lim
n→∞

1

n
ln e−

n(‖x0‖+r)
2

2 |Br(x0)|

= −(‖x0‖+ r)2

2
.

Making r → 0+, we have

lim
n→∞

1

n
lnP

{
1√
n
η ∈ A

}
≥ −‖x0‖2

2
.

Now, maximizing the right hand side over all points x0 from the interior A◦, we obtain

lim
n→∞

1

n
lnP

{
1√
n
η ∈ A

}
≥ sup

x0∈A◦

(
−‖x0‖2

2

)
= − inf

x∈A◦
I(x).

13η
(i)
k ∼ N(0, 1), i = 1, . . . , d, and are independent

12
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Thus, combining the lower and upper bounds, we have prove that for any Borel measurable set A

− inf
x∈A◦

I(x) ≤ lim
n→∞

1

n
lnP

{
1√
n
η ∈ A

}
≤ lim

n→∞

1

n
lnP

{
1√
n
η ∈ A

}
≤ − inf

x∈Ā
I(x). (10)

3.2 Definition of large deviation principle

Let (ξε)ε>0 be a family of random elements on a metric space E and I be a function from E to [0,∞].

Definition 3.1. We say that the family (ξε)ε>0 satisfies the large deviation principle (LDP) in
E with rate finction I if for any Borel set A ⊂ E we have

− inf
x∈A◦

I(x) ≤ lim
ε→0

ε lnP {ξε ∈ A} ≤ lim
ε→0

ε lnP {ξε ∈ A} ≤ − inf
x∈Ā

I(x). (11)

We remark that in the case of a countable family of random elements (ξn)n≥1, the large deviation
principle corresponds to the statement

− inf
x∈A◦

I(x) ≤ lim
n→∞

an lnP {ξn ∈ A} ≤ lim
n→∞

an lnP {ξn ∈ A} ≤ − inf
x∈Ā

I(x)

for some sequence an → 0. In fact, we have proved in the previous section that the family
(

1
nSn

)
n≥1

or
(

η√
n

)
n≥1

satisfies the large deviation principle in Rd with rate function I(x) = ‖x‖2
2 , x ∈ Rd and

an = 1
n (see inequality (10)).

Lemma 3.1. A family (ξε)ε>0 satisfies the large deviation principle in E with rate function I iff

lim
ε→0

ε lnP {ξε ∈ F} ≤ − inf
x∈F

I(x) (12)

for every closed set F ⊂ E, and

lim
ε→0

ε lnP {ξε ∈ G} ≥ − inf
x∈G

I(x) (13)

for every open set G ⊂ E.

Proof. We first remark that inequalities (12) and (13) immediately follow from the definition of LDP
and the fact that F = F̄ and G = G◦.

To prove (11), we fix a Borel measurable set A ⊂ E and estimate

− inf
x∈A◦

I(x)
(13)

≤ lim
ε→0

ε lnP {ξε ∈ A◦} ≤ lim
ε→0

ε lnP {ξε ∈ A}

≤ lim
ε→0

ε lnP {ξε ∈ A} ≤ lim
ε→0

ε lnP
{
ξε ∈ Ā

} (12)

≤ − inf
x∈Ā

I(x).

Remark 3.1. A similar statement to Lemma 3.1 can be done for a countable family of random
elements (ξn)n≥1.
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Remark 3.2. We note that repeating the proof from the previous section, one can show that the
family (

√
εξ)ε>0 satisfies the LDP in Rd with rate function I(x) = 1

2‖x‖
2, where ξ is a standard

Gaussian random vector in Rd.

Proposition 3.1. Let there exist a subset E0 of the metric space E such that

1) for each x ∈ E0

lim
r→0+

lim
ε→0

ε lnP {ξε ∈ Br(x)} ≥ −I(x),

where Br(x) denotes the ball with center x and radius r;

2) for each x satisfying I(x) < ∞, there exists a sequence xn ∈ E0, n ≥ 1, such that xn → x,
n→∞, and I(xn)→ I(x), n→∞.

Then lower bound (13) holds for any open set G.

Proof. First we note that it is enough to prove the lower bound for all openG ⊆ E satisfying inf
x∈G

I(x) <

∞.
Let δ be an arbitrary positive number. Then there exists x0 ∈ G such that

I(x0) < inf
x∈G

I(x) + δ.

Hence, by 2) and the openness of G we can find x̃ ∈ G ∩ E0 that satisfies

I(x̃) < I(x0) + δ.

Next, using 1) and the openness of G, there exists r > 0 such that Br(x̃) ⊆ G and

lim
ε→0

ε lnP {ξε ∈ Br(x̃)} ≥ −I(x̃)− δ.

Consequently, we can now estimate

lim
ε→0

ε lnP {ξε ∈ G} ≥ lim
ε→0

ε lnP {ξε ∈ Br(x̃)}

≥ −I(x̃)− δ > −I(x0)− 2δ > − inf
ϕ∈G

I(x)− 3δ.

Making δ → 0, we obtain the lower bound (13).

Proposition 3.1 shows the local nature of the lower bound. Similarly one can prove a similar result
for a countable family of random elements (ξn)n≥1.

Exercise 3.1. Let (ξε)ε>0 satisfies the LDP in E with rate function I. Show that

a) if A is such that inf
x∈A◦

I(x) = inf
x∈Ā

I(x), then

lim
ε→0

ε lnP {ξε ∈ A} = − inf
x∈A

I(x);

b) inf
x∈E

I(x) = 0.

14
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Exercise 3.2. Let E = R and ξ ∼ N(0, 1). Show that the family (εξ)ε>0 satisfies the LDP with rate
function

I(x) =

{
+∞ if x 6= 0,

0 if x = 0.

Compare this claim with the result of Remark 3.2.

Exercise 3.3. Let an, bn, n ≥ 1, be positive real numbers. Show that

lim
n→∞

1

n
ln(an + bn) = lim

n→∞

1

n
ln an ∨ lim

n→∞

1

n
ln bn,

where a ∨ b denotes the maximum of the set {a, b}.

Solution. We note that for every n ≥ 1

0 ≤ ln(an + bn)− ln an ∨ ln bn ≤ ln 2.

Dividing by n and taking lim, we obtain

lim
n→∞

1

n
ln(an + bn) = lim

n→∞

1

n
(ln an ∨ ln bn) = lim

n→∞

1

n
ln an ∨ lim

n→∞

1

n
ln bn.

Exercise 3.4. Let η1, η2 ∼ N(0, 1). Let also for every ε > 0 a random variable ξε have the distribution
defined as follows

P {ξε ∈ A} =
1

2
P
{
−1 +

√
εη1 ∈ A

}
+

1

2
P
{

1 +
√
εη2 ∈ A

}
for all Borel sets A. Show that the family (ξε)ε>0 satisfies the LDP with rate function I(x) =
1
2 min

{
(x− 1)2, (x+ 1)2

}
, x ∈ R.

(Hint: Show first that both families (
√
εη1)ε>0 and (

√
εη2)ε>0 satisfy LDP and find the corresponding rate functions.

Then use Exercise 3.3)

4 LDP for empirical means

4.1 LDP for empirical means

In this section, we will assume that ξ1, ξ2, . . . be a sequence of independent identically distributed
random variables in R with E ξ1 = µ. Similarly to Section 2, we consider the partial sums Sn =
ξ1 + · · ·+ ξn, n ≥ 1, and show that the family of empirical means

(
1
nSn

)
n≥1

satisfies the LDP, using
Cramer’s theorem. As before we denote the comulant generating function associated with ξ1 by ϕ,
and its Fenchel-Legendre transform by ϕ∗.

Proposition 4.1. Under the assumption of Theorem 2.1, the family
(

1
nSn

)
n≥1

satisfies the large

deviation principle in R with rate function ϕ∗, that is, for every A ∈ B(R)

− inf
x∈A◦

ϕ∗(x) ≤ lim
n→∞

1

n
lnP

{
1

n
Sn ∈ A

}
≤ lim

n→∞

1

n
lnP

{
1

n
Sn ∈ A

}
≤ − inf

x∈Ā
ϕ∗(x).

15
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Proof. In order to proof the proposition, we will show that inequalities (12) and (13) in Lemma 3.1
are satisfied.

Let F be a closed subset of R. We first assume that F ⊆ [µ,+∞). Since ϕ∗ is convex and increasing
on [µ,+∞) (see Exercise 2.8), it is easily to seen that inf

x∈F
ϕ∗(x) = ϕ∗(x0), where x0 = minF . Then

we can estimate

lim
n→∞

1

n
lnP

{
1

n
Sn ∈ F

}
≤ lim

n→∞

1

n
lnP

{
1

n
Sn ≥ x0

}
= −ϕ∗(x0) = − inf

x∈F
ϕ∗(x),

by Cramer Theorem 2.1. Similarly, we can prove the same result for F ⊆ (−∞, µ]. If F 6⊆ [µ,+∞)
and F 6⊆ (−∞, µ], then we consider two closed sets F1 := F ∩ [µ,+∞), F2 := F ∩(−∞, µ] and estimate

lim
n→∞

1

n
P ln

{
1

n
Sn ∈ F

}
≤ lim

n→∞

1

n
ln

[
P
{

1

n
Sn ∈ F1

}
+ P

{
1

n
Sn ∈ F2

}]
= lim

n→∞

1

n
lnP

{
1

n
Sn ∈ F1

}
∨ lim
n→∞

1

n
lnP

{
1

n
Sn ∈ F2

}
≤
(
− inf
x∈F1

ϕ∗(x)

)
∨
(
− inf
x∈F2

ϕ∗(x)

)
= − inf

x∈F
ϕ∗(x),

by Exercise 3.3.
In order to prove lower bound (13), we will use Proposition 3.1. We take E0 = {x ∈ R : ϕ∗(x) <

+∞}. By the continuity of ϕ∗, the set E0 satisfies the properties of Proposition 3.1. Fix x ∈ E0 such
that x > µ and prove that

lim
r→0+

lim
n→∞

1

n
lnP

{
1

n
Sn ∈ (x− r, x+ r)

}
≥ −ϕ∗(x). (14)

We take r > 0 such that x− r
2 ≥ µ and note that ϕ∗(x−r/2) < ϕ∗(x+r), according to Exercise 2.10 (v).

Hence, by Exercise 4.1 below,

lim
n→∞

1

n
lnP

{
1

n
Sn ∈ (x− r, x+ r)

}
≥ lim

n→∞

1

n
lnP

{
1

n
Sn ∈

[
x− r

2
, x+ r

)}
= lim

n→∞

1

n
ln

[
P
{

1

n
Sn ≥ x0 −

r

2

}
− P

{
1

n
Sn ≥ x0 + r

}]
= −ϕ∗(x0 − r/2).

(15)

Passing to the limit as r → 0+, we obtain inequality (14). This finishes the proof of the proposition.
If x < µ, then similarly one can obtain (14) similarly. The case x = µ trivially follows from the law of
large numbers and the fact that ϕ∗(µ) = 0 (see Exercise 2.8 (ii)).

Exercise 4.1. Let an > bn, n ≥ 1, be positive real numbers such that there exist limits (probably
infinite)

a := lim
n→∞

1

n
ln an and b := lim

n→∞

1

n
ln bn

and a > b. Show that

lim
n→∞

1

n
ln(an − bn) = a.

(Hint: Show that bn
an
→ 0, n→∞)
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4.2 Multidimensional Cramer’s theorem

In this section, we will state the LDP for empirical mean of random vectors. This result generalises
Proposition 4.1.

Similarly to the one-dimensional case we introduce the comulant generating function associated
with a random vector ξ in Rd as follows

ϕξ(λ) = lnE eλ·ξ, λ ∈ Rd,

where a · b = a1b1 + · · ·+adbd for a = (a1, . . . , ad) and b = (b1, . . . , bd) from Rd. As in one-dimensional
case14, one can show that the function ϕ is convex. So, we can introduce the Fenchel-Legendre
transform

ϕ∗ξ(x) = sup
λ∈Rd

{λ · x− ϕ(λ)} , x ∈ Rd,

of a function ϕ.

Exercise 4.2. For any random vector ξ ∈ Rd and non-singular d× d matrix A, show that ϕAξ(λ) =
ϕξ(λA) and ϕ∗Aξ(x) = ϕ∗ξ(A

−1x).

Exercise 4.3. For any pair of independent random vectors ξ and η show that ϕξ,η(λ, µ) = ϕξ(λ) +
ϕη(µ) and ϕ∗ξ,η(x, y) = ϕ∗ξ(x) + ϕ∗η(y).

(Hint: To prove the second equality, use the equality sup
λ,µ

f(λ, µ) = sup
λ

sup
µ
f(λ, µ))

The following theorem is multidimensional Cramer’s theorem.

