19 The Taylor series 1. Uniform converges of serieses Let an, n >1, be complex numbers. We recall a series that <u>E</u>an is convergent if the sequence of its partitial sums Sn = E ak has a finite limit S. This limit is called the sum of the series. A dunctional series $\sum_{n=1}^{\infty} f_n(z)$ with the functions of defined on a set M ⊆ Ē converges unidormly on M if it converges at all Z ∈ M, and moreover, VED JNEW S.t. UNJN $\left| \sum_{k=n+1}^{\infty} f_k(z) \right| = \left| f_{(z)} - \sum_{k=0}^{\infty} f_k(z) \right| < \varepsilon, \forall z \in \mathcal{M},$ where $f(z) = \sum_{n=0}^{\infty} d_n(z).$

Example 18.1 Consider the series \overline{z} z^n , |z| < 1(19.1) We remark that series .-+2. M={2:12/21] (19.1) converges for every ZEM. Indeed, (--+--M== { 2: 121 < 1-51 $S_n = \sum_{k=1}^{n} z^k = 1 + 2 + 2^2 + ... + 2^n$ 2 Sn = 2 + 2² + ... + 2ⁿ⁺¹ $S_n(1-2) = 1-2^{n+1}$ $S_n = \frac{1-2^{n+1}}{1-2} = \frac{1-\gamma^{n+1}(\cos(n+1)(1+i))}{1-2}$ $\rightarrow \frac{1}{1-z}$, where $z = z \left\{ c \left\{ s \right\} + i s \right\}$. But series (19.1) converges uniformly only on Me for any 5 >0. Indeed, $\left| \sum_{k=n+1}^{\infty} z^{k} \right| = \left| \frac{1}{1-z} - \frac{1-z^{n+1}}{1-z} \right| =$

$$= \frac{|2^{n+1}|}{|1-2|} = \frac{|2|^{n+1}}{|1-2|} \leq \frac{(1-\delta)^{n+1}}{\delta} = 0$$

So, (18.1) converges unidor may on Ms.
Assume that (19.1) converges unidor may
on M, then for any E>D
 $\exists N \in \mathbb{N}$ s.t. $\forall n \geq N$
 $|\sum_{k=n+1}^{\infty} 2^{k}| = \frac{|2|^{n+1}}{|1-2|} \leq E \quad \forall |2| \leq 1$
Take $2 = x = x + i0$, x>D. Then
 $|\sum_{k=n+1}^{\infty} 2^{k}| = \frac{x^{n+1}}{1-x} \leq E \quad (18.2)$
So inequality (19.2) does not hold for
 x closed to 1. Consequently, (19.1)
iloes not converges uniformly on
 $M = L \geq 12|C|$

Exercise 18.1 Show that the series $\sum_{n=0}^{\infty} f_n(z) \qquad (19.3)$

converges uniformly on
$$M$$
 if the series

$$\sum_{k=0}^{\infty} ||f_{k}||$$
converges, where $||f_{k}|| = \sup_{k \in M} |f_{k}(2)|$.
Solution $Let S(2) = \sum_{m \geq 0}^{\infty} f_{m}(2)$, $S_{n}(2) = \sum_{k \geq 0}^{\infty} f_{k}(2)$.
We first estimate for $m > n$

$$\left|S_{m}(2) - S_{n}(2)\right| = \left|\sum_{k \geq n \neq 1}^{m} f_{k}(2)\right| \leq \sum_{k \geq n \neq 1}^{m} |f_{k}(1) \forall 2 \in M.$$
We fix $E > 0$.
Since the series $\sum_{m \geq 0}^{\infty} ||f_{n}||$ converges, there
exists $M \in ||f_{n} | \leq \frac{1}{2}$,
 $M = \sum_{k \geq n \neq 1}^{m} ||f_{k}|| \leq \frac{1}{2}$,
by the Cauchy criterion (see Thigs Math I)

$$\int \left| S_m(z) - S_n(z) \right| < \frac{\varepsilon}{2} \quad \forall z \in \mathcal{M},$$

