

Problem sheet 11

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday January 20.

- 1. [1+2 points] Using Uniqueness theorem prove the following formulas:
 - (a) $\sin^2 z = \frac{1-\cos 2z}{2}, z \in \mathbb{C};$
 - (b) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2, \ z_1, z_2 \in \mathbb{C}.$
- 2. [1+1 points] Find the radius of convergence of the following power series:
 - (a) $\sum_{n=0}^{\infty} \frac{(z-1)^n}{n^2}$;
 - (b) $\sum_{n=0}^{\infty} nz^{2n}$.
- 3. [2+3 points] Expand the function $\frac{z^2}{(z+1)^2}$ in the power series
 - (a) $\sum_{n=0}^{\infty} a_n z^n;$
 - (b) $\sum_{n=0}^{\infty} a_n (z-1)^n$.
- 4. [2 points] Use Cauchy's integral formula for derivatives in order to compute the integral

$$\frac{1}{2\pi i} \int_{\gamma} \frac{ze^z}{(z-a)^3} dz,$$

where γ is a positively oriented simple path surrounding $a \in \mathbb{C}$.

- 5. [1+1+2 points] Does there exist a function f holomorphic at z = 0 and such that $f\left(\frac{1}{n}\right)$, $n \ge 1$, equals
 - (a) $0, 1, 0, 1, 0, 1, 0, 1, \dots;$
 - (b) $0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{6}, 0, \frac{1}{8}, \dots;$
 - (c) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{8}$, $\frac{1}{8}$, ...

Justify your answers.

- 6. [2+4+3 points] Find the Laurent series for the following functions:
 - (a) $\frac{1}{z+3}$ in the annulus $3 < |z| < \infty$;
 - (b) $\frac{1}{z(1-z)}$ in the annuli 0 < |z| < 1 and 0 < |z-1| < 1;
 - (c) $z^2 \sin \frac{1}{z-1}$ in $0 < |z-1| < \infty$.