Theorem 4.1 (Cramer). Let ξ1, ξ2, . . . be a sequence of independent identically distributed random
vectors in Rd with comulant generating function ϕ and let Sn = ξ1 + · · · + ξn. If ϕ is finite in
a neighborhood of 0 then the family

(
1
nSn

)
n≥1

satisfies the large deviation principle with good rate

function ϕ∗, that is, for every Borel set A ⊂ Rd

− inf
x∈A◦

ϕ∗(x) ≤ lim
n→∞

1

n
lnP

{
1

n
Sn ∈ A

}
≤ lim

n→∞

1

n
lnP

{
1

n
Sn ∈ A

}
≤ − inf

x∈Ā
ϕ∗(x).

For proof of Theorem 4.1 see e.g. [RAS15, P.61] (for simpler proof in the case ϕ(λ) <∞, λ ∈ Rd,
see e.g. [Var84, Theorem 3.1], [Kal02, Theorem 27.5] or [DZ98, Theorem 2.2.30].

Exercise 4.4. Let ξ1, ξ2, . . . be independent random vectors in Rd whose coordinates are independent
exponentially distributed random variables with rate γ.15 Show that the empirical means

(
1
nSn

)
n≥1

satisfies the LDP in Rd and find the corresponding rate function I.
(Hint: Use Proposition 4.1. For computation of the rate function use exercises 2.7 and 4.3)

5 Lower semi-continuity and goodness of rate functions

5.1 Lower semi-continuity of rate functions

Let (ξε)ε>0 satisfy the LDP in a metric space with rate function I : E → [0,∞]. In this section, we
are going to answer the question when the rate function I is unique.

14see Exercise 2.1
15see also Example 2.2
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Example 5.1. Let ξ ∼ N(0, 1). We know that the family (ξε :=
√
εξ)ε>0 satisfies the LDP in R with

the good rate function I(x) = x2

2 .16 We take another function

Ĩ(x) =

{
x2

2 if x 6= 0,

+∞ if x = 0,

and show that the family (ξε)ε>0 also satisfies the LDP with rate function Ĩ.
Indeed, if G is an open set in R, then trivially

inf
x∈G

I(x) = inf
x∈G

Ĩ(x).

For a closed F such that F 6= {0} we also have

inf
x∈F

I(x) = inf
x∈F

Ĩ(x).

We have only to check the upper bound for the case F = {0}. We compute

lim
ε→0

ε lnP {ξε ∈ F} = lim
ε→0

ε ln
(
P
{√

εξ = 0
})

= −∞ = − inf
x∈F

Ĩ(x).

This example shows that the same family of random variables can satisfy the LDP with different
rate functions. In the rest of the section, we will impose some additional conditions on rate functions
to provide the uniqueness.

Definition 5.1. A function f : E → [−∞,+∞] is called lower semi-continuous if

lim
n→∞

f(xn) ≥ f(x) whenever xn → x.

Remark 5.1. Note that the function Ĩ from Example 5.1 is not lower semi-continuous. Indeed, the
inequality from Definition 5.1 does not hold e.g. for xn = 1

n .

Lemma 5.1. A function f : E → [−∞,+∞] is lower semi-continuous iff for each α ∈ [−∞,+∞] the
level set {x ∈ E : f(x) ≤ α} is a closed subset of E.

Proof. We assume that f is lower semi-continuous and show that for every α ∈ [−∞,+∞] the level
set Lα = {x ∈ E : f(x) ≤ α} is closed. If α = +∞, then the closedness Lα is trivial due to Lα = E.
Let α < +∞. We assume that Lα is not close. Then there exists a convergent sequence xn ∈ Lα,
n ≥ 1, such that xn → x and x 6∈ Lα. Using the lower semi-continuity of f and the fact that xn ∈ Lα,
n ≥ 1, we get

α < f(x) ≤ lim
n→∞

f(xn) ≤ α.

This gives the contradiction.
Now, let Lα be closed for every α ∈ [−∞,+∞]. Assume that f is not lower semi-continuous. Then

there exists a sequence xn → x such that

lim
n→∞

f(xn) < f(x).

16see Remark 3.2
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We take α such that limn→∞ f(xn) < α < f(x). Then there exists a subsequece {xnk}k≥1 of {xn}n≥1

such that
lim
k→∞

f(xnk) = lim
n→∞

f(xn) < α

and f(xnk) < α. Hence, xnk ∈ Lα, k ≥ 1. Since xnk → x as k →∞, the closability of Lα implies that
x ∈ Lα. Therefore, f(x) ≤ α. We have obtained the contradiction.

Let C0[0, T ] denote the Banach space of continuous functions from [0, T ] satisfying f(0) = 0
endowed with the uniform norm.17 Let H2

0 [0, T ] be the set of all absolutely continuous18 functions
f ∈ C0[0, T ] with ḟ ∈ L2[0, T ].

Exercise 5.1. Let f ∈ C1
0[0, T ].19 Show that f is absolutely continuous and ḟ coincides with the

classical derivative f ′ of f . Conclude that f ∈ H2
0 [0, T ].

Exercise 5.2. Show that the function f(x) = 1 − |x− 1|, x ∈ [0, 2], belongs to H2
0 [0, 2] but is not

continuously differentiable.

(Hint: Show that ḟ(x) =

{
1 if x ∈ [0, 1] ,

−1 if x ∈ (1, 2] .
)

We consider a function from C0[0, T ] to [0,+∞] defined as follows

I(f) =

{
1
2

∫ T
0 ḟ2(x)dx if f ∈ H2

0 [0, T ],

+∞ otherwise .
(17)

Exercise 5.3. Let I : C0[0, T ]→ [0,+∞] be defined by (17). Show that I is lower semi-continuous.
(Hint: Use Lemma 5.1 and the Banach-Alaoglu theorem)

Next we are going to show that one can always replace a rate function by a lower semi-continuous
rate function. Moreover, it turns out that a lower semi-continuous rate function is unique. For this, we
introduce a transformation produces a lower semi-continuous function flsc from an arbitrary function
f : E → [−∞,+∞] (for more details see [RAS15, Section 2.2]).

The lower semi-continuous regularization of f is defined by

flsc(x) = sup

{
inf
y∈G

f(y) : G 3 x and G is open

}
. (18)

Exercise 5.4. Show that the function Ĩlsc coincides with I(x) = x2

2 , x ∈ R, where Ĩ was defined in
Example 5.1.

Exercise 5.5. Let f(x) = IQ(x), x ∈ R, where Q denotes the set of rational numbers. Find the
function flsc.

17The uniform norm on C0[0, T ] is defined as ‖f‖C = max
x∈[0,T ]

|f(x)|. The space C0[0, T ] endowed with this norm is a

separable Banach space
18A continuous function f ∈ C[0, T ] (not necessarily f(0) = 0) is said to be absolutely continuous if there exists a

function h ∈ L1[0, T ] such that

f(t) = f(0) +

∫ t

0

h(s)ds, t ∈ [0, T ]. (16)

Such a function h is denoted by ḟ and is called the derivative of f .
19Cm0 [0, T ] consists of all functions from C0[0, T ] which are m times continuously differentiable on (0, T )
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Lemma 5.2. The function flsc is lower semi-continuous and flsc(x) ≤ f(x) for all x ∈ E. If g is
lower semi-continuous and satisfies g(x) ≤ f(x) for all x, then g(x) ≤ flsc(x) for all x. In particular,
if f is lower semi-continuous, then f = flsc.

The Lemma 5.2 says that the lower semi-continuous regularization flsc of f is the maximal lower
semi-continuous function less or equal that f .

Proof of Lemma 5.2. The inequality flsc ≤ f is clear. To show that flsc is lower semi-continuous, we
use Lemma 5.1. Let x ∈ {flsc > α}. Then there is an open set G containing x such that inf

G
f > α.

Hence by the supremum in the definition of flsc, flsc(y) ≥ inf
G
f > α for all y ∈ G. Thus G is an open

neighborhood of x contained in {flsc > α}. So {flsc > α} is open.
To show that g ≤ flsc one just needs to show that glsc = g. Indeed,

g(x) = glsc(x) = sup

{
inf
G
g : x ∈ G and G is open

}
≤ sup

{
inf
G
f : x ∈ G and G is open

}
= flsc(x).

We already know that glsc ≤ g. To show the other direction let α be such that g(x) > α. Then,
G = {g > α} is an open set containing x and inf

G
g ≥ α. Thus, glsc(x) ≥ α. Now increasing α to g(x),

we obtain the needed inequality glsc(x) ≥ g(x).

Exercise 5.6. 1) Show that if xn → x, then flsc(x) ≤ limn→∞ f(xn).

(Hint: Use Lemma 5.2, namely that the function flsc is lower semi-continuous and flsc ≤ f)

2) Show that for each the supremum in (18) can only be taken over all ball with center x, namely

flsc(x) = sup
r>0

inf
y∈Br(x)

f(y) (19)

(Hint: Use the fact that any open set G containing x also contains a ball Br(x) for some r > 0. It will allow

to prove the inequality flsc(x) ≤ sup
r>0

inf
y∈Br(x)

f(y). The inverse inequality just follows from the observation that

supremum in the right hand side of (19) is taken over smaller family of open sets)

3) Prove that for each x ∈ E there is a sequence xn → x such that f(xn) → flsc(x) (the constant
sequence xn = x is allowed here). This gives the alternate definition

flsc(x) = min

{
f(x), lim

y→x
f(y)

}
.

(Hint: Use part 2) of the exercise to construct the corresponding sequence xn, n ≥ 1)

Proposition 5.1. Let (ξε)ε>0 satisfy the LDP in a metric space E with rate function I. Then it
satisfies the LDP in E with the rate function Ilsc. Moreover, there exists only unique lower semi-
continuous associated rate function.
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Proof. We first show that (ξε)ε>0 satisfies the LDP in E with the lower semi-continuous function Ilsc.
For this we check the inequalities of Lemma 3.1. We note that the upper bound immediately follows
from the inequality Ilsc ≤ I (see Lemma 5.2). For the lower bound we observe that inf

G
Ilsc = inf

G
I

when G is open. Indeed, the inequality inf
G
Ilsc ≤ inf

G
I follows from Ilsc ≤ I. In order to prove inverse

inequality, we will use the definition of lower semi-continuous regularization. Remark that for every
x ∈ G one has flsc(x) ≥ inf

G
I. Hence inf

G
Ilsc ≥ inf

G
I.

To prove the uniqueness, assume that (11) holds for two lower semi-continuous functions I and
J , and let I(x) < J(x) for some x ∈ E. By the lower semi-continuity of J , we may choose a
neighborhood G of x such that inf

Ḡ
J > I(x), taking e.g. G as an open neighborhood of x such that

Ḡ ⊂
{
y : J(y) > I(x) + J(x)−I(x)

2

}
. Then applying (11) to both I and J yields the contradiction

−I(x) ≤ − inf
G
I ≤ lim

ε→0
ε lnP {ξε ∈ G} ≤ − inf

Ḡ
J < −I(x).

We obtained the contradiction with the assumption I(x) < J(x).

Exercise 5.7. Assume ϕ∗ that is the Fenchel-Legendre transform of the comulant generating function.
Show that ϕ∗ is lower semi-continuous.

(Hint: Show that supremum of a family of continuous functions is lower semi-continuous)

5.2 Goodness of rate functions

We remark that in many cases the rate function satisfies better properties than lower semi-continuity.

Definition 5.2. We say that a rate function I : E → [0,+∞] is good if the level sets {x ∈ E : I(x) ≤ α}
are compact (rather than just closed) for all α ≥ 0.

Example 5.2. Show that the rate function I(x) = ‖x‖2
2 , x ∈ Rd, from Exercise 1.3 is good.

Remark 5.2. The rate functions from all previous examples are also good.

Now we consider another example of a good rate function which is the rate function for LDP for
Brownian motion. We obtain the LDP for Brownian motion later and here we just show that the
associated rate function is good.

Exercise 5.8. Let I : C0[0, T ]→ [0,+∞] be defined by (17). Show that the set {f ∈ C0[0, T ] : I(f) ≤ α}
is equicontinuous20 and bounded in C0[0, T ] for all α ≥ 0. Conclude that I is good.