$$\forall n, m \ge \mathcal{N}_0.$$

Making m-200, ve have

$$|S(2) - S_n(2)| \leq \frac{c}{2} \leq \varepsilon \quad \forall \; 2 \in M$$

This implies the uniform converges of (18.3).
2. The Taylor series
Theorem 19.1 Let f be holomorphic in U
and $z_0 \in U$. Then the dunction d may
be represented as a sum
 $d(2) = \sum_{n=0}^{\infty} C_n(2-z_0)^n$
inside any disk $B_R = \{12-z_0\} < R_3 \subset U$
Prood Let $z \in B_R$ be an arbitrary
point. Choose $r > 0$ so that
 $12 - z_0 | cr < R$ and denote by
 $\delta_r = 1 \frac{c}{3} : |\frac{c}{3} - 2_0| = r^3$
The integral Cauchy formula
implies that
 $d(2) = \frac{L}{2\pi i} \int_{S_r} \frac{d(3)}{3-2} d_3^2$.

We write

$$(19.4)\frac{1}{3-2} = \left[\left(\frac{3}{5}-\frac{2}{5}\right)\left(1-\frac{2-2}{3-2}\right)\right] = \sum_{n=0}^{\infty} \frac{(2-2)^n}{(3-2)^{n+1}}$$

We multiply both sides by $\frac{1}{2\pi i} d(3)$ and integrate the series term-wise along \mathcal{F}_r . The series (13.4) converges unidormly, Since $\left|\frac{2-2\sigma}{2}\right| = \frac{12-2\sigma}{2} = 9.61$

$$\left(\frac{z-z_{0}}{\overline{5}-z_{0}}\right) = \frac{|z-z_{0}|}{r} = q < 1$$

and

$$\sum_{n=0}^{\infty} q^n < \infty$$

Consequently, the term-wise integration
is legitimate and we obtain
$$d(z) = \frac{1}{2\pi i} \int_{T=0}^{\infty} \frac{d(\overline{z})d}{(\overline{z}-\overline{z}_0)^{n+1}} (\overline{z}-\overline{z}_0)^n =$$

 $\int_{T}^{\infty} \int_{T=0}^{\infty} \frac{d(\overline{z})d}{(\overline{z}-\overline{z}_0)^{n+1}} (\overline{z}-\overline{z}_0)^n =$

$$= \sum_{n=0}^{\infty} C_n (2-2_0)^n$$

where $C_n = \frac{1}{2\pi i} \int \frac{d(3) d_3}{(3-20)^{n+1}}, n=0,1,2,...$ $\delta_r = \frac{1}{(3-20)^{n+1}}, n=0,1,2,...$

Ded 19.1 The power series

$$d(z) = \int_{n=0}^{\infty} C_n (z - z_0)^n$$
, (19.5)
where $C_n = \frac{1}{2\pi i} \int_{r} \frac{d(1)d_1}{(1 - z_0)^{net}}$, (18.6)

is the Taylor series of the function
f at the point Zo (or centered at Zo)
The Cauchy inequality Let the function f
be holomorphic in a closed disk

$$B_{T} = \{ | Z - Zo | \leq T \}$$

and let its absolute value on the circle $\delta_{Z} = 30^{\circ}$
le bounded by a constant M. Then
 $|C_{n}| \leq \frac{M}{T^{n}}$, $n = 0, 1, ...$
Prood From (19.6) we have
 $|C_{n}| \leq \frac{1}{2T} \int \frac{|f(y)|}{|1-Zo|^{n}|} ds = \frac{1}{2T^{\circ}} \int \frac{M}{T^{n}} dT T T$
 $= \frac{M}{T^{n}}$.
Theorem 19.2 (Liouville) if the function f
is holomorphic in the whole complex plane
and bounded then it is equal identically
to a constant
Proof According to Th 19.1, the function f
may be represented by a Taylor series
 $f(Z) = \sum_{n=0}^{\infty} C_{n} Z^{n}$

in any closed disk $\overline{B}_{R} = \{12\} \le R\}, R < \infty$, with the coeddicients that do not depend on R. Since f is bounded on C, we have $| d(2) | \le M$, $\forall 2 \in C$. My Cauchy inequalities $\forall n = 0, 1, 2, ...$ $|Cn| \le \frac{M}{R^{n}} \longrightarrow D$, $R \rightarrow \infty$. Therefore $C_{1} = C_{2} = ... = O$ and $d(2) = C_{0}$.