
 

19 The Taylor series
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Let an и 31 be complex numbers We recall
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Example 18.1 Consider the series
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But series 19.1 converges uniformly only
on Me for any б о
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Exercise 18.1 Show that the series
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converges uniformly on М it the series
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Making т we have
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2 The Taylor series

Theorem 19.1 Let t be holomorphic in V
and t.tv Then the function f пику
be represented as я sum
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The integral Cauchy formula
implies that

На till аз
We write

ну 1544 t.DE.EE



we multiply both sides by 113
and integrate the series term wise along
К The series 29.4 converges uniformly
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Def 19.1 The power series
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is the Taylor series of the function
at the point to or centered at to

The Cauchy inequality Let the function f
be holomorphic in a closed disk
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and let its absolute value on the circle кто
be bounded by a constant М Then
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Proof From 19.6 we have
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Theorem 19.2 Liouville If the function I
is holomorphic in the whole complex plane
and bounded then it is equal identically
to a constant
Proof According to Th 19.1 the function f
may be represented by а Taylor series
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with the coefficients that do not depend
on R Since f is bounded on в we
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