(Hint: Using Hölder’s inequality, show that |f(t)−f(s)|2 ≤ |t−s|
∫ T
0
ḟ2(x)dx for all t, s ∈ [0, T ] and each f ∈ H2

0 [0, T ])

6 Weak large deviation principle and exponential tightness

6.1 Weak large deviation principle

Proposition 3.1 shows that lower bound inequality (13) is enough to show only for open balls. Unfor-
tunately, it is not enough for upper bound (12). Later, in Proposition 6.1, we will show that upper
bound (12) for closed (or open) balls will only imply the upper bound for compact sets F . To have the

20see Definition VI.3.7 [Con90]
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upper bound for any closed set we need one extra condition, called exponential tightness, which we
will discuss in the next section. Let us consider the following example taken from [DZ98, P. 7] which
demonstrates that upper bound for all compact sets does not imply inequality (12) for any closed set.

Example 6.1. We consider random variables ξε := 1
ε , ε > 0, in R and set I(x) := +∞, x ∈ R. Then

for any compact set F in R (which is also bounded) we have

lim
ε→0

ε lnP {ξε ∈ F} = −∞ = − inf
x∈F

I(x)

because there exists ε0 > 0 such that P {ξε ∈ F} = 0 for all ε ∈ (0, ε0). But it is easily seen that this
inequality is not preserved for the closed set F = R. Indeed,

lim
ε→0

ε lnP {ξε ∈ R} = lim
ε→0

ε ln 1 = 0 6≤ −∞ = inf
x∈R

I(x).

We also remark here that the family (ξε)ε>0 and the function I satisfy lower bound (13).

Consequently, it makes sense to introduce a relaxation of the full LDP, where we will require the
upper bound only for compact sets.

Definition 6.1. We say that the family (ξε)ε>0 satisfies the weak large deviation principle (weak
LDP) in E with rate function I if

lim
ε→0

ε lnP {ξε ∈ F} ≤ − inf
x∈F

I(x) (20)

for every compact set F ⊂ E, and

lim
ε→0

ε lnP {ξε ∈ G} ≥ − inf
x∈G

I(x) (21)

for every open set G ⊂ E.

We remark that Example 6.1 shows that the family
(
ξε = 1

ε

)
ε>0

satisfies the weak LDP in R with
good rate function I(x) = +∞, x ∈ R, but it does not satisfy the full LDP.

Let us consider another interesting example of a family of random elements in C[0, T ] which
satisfies the weak LDP but it does not satisfies the full LDP for any rate function. This is a recent
result obtained by V. Kuznetsov in [Kuz15].

Example 6.2 (Winding angle of Brownian trajectory around the origin). Let w(t) = (w1(t), w2(t)),
t ∈ [0, T ], be a two dimensional Brownian motion started from the point (1, 0). We denote for
every t ∈ [0, T ] the angle between the vector w(t) and the x-axis (the vector (1, 0)) by Φ(t) and set
Φε(t) = Φ(εt), t ∈ [0, T ]. It turns out that the family (Φε)ε>0 satisfies only the weak LDP in the space
of continuous functions C[0, T ].
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Winding angle of Brownian motion

In the next section, we will consider conditions on a family (ξε)ε>0 which will guarantee the
implication. Now we will give a useful statement which allows to check the upper bound for the weak
LDP.

Proposition 6.1. Let (ξε)ε>0 be a family of random variables in a metric space E and let I be a
function from E to [0,+∞]. Then upper bound (20) follows from

lim
r→0

lim
ε→0

ε lnP {ξε ∈ Br(x)} ≤ −I(x)

for all x ∈ E.

Proof. Let F be a compact set. We set α := inf
x∈F

I(x) and assume that α <∞. Remark that for every

x ∈ F I(x) ≥ inf
x∈F

I(x) = α. Hence, for any fixed δ > 0

lim
r→0

lim
ε→0

ε lnP {ξε ∈ Br(x)} ≤ −I(x) ≤ −α < −α+ δ

for all x ∈ F . Consequently, by the definition of limit, for every x ∈ F there exists rx > 0 such that

lim
ε→0

ε lnP {ξε ∈ Brx(x)} < −α+ δ.

Since the family of balls Brx(x), x ∈ F , is an open cover21 of F . By the compactness of F , there
exists a finite subcover of F , i.e. there exist x1, . . . , xm ∈ F such that F ⊂

⋃m
k=1Brxk (xk). Now we

can estimate

lim
ε→0

ε lnP {ξε ∈ F} ≤ lim
ε→0

ε lnP

{
ξε ∈

m⋃
k=1

Brxk (xk)

}
≤ lim

ε→0
ε ln

(
m∑
k=1

P
{
ξε ∈ Brxk (xk)

})
Exercise 3.3

= max
k=1,...,m

lim
ε→0

ε lnP
{
ξε ∈ Brxk (xk)

}
< −α+ δ = − inf

x∈F
I(x) + δ.

Making δ → 0, we obtain
lim
ε→0

ε lnP {ξε ∈ F} ≤ − inf
x∈F

I(x).

Similarly, one can show inequality (20) in the case α = +∞ replacing −α+ δ by −1
δ .

Exercise 6.1. Finish the proof of Proposition 6.1 in the case inf
x∈F

I(x) = +∞.

21Each set Brx(x) is open and F ⊂
⋃
x∈F Brx(x)
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6.2 Exponential tightness

We start from the definition of exponential tightness.

Definition 6.2. A family of random elements (ξε)ε>0 is said to be exponentially tight in E if for
any number β > 0 there exists a compact set K ⊂ E such that

lim
ε→0

ε lnP {ξε 6∈ K} ≤ −β. (22)

We remark that in the case of a countable family of random elements (ξn)n≥1, the exponential
tightness corresponds to the statement

lim
n→∞

an lnP {ξn 6∈ K} ≤ −β (23)

for some an → 0.

Exercise 6.2. Prove that a family (ξε)ε>0 is exponentially tight in E if and only if for any b > 0 there
exists a compact K ⊂ E and ε0 > 0 such that

P {ξε 6∈ K} ≤ e−
1
ε
b, ε ∈ (0, ε0).

Exercise 6.2 shows that the exponential tightness is much more stronger than the tightness22.

Exercise 6.3. Let E be a complete and separable metric space.

a) Show that exponential tightness implies tightness for a countable family of random variables.

(Hint: Prove a similar inequality to one in Exercise 6.2 and then use the fact that any random element on a

complete and separable metric space is tight (see Lemma 3.2.1 [EK86])

b) Show that tightness does not imply exponential tightness.

Example 6.3. Let ξ be a standard Gaussian vector in Rd. We consider as before ξε =
√
εξ and check

the family (ξε)ε>0 is exponentially tight in Rd. For this we will use the fact that this family satisfies
the LDP.

So, we fix β > 0 and take a compact setKa := [−a, a]d such that inf
Rd\(−a,a)d

I ≥ β, where I(x) = ‖x‖2
2 ,

x ∈ Rd, is the rate function for the family (ξε)ε>0
23. Since the family (ξε)ε>0 satisfies the LDP with

rate function I, we have

lim
ε→0

ε lnP {ξε 6∈ Ka} ≤ lim
ε→0

ε lnP
{
ξε ∈ Rd \ (−a, a)d

}
≤ − inf

Rd\(−a,a)d
I ≤ −β.

Exercise 6.4. Let (ξε)ε>0 be a family of random variables in R such that there exist λ > 0 and κ > 0

such that E e
λ
ε
|ξε| ≤ κ

1
ε for all ε > 0. Show that this family is exponentially tight.

(Hint: Use Chebyshev’s inequality)

Proposition 6.2. If a family (ξε)ε>0 is exponentially tight and satisfies a weak LDP in E with rate
function I, then it satisfies a full LDP. Moreover, if I is lower semi-continuous, then I is good.

22A family of random variables (ξε) is tight if for any δ > 0 there exists a compact set K ⊂ E such that P {ξε 6∈ K} ≤ δ
for all ε

23see Exercise 3.2
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Proof. In order to prove a full LDP, we need to stay only upper bound (12) for each closed set F ⊂ E.
So, let F be a given closed set and K and β > 0 be the corresponding set and constant from the
definition of exponential tightness (see (22)). Then, using properties of probability, we have

P {ξε ∈ F} ≤ P {ξε ∈ F ∩K}+ P {ξε ∈ Kc} ,

where K = E \K is the complement of K. Consequently, using Exercise 3.3 and the fact that the set
K ∩ F is compact24, one can estimate

lim
ε→0

ε lnP {ξε ∈ F} ≤ lim
ε→0

ε ln (P {ξε ∈ F ∩K}+ P {ξε ∈ Kc})

= lim
ε→0

ε lnP {ξε ∈ F ∩K} ∨ lim
ε→0

ε lnP {ξ 6∈ K}

≤
(
− inf
x∈F∩K

I(x)

)
∨ (−β) ≤

(
− inf
x∈F

I(x)

)
∨ (−β) .

Letting β → +∞, we get upper bound (12).
We assume that I is lower semi-continous. We fix α ≥ 0 and show that the level set {x ∈ E :

I(x) ≤ α} is compact. Let K ⊂ E be the compact set from (22) in Definition 6.2 with β = α + 1.
Applying the lower bound of the definition of LDP to the open set Kc, we obtain

− inf
x∈Kc

I(x) ≤ lim
ε→0

ε lnP {ξε ∈ Kc} ≤ −β < −α.

Therefore, the closed set {x ∈ E : I(x) ≤ α} is a subset of the compact set K, that implies that it is
compact itself.

It turns out, that the full LDP implies exponential tightness, but only for a countable family
(ξε)n≥1.

Proposition 6.3. Let E be a complete and separable metric space. If (ξn)n≥1 satisfies the full LDP
with a good rate function I. Then it is exponentially tight.

Proof. Since E is separable, for any k ∈ N we may cover E by some open balls Bk1, Bk2, . . . of radius
1/k. We put Ukm =

⋃m
j=1Bkj . We fix an arbitrary β > 0 and k ∈ N and show that there exists

mk ≥ 1 such that for every n ≥ 1

P {ξn 6∈ Ukmk} ≤ ε
− βk
an . (24)

We first remark that the level set Lβk := {x ∈ E : I(x) ≤ βk + 1} is compact due to the goodness
of I. Since Bk1, Bk2, . . . is an open cover of Lβk, there exists a finite subcover Bkj1 , . . . , Bkjl of Lβk,
where j1 < · · · < jl. Then trivially Lβk ⊆ Uk,jl . By upper bound for the LDP,

lim
n→∞

an lnP
{
ξn ∈ U ck,jl

}
≤ − inf

Uck,jl

I ≤ − inf
Lcβk

I ≤ −βk − 1.

According to the definition of the upper limit, we can choose N ≥ 1 such that for every n ≥ N

an lnP
{
ξn ∈ U ck,jl

}
≤ −βk

or equivalently

P {ξn 6∈ Uk,jl} ≤ e
− βk
an .

24since K ∩ F is a closed subset of the compact set K
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Next, using the fact that P {ξn 6∈ Uk,m} → 0 as m→∞, we can find mk ≥ jl such that inequality (24)
for every 1 ≤ n < N . Moreover, for every n ≥ N

P {ξn 6∈ Uk,mk} ≤ P {ξn 6∈ Uk,jl} ≤ e
− βk
an .

This proves (24) for every n ≥ 1.
Summing (24) over k, we obtain

P

{
ξn 6∈

∞⋂
k=1

Uk,mk

}
≤
∞∑
k=1

P {ξn 6∈ Uk,mk} ≤
∞∑
k=1

e−
βk
an =

e−β/an

1− e−β/an
.

Let K be the closure of the set
⋂∞
k=1 Uk,mk , which is compact, since

⋂∞
k=1 Uk,mk is totally bounded.25

Therefore,

lim
n→∞

an lnP {ξn 6∈ K} ≤ lim
n→∞

an lnP

{
ξn 6∈

∞⋂
k=1

Uk,mk

}
≤ −β.

This finishes the proof of the proposition.

Exercise 6.5. Find a simpler proof of Proposition 6.3 in the case E = Rd.
(Hint: Cover a level set {x ∈ Rd : I(x) ≤ β} by an open ball and use the upper bound)

7 Large deviation principle for Brownian motion

7.1 Schilder’s theorem

We start this section with computation of the rate function for finite dimensional distributions of a
Brownian motion. So, let w(t), t ∈ [0, T ], denote a standard Brownian motion on R.26 We take a
partition 0 = t0 < t1 < · · · < td = T and consider the random vector ξ = (w(t1), . . . , w(td)) in Rd. Let
ξ1, ξ2, . . . be independent copies of ξ. Then the distribution of

1

n
Sn =

1

n

n∑
k=1

ξk

coincides with the distribution of 1√
n

(w(t1), . . . , w(td)). Consequently, one can use Theorem 4.1 to

conclude that the family
(

1√
n

(w(tt), . . . , w(td))
)
n≥1

satisfies the LDP with good rate function ϕ∗ξ .

Next we compute ϕ∗ξ to see the precise form of the rate function. We remark that the random vector

η =

(
w(t1)√
t1
,
w(t2)− w(t1)√

t2 − t1
, . . . ,

w(td)− w(td−1)√
td − td−1

)
is a standard Gaussian vector in Rd. According to exercises 4.3 and 2.7,

ϕ∗η(x) =
‖x‖2

2
, x ∈ Rd.

25A set A is totally bounden in a metric space E if for every r > 0 it can be covered by a finite number of balls of
radius r (see e.g. Definition I.14 [DS88]). By Theorem I.15 [DS88], the closure of a totally bounded set is compact in E,
if E is complete.

26w(t), t ∈ [0, T ] is a Brownian motion with w(0) = 0 and Varw(t) = t
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We observe that

η = A

 w(t1)
. . .
w(td)

 ,

where A is some non-singular d× d-matrix. Thus, by Exercise 4.2,

ϕ∗ξ(x) = ϕ∗A−1η(x) = ϕ∗η(Ax) =
‖Ax‖2

2
=

1

2

n∑
k=1

(xk − xk−1)2

tk − tk−1
,

where x0 = 0.
Let us denote

wε(t) =
√
εw(t), t ∈ [0, T ].

Then taking a function f ∈ C[0, T ], we should expect that the family (wε)ε>0 will satisfy the LDP in
C[0, T ] with rate function

I(f) =
1

2

∫ T

0
f ′2(t)dt.

Now we give a rigorous statement about the LDP for a Brownian motion. So, let H2
0 [0, T ] be a

set of all absolutely continuous functions h ∈ C0[0, T ] with ḣ ∈ L2[0, T ] (see also Section 5 for more
details).

Theorem 7.1 (Schilder’s theorem). The family (wε)ε>0 satisfies the large deviation principle in
C0[0, T ] with good rate function

I(f) =

{
1
2

∫ T
0 ḟ2(t)dt if f ∈ H2

0 [0, T ],

+∞ otherwise .

In order to prove Schilder’s theorem, we are going estimate probabilities P {wε ∈ Br(f)}, where
Br(f) = {g ∈ C[0, T ] : ‖g − f‖C < r} is the ball in C[0, T ] with center f and radius r. This will be
enough to prove the weak LDP according to Proposition 6.1 and Proposition 3.1. Then we will prove
the exponential tightness of (wε)ε>0 that will guarantee the full LDP by Proposition 6.2. The fact
that the rate function I is good was considered as an exercise (see Exercise 5.8 above).

Exercise 7.1. Let N(t), t ≥ 0, be a Poisson process. Define Nn(t) = 1
nN(nt), t ≥ 0, for all n ≥ 1.

1. Show that for every t > 0 the family (Nn(t))n≥1 satisfies the LDP in R (with an = 1
n) and find

the corresponding rate function.

2. Show that for every t1 < t2 < · · · < td the family ((Nn(t1), . . . , Nn(td)))n≥1 satisfies the LDP in
Rd (with an = 1

n) and find the corresponding rate function.

3. Which form should have the rate function in the LDP for the family of processes {Nn(t), t ∈
[0, T ]}n≥1 in the space C0[0, T ]?27

(Hint: Express Nn(t), t ≥ 0, as the empirical mean of independent copies of the Poisson process N(t), t ≥ 0. Then

use Cramer’s theorem (see Proposition 4.1 and Theorem 4.1) for 1. and 2. For the computation of the Fenchel-Legendre

transform in 2., use the same approach as in this section)

27The proof of LDP for processes with independent increments (in particular, for a Poisson process) can be found e.g.
in [LS87]
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7.2 Cameron-Martin formula

In order to estimate the probability P {wε ∈ Br(f)} = P {‖wε − f‖C < r}, we need to work with
distribution of the process wε(t) − f(t), t ∈ [0, T ]. We start the section with a simple observation.
Let a random variable η ∼ N(0, 1) be given on a probability space (Ω,F ,P ) and a ∈ R. It turns out
that one can change the probability measure P in such a way that the random variable η − a has a
standard normal distributed. We note that

e−
(x−a)2

2 = eax−
a2

2 e−
x2

2 .

Considering the new probability measure on Ω defined as

P a {A} = E IAeaη−
a2

2 , A ∈ F ,

we claim that the random variable η − a has a standard normal distribution on (Ω,F ,P a).

Exercise 7.2. Show that P a is a probability measure on Ω, i.e. P a {Ω} = 1.

Indeed, for any z ∈ R we have

P a {η − a ≤ z} = E I{η−a≤z}eaη−
a2

2 =
1√
2π

∫ z+a

−∞
eax−

a2

2 e−
x2

2 dx

=
1√
2π

∫ z+a

−∞
e−

(x−a)2
2 dx =

1√
2π

∫ z

−∞
e−

x2

2 dx.

It turns out that for a Brownian motion we can do the same. So, let wσ2(t), t ∈ [0, T ], be a
Brownian motion with diffusion rate28 σ2 defined on a probability space (Ω,F ,P ). We introduce a
new probability measure on Ω defined as follows

P h {A} = E IAe
∫ T
0 h(t)dwσ2 (t)−σ

2

2

∫ T
0 h2dt, A ∈ F ,

where h is a fixed function from L2[0, T ].

Proposition 7.1. The process

wσ2(t)− σ2

∫ t

0
h(s)ds, t ∈ [0, T ],

is a Brownian motion with diffusion rate σ2 on the probability space (Ω,F ,P h).

We remark that the statement of Proposition 7.1 is a consequence of more general Cameron-Martin
theorem about admissible shifts of Brownian motion (see [Kal02, Theorems 18.22]).

Exercise 7.3. Let w(t), t ∈ [0, T ], be a Brownian motion with diffusion rate σ2 defined on (Ω,F ,P )
and f ∈ H2

0 [0, T ]. Find a probability measure P̃ such that w(t)−f(t), t ∈ [0, T ], is a Brownian motion
on (Ω,F , P̃ ).

(Hint: Use Proposition 7.1 and definition of absolutely continuous functions)

Exercise 7.4. Show that for every a ∈ R and δ > 0

P {wσ2(t) + at < δ, t ∈ [0, T ]} > 0.

(Hint: Use Proposition 7.1 and the fact that sup
t∈[0,T ]

wσ2(t) and |wσ2(T )| have the same distribution29)

28w(t), t ∈ [0, T ], is a Brownian motion with Varw(t) = σ2t
29see Proposition 13.13 [Kal02]
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7.3 Proof of Schilder’s theorem

7.3.1 Proof of weak LDP for Brownian motion

The goal of this lecture is to prove the LDP for a family (wε)ε>0 of Brownian motions, where wε(t) =√
εw(t), t ∈ [0, T ]. The rigorous statement was formulated in Section 7.1 (see Theorem 7.1). In this

section, we will prove the weak LDP.
For the proof of the lower bound we use Proposition 3.1. So, we need to show that

1) for every f ∈ C2
0[0, T ]

lim
r→0

lim
ε→0

ε lnP {wε ∈ Br(f)} ≥ −I(f);

where

I(f) =

{
1
2

∫ T
0 ḟ2(t)dt if f ∈ H2

0 [0, T ],

+∞ otherwise.

2) For every f ∈ H2
0 [0, T ] there exists a sequence fn, n ≥ 1, from C2

0[0, T ] such that fn → f in
C0[0, T ] and I(fn)→ I(f), n→∞.

We start from checking 1). Take a function f ∈ C2
0[0, T ] and estimate P {‖wε − f‖C < r} from be-

low, using Proposition 7.1. We set h := f ′ and consider the following transformation of the probability
measure P

P h,ε{A} = E IAe
∫ T
0

h(t)
ε
dwε(t)− ε2

∫ T
0

h2(t)

ε2
dt = E IAe

1
ε [
∫ T
0 h(t)dwε(t)− 1

2

∫ T
0 h2(t)dt].

Then the process

wε(t)− ε
∫ t

0

h(s)

ε
ds = wε(t)−

∫ t

0
f ′(s)ds = wε(t)− f(t), t ∈ [0, T ],

is a Brownian motion on the probability space (Ω,F ,P h,ε) with diffusion rate ε, according to Propo-
sition 7.1. Integrating by parts in the first integral,30 we have∫ T

0
h(t)dwε(t)−

1

2

∫ T

0
h2(t)dt = h(T )wε(T )−

∫ T

0
h′(t)wε(t)dt−

1

2

∫ T

0
h2(t)dt =: Φ(h,wε).

Now, we can estimate

P {wε ∈ Br(f)} = E
[
I{wε∈Br(f)}e

1
ε

Φ(h,wε)e−
1
ε

Φ(h,wε)
]

≥ E

[
I{wε∈Br(f)}e

1
ε

Φ(h,wε)e
− 1
ε

sup
g∈Br(f)

Φ(h,g)
]

= e
− 1
ε

sup
g∈Br(f)

Φ(h,g)

P ε,h {‖wε − f‖C < r} = e
− 1
ε

sup
g∈Br(f)

Φ(h,g)

P {‖wε‖C < r} ,

(25)

where the latter equality follows from Proposition 7.1. Hence,

lim
r→0

lim
ε→0

ε lnP {wε ∈ Br(f)} ≥ − lim
r→0

sup
g∈Br(f)

Φ(h, g)

= Φ(h, f) = h(T )f(T )−
∫ T

0
h′(t)f(t)dt− 1

2

∫ T

0
h2(t)dt

=

∫ T

0
h2(t)dt− 1

2

∫ T

0
h2(t)dt = I(f)

30see Exercise 7.7 below
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because P {‖wε‖C < r} → 1 as ε → 0,31 and the function Φ is continuous on C0[0, T ] in the second
argument. This finishes the proof of 1). The proof of 2) is proposed as an exercise (see Exercise 7.6).

Exercise 7.5. Let wε(t), t ∈ [0, T ], denote a Brownian motion with diffusion rate ε for every ε > 0.
Show that P {‖wε‖C < r} → 1 as ε→ 0, for all r > 0.

Exercise 7.6. Show that for any f ∈ H2
0 [0, T ] there exists a sequence (fn)n≥1 from E0 such that

fn → f in C0[0, T ] and I(fn)→ I(f) as n→∞.
(Hint: Use first the fact that C1[0, T ] is dense in L2[0, T ]. Then show that if hn → h in L2[0, T ], then

∫ ·
0
hn(s)ds

tends to
∫ ·
0
h(s)ds in C0[0, T ], using Hölder’s inequality)

Exercise 7.7. Let h ∈ C1[0, T ] and w(t), t ∈ [0, T ], be a Brownian motion. Show that∫ T

0
h(t)dw(t) = h(T )w(T )− h(0)w(0)−

∫ T

0
h′(t)w(t)dt.

(Hint: Take a partition 0 = t0 < t1 < · · · < tn = T and check first that functions hn =
∑n
k=1 h(tk)I[tk−1,tk) converge

to h in L2[0, T ] as the mesh of partition goes to 0, using e.g. the uniform continuity of h on [0, T ]. Next show that

n∑
k=1

h(tk−1)(w(tk)− w(tk−1)) = h(tn−1)w(T )− h(0)w(0)−
n−1∑
k=1

w(tk)(h(tk)− h(tk−1))

Then prove that the first partial sum converges to the integral
∫ T
0
h(t)dw(t) in L2 and the second partial sum converges

to
∫ T
0
w(t)dh(t) a.s. as the mesh of partition goes to 0)

To prove the upper bound32 (20) for any compact set F ⊂ C0[0, T ], we will use Proposition 6.1.
We are going to show that for any f ∈ C0[0, T ]

lim
r→0

lim
ε→0

ε lnP {wε ∈ Br(f)} ≤ −I(f).

So we fix any f ∈ C0[0, T ] and h ∈ C1[0, T ], and estimate

P {wε ∈ Br(f)} = E
[
I{wε∈Br(f)}e

1
ε

Φ(h,wε)e−
1
ε

Φ(h,wε)
]

≤ E
[
I{wε∈Br(f)}e

1
ε

Φ(h,wε)e
− 1
ε

inf
g∈Br(f)

Φ(h,g)
]

≤ e
− 1
ε

inf
g∈Br(f)

Φ(h,g)
E e

1
ε

Φ(h,wε) = e
− 1
ε

inf
g∈Br(f)

Φ(h,g)
,

because E e
1
ε

Φ(h,wε) = 1. The last equality follows from the fact that P h,ε is a probability measure and
E e

1
ε

Φ(h,wε) is the expectation of 1 with respect to P h,ε. Consequently,

lim
r→0

lim
ε→0

ε lnP {wε ∈ Br(f)} ≤ − lim
r→0

inf
g∈Br(f)

Φ(h, g) = −Φ(h, f).

Now, taking infimum over all h ∈ C1[0, T ], we obtain

lim
r→0

lim
ε→0

ε lnP {wε ∈ Br(f)} ≤ inf
h∈C1[0,T ]

(−Φ(h, f)) = − sup
h∈C1[0,T ]

Φ(h, f).

It remains only to show that
sup

h∈C1[0,T ]

Φ(h, f) = I(f). (26)

31see Exercise 7.5
32The method applied here was taken from [DMRYZ04], see also [KvR19] for an infinite dimensional state space
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7.3.2 A variational problem

We will first check equality (26) for the case f ∈ C2
0[0, T ] because it is much more simple. The general

case is based on the Riesz representation theorem and will be state in Proposition 7.2 below (see
also [KvR19, Proposition 4.6]). We observe that for f ∈ C2

0[0, T ] and any h ∈ C1[0, T ]

Φ(h, f) = h(T )f(T )−
∫ T

0
h′(t)f(t)dt− 1

2

∫ T

0
h2(t)dt

=

∫ T

0
h(t)f ′(t)dt− 1

2

∫ T

0
h2(t)dt ≤ 1

2

∫ T

0
f ′2(t)dt = I(f),

where we first used the integration by parts and then the trivial inequality ab ≤ a2

2 + b2

2 , a, b ∈ R.
Moreover, we see that the last inequality becomes an equality if h = f ′. So, the supremum is attained
at the point h = f ′ and Φ(f ′, f) = I(f). This proves (26).

Proposition 7.2. For each f ∈ C0[0, T ]

sup
h∈C1[0,T ]

Φ(h, f) = I(f),

where Φ(h, f) = h(T )f(T )−
∫ T

0 h′(t)f(t)dt− 1
2

∫ T
0 h2(t)dt.

Proof. We first prove the assertion of the proposition for f satisfying

J(f) := sup
h∈C1[0,T ]

Φ(h, f) <∞.

Replacing h by θh, θ ∈ R, and using the linearity of C1[0, T ], we get

J(f) = sup
h∈C1[0,T ]

Φ(θh, f)

for all θ ∈ R. Next, we note that for each h ∈ C1[0, T ] the function

θ 7→ Φ(θh, f) = θG(h, f)− θ2

2

∫ T

0
h2(t)dt,

where

G(h, f) = h(T )f(T )−
∫ T

0
h′(t)f(t)dt,

reaches its maximum at the point

θmax
h =

G(h, f)∫ T
0 h2(t)dt

Consequently,
J(f) = sup

h∈C1[0,T ]

Φ(θh, f) = sup
h∈C1[0,T ]

Φ(θmax
h h, f),

which implies

J(f) =
1

2
sup

h∈C1[0,T ]

G2(h, f)∫ T
0 h2(t)dt

<∞. (27)
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We can consider C1[0, T ] as a linear subspace of L2[0, T ], which is dense in L2[0, T ]. Therefore, the
linear form

Gf : h→ G(h, f),

which is continuous on C1[0, T ], by (27), can be extended to the space L2[0, T ]. Using the Riesz
theorem, there exists a function gf ∈ L2[0, T ] such that

Gf (h) = G(h, f) =

∫ T

0
gf (t)h(t)dt. (28)

Exercise 7.8 (ii) and equality (28) imply that f is absolutely continuous and ḟ = gf . Applying the
Cauchy-Schwarz inequality to (28), we get

G(h, f)2 ≤
∫ T

0
g2
f (t)dt ·

∫ T

0
h2(t)dt = 2I(f)

∫ T

0
h2(t)dt,

with equality for h proportional to gf . The latter inequality yields J(f) ≤ I(f) and since C1[0, T ] is
dense in L2[0, T ], we get the equality J(f) = I(f).

If I(f) < ∞, then f is absolutely continuous and gf = ḟ in (28), by Exercise 7.8 (i). So, J(f) ≤
I(f) <∞ and, consequently, we have J(f) = I(f). This completes the proof of the proposition.

Exercise 7.8. Let f ∈ C0[0, T ].

(i) Let f be absolutely continuous. Show that for every h ∈ C1[0, T ]

h(T )f(T )−
∫ T

0
h′(t)f(t)dt =

∫ T

0
h(t)ḟ(t)dt. (29)

(Hint: Check first the equality if ḟ ∈ C[0, T ]. Then, in the general case, approximate ḟ in L1[0, T ] by continuous

functions)

(ii) Let g ∈ L2[0, T ] and for every h ∈ C1[0, T ]

h(T )f(T )−
∫ T

0
h′(t)f(t)dt =

∫ T

0
h(t)g(t)dt.

Show that f is absolutely continuous with ḟ = g.

(Hint: Consider the function f̃(t) =
∫ t
0
g(s)ds and apply to

∫ T
0
h(t)g(t)dt the integration by parts formula)

7.3.3 Exponential tightness of I

To finish the proof of Schilder’s theorem, it remains to prove that (wε)ε>0 is exponentially tight.
Exercise 6.4 shows that the estimate

E e
λ
ε
|ξε| ≤ κ

1
ε

for some κ > 0, λ > 0 and all ε > 0, is enough to conclude the exponential tightness of (ξε)ε>0 in
R. It turns out, that a similar estimate allows to get exponential tightness in the space of continuous
functions. However, one has to control the Hölder norm.
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Proposition 7.3. Let (ξε)ε>0 be a family of random elements in C0[0, T ]. If there exist positive
constants γ, λ and κ such that for all s, t ∈ [0, T ], s < t, and ε > 0

E e
λ
ε
|ξε(t)−ξε(s)|

(t−s)γ ≤ κ
1
ε ,

then the family (ξε)ε>0 is exponentially tight in C0[0, T ].

The proof of Proposition 7.3 follows from Corollary 7.1 [Sch97].

Lemma 7.1. Let w(t), t ∈ [0, T ], be a standard Brownian motion. Then the family (
√
εw)ε>0 is

exponentially tight in C0[0, T ].

Proof. To check the exponential tightness of (
√
εw)ε>0, we will use Proposition 7.3. We first remark

that E eα(w(t)−w(s))−α
2

2
(t−s) = 1 for all α ∈ R and s, t ∈ [0, T ], s < t (see Exercise 7.9 below). So, we

can estimate for ε > 0, s < t and α > 0

E eα|
√
εw(t)−

√
εw(s)| ≤ E eα(

√
εw(t)−

√
εw(s)) + E e−α(

√
εw(t)−

√
εw(s))

= 2E eα(
√
εw(t)−

√
εw(s)) = 2E eα

√
ε(w(t)−w(s))−α

2ε
2

(t−s)+α2ε
2

(t−s) = 2e
α2ε
2

(t−s).

Taking α :=
√

2
ε
√
t−s , we obtain

E e
√
2|
√
εw(t)−

√
εw(s)|

ε
√
t−s ≤ 2ε

1
2 ≤ (2ε)

1
ε .

This implies the exponential tightness.

Exercise 7.9. Let w(t), t ∈ [0, T ], be a standard Brownian motion. Show directly that for each
α ∈ R, s, t ∈ [0, T ], s < t

E eα(w(t)−w(s))−α
2

2
(t−s) = 1.

(Hint: Use Exercise 7.2)

Remark 7.1. Let w(t), t ∈ [0, T ], be a standard Brownian motion on Rd. Then using the same
argument, one can prove that the family (wε)ε>0 satisfies the LDP in C0([0, T ],Rd) with rate function

I(f) =

{
1
2

∫ T
0 ‖ḟ(t)‖2dt if f ∈ H2

0 ([0, T ],Rd),
+∞ otherwise,

where C0([0, T ],Rd) = {f = (f1, . . . , fd) : fi ∈ C0[0, T ], i = 1, . . . , d}, H2
0 ([0, T ],Rd) = {f = (f1, . . . , fd) :

fi ∈ H2
0 [0, T ], i = 1, . . . , d} and ḟ = (ḟ1, . . . , ḟd).

8 Contraction principle and Freidlin-Wentzell theory

8.1 Contraction principle

The goal of this section is the transformation of LDP under a continuous map.
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Theorem 8.1 (Contraction principle). Consider a continuous function f between two metric spaces
E and S, and let ξε be random elements in E. If (ξε)ε>0 satisfies the LDP in E with rate function I,
then the images f(ξε) satisfy the LDP in S with rate function

J(y) = inf {I(x) : f(x) = y} = inf
f−1({y})

I, y ∈ S. (30)

Moreover, J is a good rate function on S whenever the function I is good on E.

Proof. We take a closed set F ⊂ S and denote f−1(F ) = {x : f(x) ∈ F} ⊂ E. Then

lim
ε→0

ε lnP {f(ξε) ∈ F} = lim
ε→0

ε lnP
{
ξε ∈ f−1(F )

}
≤ − inf

x∈f−1(F )
I(x) = − inf

y∈F
inf

f(x)=y
I(x) = − inf

y∈F
J(y).

The lower bound can be proved similarly.
When I is good, we claim that

{J ≤ α} = f ({I ≤ α}) = {f(x) : I(x) ≤ α} , α ≥ 0. (31)

To see this, fix any α ≥ 0, and let x ∈ {I ≤ α}, i.e. I(x) ≤ α. Then

J(f(x)) = inf {I(u) : f(u) = f(x)} ≤ I(x) ≤ α,

which means that f(x) ∈ {J ≤ α}. Since I is good and f is continuous, the infimum in (30) is attained
at some x ∈ E, and we get y = f(x) with I(x) ≤ α. Thus, y ∈ f ({I ≤ α}), which completes the proof
of (31). Since continuous maps preserve compactness, {J ≤ α} is compact, by (31).

Exercise 8.1. Let I be a good rate function on E and f be a continuous function from E to S. Show
that the infimum in (30) is attained, that is, there exists x ∈ E such that f(x) = y and J(y) = I(x).

Exercise 8.2. Let w(t), t ∈ [0, T ], be a Brownian motion on R with diffusion rate σ2 and w(0) = x0.
Show that (w(ε·))ε>0 satisfies the LDP in C[0, T ] and find the associated rate function.

(Hint: Take the continuous map Φ(f)(t) = σf(t) +x0, and use the contraction principle and Schilder’s Theorem 7.1)

Remark 8.1. Let us explain the form of the rate function for Brownian motion using a concept of
white noise and contraction principle. We recall that the white noise ẇ(t), t ∈ [0, T ], formally can be
defined as a Gaussian process with covariance E ẇ(t)ẇ(s) = δ0(t−s), where δ0 denotes the Dirac delta
function. One should interpret the white noise as a family of uncountable numbers of independent
identically distributed Gaussian random variables. Similarly, as for Gaussian vectors, where the rate

function is given by the formula ‖x‖
2

2 =
∑d

k=1
x2k
2 , the rate function for the family (

√
εẇ)ε>0 should be

Iẇ(x) =
1

2

∫ T

0
x2(t)dt.

We remark that a Brownian motion formally appears as a continuous function of white noise, namely
the process w(t) :=

∫ t
0 ẇ(r)dr, t ∈ [0, T ], defines a standard Brownian motion. Indeed, it is a Gaussian

process with covariance

E
(∫ s

0
ẇ(r1)dr1

∫ t

0
ẇ(r2)dr2

)
=

∫ s

0

∫ t

0
E ẇ(r1)ẇ(r2)dr1dr2 =

∫ s

0

∫ t

0
δ0(r1−r2)dr1dr2 =

∫ s

0
1dr1 = s
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if s ≤ t. So, w = Φ(ẇ), where Φ denotes the integration procedure. By the contraction principle, the
rate function of the family (wε = Φ(ẇε))ε>0 has to be

Iw(x) = Iẇ(Φ−1(x)) =
1

2

∫ T

0
x′2(t)dt.

Exercise 8.3. Let B(t) = w(t)− tw(1), t ∈ [0, 1], be a Brownian bridge on R, where w is a standard
Brownian motion on R. Show that the family (

√
εB)ε>0 satisfy the LDP in C0[0, 1] with good rate

function

I(f) =

{
1
2

∫ 1
0 ḟ

2(t)dt if f ∈ H2
0 [0, 1] and f(1) = 0,

+∞ otherwise

(Hint: Use the contraction principle)

Exercise 8.4. Let ξ = (ξn)n≥1 be a sequence of i.i.d. N(0, 1) random variables. Use Schilder’s
theorem to show that the family (

√
εξ)ε>0 satisfies the LDP in R∞ with the good rate function

I(x) =

{
1
2

∑∞
n=1 x

2
n if x = (xn)n≥1 ∈ l2,

+∞ otherwise.

(Hint: Consider the map Φ(f) =

(
f(tn)−f(tn−1)√

tn−tn−1

)
n≥1

for an infinite partition 0 = t0 < t1 < · · · < tn < · · · → 1 of the

interval [0, 1] and use the contraction principle)

8.2 Freidlin-Wentzell theory

In this section, we prove the LDP for solutions of stochastic differential equations (shortly SDE). Let
consider a family (zε)ε>0 of solutions to the following SDEs

dzε(t) = a(zε(t))dt+
√
εdw(t), zε(0) = 0, (32)

where a : R → R is a bounded Lipschitz continuous33 function and w(t), t ∈ [0, T ], is a standard
Brownian motion. We recall that a continuous process zε(t), t ∈ [0, T ], is a solution to (32) if

zε(t) =

∫ t

0
a(zε(s))ds+

√
εw(t), t ∈ [0, T ].

By Theorem 21.3 [Kal02], equation (32) has a unique solution.

Theorem 8.2 (Freidlin-Wentzell theorem). For any bounded Lipschitz continuous function a : R→ R
the solutions the family (zε)ε>0 satisfies the large deviation principle in C0[0, T ] with good rate function

I(f) =

{
1
2

∫ T
0 [ḟ(t)− a(f(t))]2dt if f ∈ H2

0 [0, T ],

+∞ otherwise.
(33)

33a : R→ R is Lipschitz continuous function if there exists a constant L such that |a(x1)− a(x2)| ≤ L|x1 − x2| for all
x1, x2 ∈ R
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Proof. To prove the theorem, we will use the contraction principle. We first remark that the equation

z(t) =

∫ t

0
a(z(s))ds+ g(t), t ∈ [0, T ], (34)

has a unique solution for any g ∈ C0[0, T ], since the function a is bounded and Lipschitz continuous.
So, there exists a function Φ : C0[0, T ] → C0[0, T ] such that z = Φ(g). Let us show that Φ is
continuous. Take g1, g2 ∈ C0[0, T ] and set z1 := Φ(g1), z2 := Φ(g2). Then one can estimate

|z1(t)− z2(t)| = |Φ(g2)− Φ(g2)| =
∣∣∣∣∫ t

0
a(z1(s))− a(z2(s))ds+ g1(t)− g2(t)

∣∣∣∣
≤
∫ t

0
|a(z1(s))− a(z2(s))|ds+ |g1(t)− g2(t)|

≤ L
∫ t

0
|z1(s)− z2(s)|ds+ ‖g1 − g2‖C .

Gronwall’s Lemma 21.4 [Kal02] yields |z1(t)− z2(t)| ≤ ‖g1 − g2‖CeLt for all t ∈ [0, T ]. Hence,

‖Φ(g1)− Φ(g2)‖C = ‖z1 − z2‖C ≤ eLT ‖g1 − g2‖C ,

which shows that Φ is continuous. Using Schilder’s theorem 7.1 along with the contraction principle
(see Theorem 8.1), we conclude that the family (zε)ε>0 satisfies the LDP in C0[0, T ] with the good
rate function

I(f) = inf {Iw(g) : Φ(g) = f} = inf

{
Iw(g) : f(t) =

∫ t

0
a(f(s))ds+ g(t)

}
,

where Iw is defined in Theorem 7.1. Due to the uniqueness of solutions to differential equation (34),
the function Φ is bijective. Moreover, g and f = Φ(g) lie simultaneously in H2

0 [0, T ], in which case
ġ = ḟ − a(f) almost everywhere.34 Thus

I(f) =

{∫ T
0 (ḟ(t)− a(f(t)))2dt if f ∈ H2

0 [0, T ],

+∞ otherwise.

Exercise 8.5. Let Φ : C0[0, T ]→ C0[0, T ] be defined in the proof of Theorem 8.2.

1) Show that the function Φ is bijective.

2) Prove that g ∈ H2
0 [0, T ] if and only if f = Φ(g) ∈ H2

0 [0, T ].

(Hint: Use equation (34) and the definition of H2
0 [0, T ])

3) Show that ġ = ḟ − a(f) almost everywhere for every g ∈ H2
0 [0, T ] and f = Φ(g).

34see Exercise 8.5
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8.3 Contraction principle for some discontinuous functions

In the first section, we showed that LDP is preserved under a continuous transformation. But very
often one must work with discontinuous transformations. It turns out that LDP can also be preserved
in some cases. Let us consider the following example which was taken from [DO10].

Given a standard Brownian motion w(t), t ∈ [0, T ], in Rd and a closed set B ⊂ Rd, we consider
the stopping time

τ := inf {t : w(t) ∈ B} ∧ T,

where a ∧ b = min {a, b}. Let y(t) := w(t ∧ τ), t ∈ [0, T ], denote the stopped Brownian motion and
yε(t) := y(εt), t ∈ [0, T ]. We are interested in the LDP for the family (yε)ε>0. We remark that the
process yε is obtained as an image of wε(t) = w(εt), t ∈ [0, T ]. Indeed, let us define for a function
f ∈ C0([0, T ],Rd)

τ(f) := inf {t : f(t) ∈ B} ∧ T,

and
Φ(f)(t) := f(t ∧ τ(f)), t ∈ [0, T ]. (35)

Then, by Exercise 8.6, Φ is a map from C0([0, T ],Rd) to C0([0, T ],Rd) and yε = Φ(wε). Unfortunately,
we cannot apply the contraction principle here since Φ is discontinuous. But still, one can use the idea
of contraction principle to obtain the LDP for (yε)ε>0. We remark also that the set B could be chosen
by such a way that the set of discontinuous points of the map Φ has a positive Wiener measure35 (for
more details see Example 4.1 [DO10]).

Proposition 8.1. The family (yε)ε>0 satisfies the LDP in C0([0, T ],Rd) with rate function

I(f) =

{
1
2

∫ T
0 ḟ2(t)dt if f ∈ H2

0 ([0, T ],Rd) ∩ Im Φ,

+∞ otherwise,
(36)

where Im Φ =
{

Φ(f) : f ∈ C0([0, T ],Rd)
}

.

Proof. A detailed proof of the proposition can be found in [DO10, Section 4]. We present here only
the main idea. For the proof of the lower bound we take a closed set F ⊂ C0([0, T ],Rd) and estimate
from above the upper limit

lim
ε→0

ε lnP {yε ∈ F} = lim
ε→0

ε lnP {Φ(wε) ∈ F} = lim
ε→0

ε lnP
{
wε ∈ Φ−1(F )

}
≤ lim

ε→0
ε lnP

{
wε ∈ Φ−1(F )

}
≤ − inf

Φ−1(F )
Iw,

where Iw is the rate function defined in Theorem 7.1 and Φ−1(F ) =
{
f ∈ C0([0, T ],Rd) : Φ(f) ∈ F

}
.

So, in order to obtain the upper bound (12), one needs to prove

inf
Φ−1(F )

Iw = inf
Φ−1(F )

Iw

(
= inf

F
Ĩ

)
.36

35P {w is a point of discontinuity of Φ} > 0
36We remark that this equality and the equality for open G trivially holds if Φ is continuous, since Φ−1(F ) is closed

and Φ−1(G) is open
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Similarly, for the proof of the lower bound (13), one needs to show that

inf
Φ−1(G)◦

Iw = inf
Φ−1(G)

Iw

(
= inf

G
Ĩ

)
for any open set G ⊂ C0([0, T ],Rd). The prove of those equalities can be found in [DO10, Section 4]

Exercise 8.6. Let Φ be defined by (35) for d = 1 and B = {0}. Show that Φ maps C[0, T ] to C[0, T ].
Prove that it is discontinuous.

9 Sanov’s Theorem

Let U = {u1, . . . , ud} be a finite set. We consider a family of i.i.d. random variables X1, X2, . . . taking
values in U and for every n ≥ 1 define the random probability measure on U as follows

µn :=
1

n

n∑
k=1

δXk , (37)

that is, for every ϕ : U → R ∫
U
ϕ(u)µn(du) =

1

n

n∑
k=1

ϕ(Xk).

The random measures µn take a values in a metric space P(U) of all probability measures endowed
with the distance of total variation.

Exercise 9.1. (i) Let |ν|TV denote the total variation of a signed measure37 on U . Show that

|µ− ν|TV =
d∑
i=1

|µ({ui})− ν({ui})|.

Therefore, the convergence of a sequence (νn)n≥1 to ν in P(U) is equivalent to the convergence
of νn({ui})→ ν({ui}), n→∞, for each i ∈ [d].

(ii) Show that a sequence (νn)n≥1 converges in ν in P(U) if and only it νn → ν weakly.

(iii) Prove that the space P(U) is complete and separable.

(Hint: Use the isometry between P(U) and the simplex ∆ =
{

(x1, . . . , xd) ∈ Rd : x1 + · · ·+ xd = 1
}

)

We remark that according to the strong law of large numbers the sequence of probability measures
(µn)n≥1 converges almost surely to the distribution of X1 denoted by µ (see Exercise 9.2). In this
section, we are interested in the large deviation principle for the family (µn)n≥1 in the space P(U).

Exercise 9.2. Let µn be defined by (37) and µ be the distribution of X1, i.e. µ({ui}) = P {X1 = ui},
i ∈ [d]. Show that µn → µ in P(U) a.s.

(Hint: Use Exercise 9.1 and the strong law of large numbers)

37The total variation |ν|TV of a signed measure ν ∈ P(U) is defined as |ν|TV = sup
π

∑
A∈π |ν(A)|, where is taken over

all partitions π of the set U
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9.1 Relative entropy

For simplicity of notation, we will further assume that the distribution µ of Xn, n ≥ 1, from the
previous section satisfies the property µ({ui}) > 0 for all i ∈ [d]. For every ν ∈ P(U) we define the
relative entropy of ν given µ by

H(ν|µ) :=

∫
U

ln

(
ν({u})
µ({u})

)
ν(du) =

d∑
i=1

ln

(
ν({ui})
µ({ui})

)
ν({ui}).

Exercise 9.3. (i) Show that the function H(·|µ) : P(U)→ R is continuous.

(ii) Prove that H(ν|µ) > 0 for every ν 6= µ and H(µ|µ) = 0.

(iii) Show that the function H(·|µ) is good, that is, the level sets {ν ∈ P(U) : H(ν|µ) ≤ α}, α ≥ 0,
are compact in P(U).

We are going to show that (µn)n≥1 satisfies the LDP in P(U) with the good rate function I =
H(·|µ). In order to prove this, we will need the following estimate.

Lemma 9.1. For every f : U → R and ν ∈ P(U) on has∫
U
f(u)ν(du)− ln

∫
U
ef(u)µ(du) ≤ H(ν|µ).

Moreover, the equality is reached if and only if the function ef(u)µ({u})
ν({u}) is constant on {u ∈ U : ν({u}) >

0}.

Proof. Using the Jensen inequality, we can estimate∫
U
f(u)ν(du)−H(ν|µ) =

∫
U
f(u)ν(du)−

∫
U

ln

(
ν({u})
µ({u})

)
ν(du)

=

∫
U

ln ef(u)ν(du)−
∫
U

ln

(
ν({u})
µ({u})

)
ν(du)

=

∫
U

ln

(
ef(u)µ({u})
ν({u})

)
ν(du) ≤ ln

(∫
U

ef(u)µ({u})
ν({u})

ν(du)

)

= ln

(∫
U
ef(u)µ(du)

)
.

Since the function ln is strictly concave, the equality is reached if and only if the function ef(u)µ({u})
ν({u}) ,

u ∈ U , is constant on {u : ν(u) > 0}. The lemma is proved.

9.2 Sanov’s theorem (particular case)

Theorem 9.1 (Sanov). Let X1, X2, . . . be i.i.d. U -valued random variables with distribution µ, where
U is a finite set and µ({u}) > 0 for every u ∈ U . The family

µn =
1

n

n∑
k=1

δXk , n ≥ 1,

satisfies the LDP in P(U) with rate function H(·|µ).
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Proof. We will prove the theorem combining multidimensional Cramer Theorem 4.1 and the contrac-
tion principle. We consider the simplex ∆ = {(x1, . . . xd) ∈ Rd : x1 + · · ·+ xd = 1, xi ≥ 0, i ∈ [d]} as
a metric subspace of Rd. Since the set ∆ is closed in Rd, the space ∆ is a complete separable metric
space. We next define the following map

Φ(x) =

d∑
i=1

xiδui , x = (xi)i∈[d],

from ∆ to P(U). By Exercise 9.1, the map Φ is continuous. We consider the following random vectors
ξn = (I{Xn=ui})i∈[d], n ≥ 1. It is trivial that ξn ∈ ∆ for all n ≥ 1. Hence, the random vectors
Sn
n = ξ1+···+ξn

n , n ≥ 1, take values from ∆. We remark that

Φ

(
1

n
Sn

)
= µn, n ≥ 1.

Indeed,

Φ

(
1

n
Sn

)
=

d∑
i=1

(
1

n

n∑
k=1

I{Xk=ui}

)
δui =

1

n

n∑
k=1

(
d∑
i=1

I{Xk=ui}δui

)
=

1

n

n∑
k=1

δXk = µn.

Therefore, the LDP for (µn)n≥1 will directly follow from the contraction principle and the LDP for
( 1
nSn)n≥1 in ∆.

By multidimensional Cramer Theorem 4.1, the empirical means ( 1
nSn)n≥1 satisfy the LDP in Rd

with rate function ϕ∗ that is the Fenchel-Legendre transform of the comulant generating function

ϕ(λ) = lnE eλ·ξ1 , λ ∈ Rd,

where trivially the function ϕ(λ) < ∞ for every λ ∈ Rd. Let us show that this family satisfies the
LDP in the metric space ∆ with rate function ϕ∗(x), x ∈ ∆. The upper bound immediately follows
from the fact that every closed set F in ∆ is also closed in Rd. We will only prove the lover bound.
Let G be an open set in ∆. Then there exists an open set G̃ in Rd such that G = G̃ ∩∆. Using the
LDP for ( 1

nSn)n≥1 in Rd, we get

lim
n→∞

1

n
lnP

{
1

n
Sn ∈ G

}
= lim

n→∞

1

n
lnP

{
1

n
Sn ∈ G̃

}
≥ − inf

x∈G̃
ϕ∗(x) ≥ − inf

x∈G
ϕ∗(x).

By Theorem 8.1, the family (µn)n≥1 satisfies the LDP in P(U) with rate function

I(ν) = inf {ϕ∗(x) : Φ(x) = ν, x ∈ ∆} , ν ∈ P(U).

Since the function Φ is bijective with

Φ−1(ν) = (ν({ui})i∈[d], ν ∈ P(U),

we can conclude that I(ν) = ϕ∗
(
(ν({ui})i∈[d]

)
for all ν ∈ P(U).

In order to show that I(ν) = H(ν|µ), we first compute the comulant generating function ϕ of ξ1.
For λ = (λi)i∈[d] ∈ Rd we have

ϕ(λ) = ln

(
E e

∑d
i=1 λiI{X1=ui}

)
= lnE

(
d∑
i=1

eλiI{X1=ui}

)

= ln

(
d∑
i=1

eλiµ({ui})

)
.
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Then for ν ∈ P(U)

I(ν) = sup
λ∈Rd

{
d∑
i=1

λiν({ui})− ϕ(λ)

}
= sup

λ∈Rd

{
d∑
i=1

λiν({ui})− ln

(
d∑
i=1

eλiµ({ui})

)}

= sup
λ∈Rd

{∫
U
fλ(u)ν(du)− ln

(∫
U
efλ(u)µ(du)

)}
≤ H(ν|µ),

by Lemma 9.1, where the function f : U → R is defined as fλ(ui) = λi, i ∈ [d]. Taking λ ∈ Rd such

that efλ(ui)µ({ui})
ν({ui}) = eλiµ({ui})

ν({ui}) is constant on {i : ν({ui}) > 0}, we get that I(ν) = H(ν|µ), according
to the same lemma.

The fact that H(·|µ) is a good rate function follows from Exercise 9.3 (iii).

Exercise 9.4. Let ξ1, ξ2, . . . be independent Bernoulli distributed random variables with parameter
p ∈ (0, 1). Using Sanov Theorem 9.1 and the contraction principle show that the family ( 1

nSn)n≥1

satisfies the large deviation principle with good rate function

I(x) =

{
x ln x

p + (1− x) ln 1−x
1−p if x ∈ [0, 1],

+∞ otherwise,

where Sn = ξ1 + · · ·+ ξn.

9.3 Sanov’s theorem (general case)

In this section, we will extend Sanov’s theorem to the case of a complete separable metric space U .
Let U be a complete separable metric space and P(U) is the space of probability measures on P(U),
equipped with the topology of weak convergence, under which P(U) is a complete separable metric
space. Let also µ be a fixed probability measure from P(U). We first define on the space P(U) the
relative entropy H(·|µ).

We recall that by the Radon-Nikodym theorem, ν has a density38 dν
dµ with respect to µ if and only

if ν is absolutely continuous with respect to µ, i.e. ν(A) = 0 for all A ∈ B(U) such that µ(A) = 0.
We write ν � µ if ν is absolutely continuous with respect to µ. For every ν ∈ P(U) we define the
relative entropy H(ν|µ) of ν given µ as

H(ν|µ) :=

{∫
U ln

(
dν
dµ(u)

)
ν(du) if ν � µ,

+∞ otherwise.

Exercise 9.5. Prove that H(ν|µ) ≥ 0 for every ν ∈ P(U).

Theorem 9.2 (Sanov). Let X1, X2 . . . be i.i.d. random variables taking values in U with the distri-
bution function µ, where U is a complete separable metric space and µ ∈ P(U). Let

µn :=
1

n

n∑
k=1

δXk , n ≥ 1,

be the empirical laws of (Xn)n≥1. Then the family (µn)n≥1 satisfies the LDP in P(U) with good rate
function H(·|µ).

38A function f : U → [0,∞) is a density of ν with respect to µ if
∫
U
f(u)µ(du) <∞ and ν(A) =

∫
A
f(u)µ(du) for all

A ∈ B(U). Such a function is uniquelly defined up to a.s. equality with respect to µ
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Proof. The proof of the theorem can be found e.g. in [Swa12, Theorem 2.14] or [DZ98, Teorem 6.2.10].

10 Varadhan’s lemma

In this section, we discuss an equivalent version of the upper and lower bounds in the large deviation
principle (see (12) and (13), respectively) via continuous bounded functions. We start from the
following simple observation. Let ξ ∼ N(0, 1). We consider a bounded function f and formally
compute the following limit

lim
ε→0

ε lnE ef(
√
εξ)/ε = lim

ε→0
ε ln

∫ +∞

−∞
e
f(x)
ε

1√
2πε

e−
x2

2ε dx.

In spirit of Exercise 3.3, we should expect that

lim
ε→0

ε lnE ef(
√
εξ)/ε = lim

ε→0
ε ln

∫ +∞

−∞
e
f(x)
ε

1√
2πε

e−
x2

2ε dx “ = ” sup
x∈R

(
lim
ε→0

ε ln
1√
2πε

e
f(x)
ε
−x

2

2ε

)
= sup

x∈R

(
f(x)− x2

2

)
= sup

x∈R
(f(x)− I(x)) ,

where I is the rate function associated with the family (
√
εξ)ε>0. It turns out, that the same equality

takes place for any family (ξε)ε>0 satisfying the LDP with a rate function I.

Lemma 10.1 (Varadhan). Let the family (ξε)ε>0 satisfy the LDP in a metric space E with a rate
function I, and a function f : E → R be continuous and bounded above, then

Λf := lim
ε→0

ε lnE ef(ξε)/ε = sup
x∈E

(f(x)− I(x)) . (38)

Proof. We first show the lower bound for Λf . Let x ∈ E and G := Br(x) ⊂ E be the open ball with
the center x and a radius r > 0. We estimate

lim
ε→0

ε lnE ef(ξε)/ε ≥ lim
ε→0

ε lnE ef(ξε)/εI{ξε∈G} ≥ lim
ε→0

ε ln

(
inf
y∈G

ef(y)/εP {ξε ∈ G}
)

= lim
ε→0

(
ε ln e

inf
y∈G

f(y)/ε
+ ε lnP {ξε ∈ G}

)
= inf

y∈G
f(y)− inf

y∈G
I(y) ≥ inf

y∈G
f(y)− I(x).

Making r → 0 and using the continuity of f , we get

lim
ε→0

ε lnE ef(ξε)/ε ≥ f(x)− I(x)

for every x ∈ E. Therefore,

lim
ε→0

ε lnE ef(ξε)/ε ≥ sup
x∈E

(f(x)− I(x)) .
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In order to prove the upper bound, we fix n ≥ 1 and choose finitely many closed sets B1, . . . , Bm ⊂
E (non necessarily disjoint) such that f(x) ≤ −n for all x ∈ B0 := (

⋃m
k=1Bk)

c and the oscillation of
f on each Bk is at most 1

n , i.e.

sup
x∈Bk

f(x)− inf
x∈Bk

f(x) ≤ 1

n
, k ∈ [m].

The existence of such a collection of closed sets follows from Exercise 10.1. Then, using Exercise 10.2,
we estimate

lim
ε→0

ε lnE ef(ξε)/ε ≤ lim
ε→0

ε lnE

(
m∑
k=0

ef(ξε)/εI{ξε∈Bk}

)
= max

k∈[m]∪{0}

{
lim
ε→0

ε lnE
(
ef(ξε)/εI{ξε∈Bk}

)}
≤ max

k∈[m]∪{0}

{
lim
ε→0

ε ln

(
sup
x∈Bk

ef(x)/εP {ξε ∈ Bk}

)}

≤ max
k∈[m]

{
sup
x∈Bk

f(x)− inf
x∈Bk

I(x)

}
∨ (−n)

≤ max
k∈[m]

{
sup
x∈Bk

(
f(x)− I(x) +

1

n

)}
∨ (−n)

≤ sup
x∈E

(
f(x)− I(x) +

1

n

)
∨ (−n).

Making n→ +∞, we obtain the upper bound. This implies the statement of the lemma.

Exercise 10.1. Let f : E → R be a continuous and bounded above function. Show that for every
n ≥ 1 there exists a family of closed subsets Bk, k ∈ [m], of E such that f ≤ −n on B0 := (

⋃m
k=1Bk)

c

and the oscillation of f on each Bk is at most 1
n .

Hint: Consider the sets f−1
([
k−1
n
, k
n

])
, k ∈ Z.

Exercise 10.2. Let B be a subset of E and f, g : A→ R and inf
x∈A

g(x) > −∞. Prove that

inf
x∈A

f(x)− inf
x∈A

g(x) ≤ sup
x∈A

(f(x)− g(x)).

We remark that the inverse statement to Varadan’s lemma also holds. Denote the family of bounded
continuous function f : E → R by Cb(E).

Theorem 10.1 (Bruc). Let the family (ξε)ε>0 be exponentially tight and the limit Λf in (38) exist
for every f ∈ Cb(E). Then (ξε)ε>0 satisfies the LDP with good rate function

I(x) = sup
f∈Cb(E)

(f(x)− Λf (x)) , x ∈ E.

Proof. The proof of the theorem can be found in [Kal02, Theorem 27.10].
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11 Exponential equivalence

In order to prove that a family (ξε)ε>0 satisfies a large deviation principle with a given rate function,
it is often convenient to replace the random elements ξε by some other random elements ηε that are
“sufficiently close”, so that the LDP for (ηε)ε>0 implies the LDP for (ξε)ε>0. We consider the following
example.

Example 11.1. Let a, b : R → R be bounded Lipschitz continuous functions and w(t), t ∈ [0, T ] be
a standard Brownian motion. We are interested in the LDP in C0[0, T ] for solutions to the following
perturbed SDEs

dxε(t) = a(xε(t))dt+ εb(xε(t))dt+
√
εdw(t), xε(0) = 0.

Let us compare the solutions to those equations with the solutions to the non-perturbed SDEs

dzε(t) = a(zε(t))dt+
√
εdw(t), zε(0) = 0.

for which we have already proved the LDP (see Section 8.2). We estimate

|xε(t)− zε(t)| =
∣∣∣∣∫ t

0
(a(xε(s))− a(zε(s)))ds+ ε

∫ t

0
b(xε(s))ds

∣∣∣∣
≤
∫ t

0
|a(xε(s))− a(zε(s))|ds+ ε‖b‖CT

≤ L
∫ t

0
|xε(s)− zε(s)|ds+ ε‖b‖CT, t ∈ [0, T ],

where ‖ · ‖C denotes the supremum norm in C0[0, T ] and L is the Lipschitz constant for a. Using
Gronwall’s Lemma 21.4 [Kal02], we get |xε(t)− zε(t)| ≤ ε‖b‖CTeLT , t ∈ [0, T ]. Hence

‖xε − zε‖C ≤ ε‖b‖CT.

In particular, this implies that for every δ > 0

lim
ε→0

ε lnP {‖xε − zε‖ > δ} = −∞.

As we will see later this is enough to conclude that the family (xε)ε>0 satisfies the LDP in C0[0, T ]
with the same good rate function as (zε)ε>0, which is defined by (33).

Let (E, d) be a complete separable metric space.

Definition 11.1. We will say that families (ξε)ε>0 and (ηε)ε>0 of random elements in E are expo-
nentially equivalent if for every δ > 0

lim
ε→0

ε lnP {d(ξε, ηε) > δ} = −∞.

Proposition 11.1. Let families (ξε)ε>0 and (ηε)ε>0 of random elements in a separable metric space
E be exponentially equivalent. Then (ξε)ε>0 satisfies the LDP with a good rate function I iff the same
LDP holds for (ηε)ε>0.
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Proof. Suppose that the LDP holds for (ξε)ε>0 with rate function I. We fix any closed set F ⊆ E,
and denote the closed δ-neighborhood of F by F δ, i.e.

F δ = {x ∈ E : d(x, F ) ≤ δ},

where d(x, F ) = inf
y∈F

d(x, y). Then one has

P {ηε ∈ F} ≤ P {ηε ∈ F, d(ξε, ηε) ≤ δ}+ P {d(ξε, ηε) > δ}

≤ P
{
ξε ∈ F δ

}
+ P {d(ξε, ηε) > δ}

for all ε > 0. Using the LDP for (ξε)ε>0, the exponential equivalence and Exercise 3.3, we can estimate

lim
ε→0

ε lnP {ηε ∈ F} ≤ lim
ε→0

ε ln
(
P
{
ξε ∈ F δ

}
+ P {d(ξε, ηε) > δ}

)
≤ max

{
lim
ε→0

ε lnP
{
ξε ∈ F δ

}
, lim
ε→0

ε lnP {d(ξε, ηε) > δ}
}

≤ max

{
− inf
x∈F δ

I(x),−∞
}

= − inf
x∈F δ

I(x).

Since I is a good rate function, one can show that inf
x∈F δ

I(x)→ inf
x∈F

I(x) as δ → 0 (see Exercise 11.2).

This implies the upper bound (12) for the family (ηε)ε>0.
We next prove the lover bound (13) for (ηε)ε>0. Let G be a fixed open subset of E and x ∈ G. If

d(x,Gc) > 3δ > 0, then the ball Bδ(x) is contained in G. We estimate as before

P {ξε ∈ Bδ(x)} ≤ P {ξε ∈ Bδ(x), d(ξε, ηε) ≤ δ}+ P {d(ξε, ηε) > δ}
≤ P {ηε ∈ G}+ P {d(ξε, ηε) > δ} .

Therefore, using the LDP for (ξε)ε>0 and the exponential equivalence, be get

−I(x) ≤ − inf
y∈Bδ(x)

I(y) ≤ lim
ε→0

ε lnP {ξε ∈ Bδ(x)} ≤ lim
ε→0

ε ln (P {ηε ∈ G}+ P {d(ξε, ηε) > δ})

≤ max

{
lim
ε→0

ε lnP {ηε ∈ G} , lim
ε→0

ε lnP {d(ξε, ηε) > δ}
}

= lim
ε→0

ε lnP {ηε ∈ G} .

Taking the supremum over all x ∈ G, we obtain the lower bound. The proposition is prove.

Exercise 11.1. Let F be a closed subset of E. Show that the closed δ-neighborhood F δ = {x ∈ E :
d(x, F ) ≤ δ} of F is a closed set and

⋂
δ>0 F

δ = F .

Exercise 11.2. Let I : E → [0,∞] be good, F be a closed set and F δ be the closed δ-neighborhood
of F . Show that inf

x∈F δ
I(x)→ inf

x∈F
I(x) as δ → 0.

12 Some applications of large deviations

12.1 Curie-Weiss model of ferromagnetism

This section is taken from [RAS15, Section 3.4].
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In this section, we consider an application of LDP in statistical mechanics, using a toy model of
ferromagnetism. Let us imagine that a piece of material is magnetized by subjecting it to a magnetic
field. Then assume that the field is turned off. We are interesting if the magnetization persist.
To answer this question, we introduce a model called the Curie-Weiss ferromagnet and will try to
understand this using large deviation theory.

Let us start from the description of the model. Consider n atoms each of them have a ±1 valued
spin ωi, i = 1, . . . , n. The space of n-spin configurations is Ωn = {−1, 1}n. The energy of the system
is given by the Hamiltonian

Hn(ω) = − J

2n

n∑
i,j=1

ωiωj − h
n∑
j=1

ωj = −J
2

n∑
i=1

ωi

 1

n

n∑
j=1

ωj

− h n∑
j=1

ωj . (39)

A ferromagnet has a positive coupling constant J > 0 and h ∈ R is the external magnetic field. Since
nature prefers low energy, ferromagnet spins tend to align with each other and with the magnetic field
h, if h 6= 0. The Gibbs measure for n spins is

γn(ω) =
1

Zn
e−βHn(ω)Pn(ω), ω ∈ Ωn.

Here Pn(ω) = 1
2n , β > 0 is the inverse temperature and Zn is the normalization constant.

The Gibbs measure captures the competition between the ordering tendency of the energy term
H(ω) and the randomness represented by Pn. Indeed, let h = 0. If the temperature is high (β close
to 0), then noise dominates and complete disorder reigns at the limit, limβ→0 γn(ω) = Pn. But if
temperature goes to zero, then the limit limβ→∞ γn(ω) = 1

2(δω=1 + δω=−1) is concentrated on the two
ground states. The key question is the existence of phase transition: namely, if there is a critical
temperature β−1

c (Curie point) at which the infinite model undergoes a transition that reflects
the order/disorder dichotomy of the finite model.

Let a random vector (η1, . . . , ηn) have distribution γn. We define magnetization as the expectation
Mn(β, h) = ESn of the total spin Sn =

∑n
i=1 ηi. We show that 1

nSn converges and there exists a limit

m(β, h) = lim
n→∞

1

n
Mn(β, h).

Then we will see something interesting as h→ 0. We remark, that m(β, 0) = 0, since γn(ω) = γn(−ω).

Proposition 12.1. The family
(

1
nSn

)
n≥1

satisfies the LDP in R with rate function

I(x) =

{
1
2(1− x) ln(1− x) + 1

2(1 + x) ln(1 + x)− 1
2Jβx

2 − βhx− c if x ∈ [−1, 1],

+∞ otherwise,

where c = inf
x∈[−1,1]

{
1
2(1− x) ln(1− x) + 1

2(1 + x) ln(1 + x)− 1
2Jβx

2 − βhx
}

.

For the proof of the proposition see [RAS15, Section 3.4].
In order to understand limit of 1

nSn, we find the minimizers of the rate function I. Critical points
satisfy I ′(x) = 0 that is equivalent to the equation

1

2
ln

1 + x

1− x
= Jβx+ βh, x ∈ [−1, 1]. (40)
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Theorem 12.1. Let 0 < β, J <∞ and h ∈ R.

(i) For h 6= 0, m(β, h) is the unique solution of (40) that has the same sign as h.

(ii) Let h = 0 and β < J−1. Then m(β, 0) = 0 is the unique solution of (40) and m(β, h̃) → 0 as
h̃→ 0.

(iii) Let h = 0 and β > J−1. Then (40) has two nonzero solutions m(β,+) > 0 and m(β,−) =
−m(β,+). Spontaneous magnetization happens: for β > J−1 =: βc,

lim
h̃→0+

m(β, h̃) = m(β,+) and lim
h̃→0−

m(β, h̃) = m(β,−).

We note that statements (i) and (ii) follows directly from the form of equation (40). Statement
(iii) is the direct consequence of the further proposition and the dominated convergence theorem.

The graphs of the rate function I. Top plots have β > J−1 while bottom plots have β ≤ J−1. Top left
to right: h = 0, 0 < h < h0(J, β) and h > h0(J, β). Bottom left to right, h = 0 and h > 0. The case

h < 0 is symmetric to that of h > 0.

Proposition 12.2. (i) Suppose that either h 6= 0, or h = 0 and β ≤ J−1. Then 1
nSn → m(β, h).

(ii) If h = 0 and β > J−1, then 1
nSn → ζ weakly, where P {ζ = m(β,+)} = P {ζ = m(β,−)} = 1

2 .

Proof. We note that the first part of the proposition follows from the fact that the rate function I has
a unique minimizer. Indeed,

lim
n→∞

1

n
lnP

{∣∣∣∣ 1nSn −m(β, h)

∣∣∣∣ ≥ ε} ≤ − inf
|x−m(β,h)|≥ε

I(x) < 0.

For part (ii) the large deviation upper bound can be obtained similarly

lim
n→∞

P
{∣∣∣∣ 1nSn −m(β,−)

∣∣∣∣ < ε or

∣∣∣∣ 1nSn −m(β,+)

∣∣∣∣ < ε

}
= 1.
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Form γn(ω) = γn(−ω) it follows that Sn is symmetric and so

lim
n→∞

P
{∣∣∣∣ 1nSn −m(β,−)

∣∣∣∣ < ε

}
= lim

n→∞
P
{∣∣∣∣ 1nSn −m(β,+)

∣∣∣∣ < ε

}
=

1

2
.

This shows the weak convergence of 1
nSn to ζ.

12.2 Varadhan formula

The goal of the present section is to show a connection of diffusion processes with the underlying
geometry of the state space. This result was obtained by Varadhan in [Var67]. So, we are interesting
in deviations of solution x(t) of the SDE in Rd

dx(t) = σ(x(t))dw(t), x(0) = x0, (41)

from the initial value of x0 as t → 0, where w(t), t ∈ [0, 1], denotes a standard Brownian motion in
Rd and the d× d-matrix σ is Lipschitz continuous.

We first consider the following family of SDEs

dxε(t) = σ(xε(t))dwε(t), x(0) = x0, (42)

where wε(t) =
√
εw(t), t ∈ [0, 1]. For every ε > 0 the solution is the diffusion process corresponding

to the operator

Lε(f) =
ε

2

d∑
i,j=1

aij
∂2f

∂xixj
,

with a = σσ∗. We also assume that the matrix a is bounded and uniformly elliptic, that is, there
exists c > 0 ans C > 0 such that for all λ = (λ1, . . . , λd) ∈ Rd

c‖λ‖2 ≤ λaλ ≤ C‖λ‖2,

where λaλ =
∑d

i,j=1 aijλiλj . We remark that for every ε > 0 SDE (42) has a unique solution xε on

the space C([0, 1],Rd).39 The proof of the following theorem can be found in [Var84, Section 6].

Theorem 12.2. The family (xε)ε>0 satisfies the LDP in C([0, 1],Rd) with rate function

I(f) =

{
1
2

∫ 1
0 ḟ(t)a−1(f(t))ḟ(t)dt if f ∈ H2

x0([0, 1],Rd),
+∞ otherwise,

where H2
x0([0, T ];Rd) is defined similarly as H2

0 ([0, T ];Rd), the only difference is f(0) = x0.

Now we are going to obtain the LDP for the family (x(ε))ε>0 where x(t), t ∈ [0, 1], is a solution to
equation (41). It is easily to see that x(ε) = xε(1). So, we can apply the contraction principle to the
LDP for (xε)ε>0. We take the following continuous map on C([0, T ],Rd)

Φ(f) = f(1), f ∈ C([0, T ],Rd).
39see e.g. Theorem 21.3 [Kal02]
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Then the family (x(ε) = Φ(xε))ε>0 satisfies the LDP with rate function

Ix0(x1) = inf
{
I(f) : f ∈ H2

0 ([0, T ],Rd), f(1) = x1

}
=

1

2
inf

f(0)=x0, f(1)=x1

∫ 1

0
ḟ(t)a−1(f(t))ḟ(t)dt =:

d2(x0, x1)

2
,

where the later infimum is taken over all functions f ∈ H2
x0([0, 1],Rd) which end at x1 (and begin at

x0).
Let us define locally the metric on Rd as

ds2 =

d∑
i,j=1

aijdxidxj .

Then the distance

d(x0, x1) =

(
inf

{∫ 1

0
ḟ(t)a−1(f(t))ḟ(t)dt : f ∈ H2

x0([0, 1],Rd), f(1) = 1

}) 1
2

, x0, x1 ∈ Rd,

coincides with the global geodesic distance

dgeod(x0, x1) = inf

{∫ 1

0

√
ḟ(t)a−1(f(t))ḟ(t)dt : f ∈ H2

x0([0, 1],Rd), f(1) = 1

}
, x0, x1 ∈ Rd,

induced by this metric.

Exercise 12.1. Show that dgeod is a distance of Rd.

We remark that the operator L is the Laplace-Beltrami operator on the Riemannian manifold Rd
(with metric ds2) and the associated process x(t), t ∈ [0, 1], plays a role of Brownian motion on this
space.

For further applications of large deviation principle see also [Var08].
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