Exam Solutions

Each of the exercise is 4 points.

1. Show that for every $n \in \mathbb{N}$

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{1}
\end{equation*}
$$

Solution. To prove equality (1), we use the mathematical induction. For $n=1$ we have $1^{2}=\frac{1 \cdot 2 \cdot 3}{6}$. We assume that (1) is true for $n \in \mathbb{N}$ and check it for $n+1$. So,

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2}+\ldots+n^{2}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
= & \frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6}=\frac{(n+1)(n(2 n+1)+6(n+1))}{6} .
\end{aligned}
$$

In order to finish the proof, we have to check that $n(2 n+1)+6(n+1)=(n+2)(2(n+1)+1)$. For this, we compute $n(2 n+1)+6(n+1)=2 n^{2}+7 n+6$ and $(n+2)(2(n+1)+1)=(n+2)(2 n+3)=$ $2 n^{2}+7 n+6$.
2. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence such that $\frac{a_{n}}{n} \rightarrow 0, n \rightarrow \infty$. Prove that $\frac{\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}}{n} \rightarrow 0, n \rightarrow \infty$.

Solution. Let $\varepsilon>0$ be fixed. Since $\frac{a_{n}}{n} \rightarrow 0, n \rightarrow \infty$, there exists $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}\left|\frac{a_{n}}{n}-0\right|=\frac{\left|a_{n}\right|}{n}<\varepsilon$. We next choose $N_{2} \in \mathbb{N}$ such that $\frac{\left|a_{k}\right|}{N_{2}}<\varepsilon$ for all $k=1, \ldots, N_{1}$. Thus, taking $N:=\max \left\{N_{1}, N_{2}\right\}$, we can estimate for every $n \geq N$ and $k=1, \ldots, n$

$$
\frac{\left|a_{k}\right|}{n} \leq \frac{\left|a_{k}\right|}{N_{2}}<\varepsilon, \quad \text { if } k \leq N_{1},
$$

and

$$
\frac{\left|a_{k}\right|}{n} \leq \frac{\left|a_{k}\right|}{k}<\varepsilon, \quad \text { if } \quad N_{1}<k \leq n .
$$

Hence, we have

$$
\left|\frac{\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}}{n}\right| \leq \frac{\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n}\right|\right\}}{n}<\varepsilon .
$$

This implies that $\frac{\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}}{n} \rightarrow 0, n \rightarrow \infty$.
3. Is the function

$$
f(x)=\left\{\begin{array}{ll}
\frac{1-\cos x}{\sin x}, & x \neq 0, \\
0, & x=0,
\end{array} \quad x \in(-\pi, \pi),\right.
$$

continuous on $(-\pi, \pi)$? Is f differentiable on $(-\pi, \pi)$? Compute the derivative of f at each point where it exists.

Solution. Since sin and cos are continuous functions and $\sin x \neq 0$ for all $x \in(-\pi, \pi) \backslash\{0\}$, the function f is continuous at each point of $(-\pi, \pi) \backslash\{0\}$. To check the continuity of f at 0 , we compute

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}=\lim _{x \rightarrow 0} \frac{x^{2}(1-\cos x)}{x^{2} \sin x} \\
& =\lim _{x \rightarrow 0} x \cdot \lim _{x \rightarrow 0} \frac{x}{\sin x} \cdot \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=0 \cdot 1 \cdot \frac{1}{2}=0=f(0) .
\end{aligned}
$$

Hence, the function f is continuous at 0 and, consequently, it is continuous on $(-\pi, \pi)$.
Similarly, f is differentiable at each point of $(-\pi, \pi) \backslash\{0\}$ because sin and cos are differentiable and $\sin x \neq 0$ for all $x \in(-\pi, \pi) \backslash\{0\}$. Moreover, for every $x \in(-\pi, \pi) \backslash\{0\}$

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{1-\cos x}{\sin x}\right)^{\prime}=\frac{(1-\cos x)^{\prime} \sin x-(1-\cos x)(\sin x)^{\prime}}{\sin ^{2} x} \\
& =\frac{\sin ^{2} x-(1-\cos x) \cos x}{\sin ^{2} x}=\frac{\sin ^{2} x+\cos ^{2} x-\cos x}{\sin ^{2} x}=\frac{1-\cos x}{\sin ^{2} x} .
\end{aligned}
$$

We next compute

$$
\begin{aligned}
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}=\lim _{x \rightarrow 0} \frac{x(1-\cos x)}{x^{2} \sin x} \\
& =\lim _{x \rightarrow 0} \frac{x}{\sin x} \cdot \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2} .
\end{aligned}
$$

Hence the function f is differentiable on $(-\pi, \pi)$ and

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
\frac{1-\cos x}{\sin ^{2} x}, & x \neq 0, \\
\frac{1}{2}, & x=0,
\end{array} \quad x \in(-\pi, \pi),\right.
$$

4. Compute the limit $\lim _{x \rightarrow 0}\left(1+\arcsin ^{2} x\right)^{\frac{1}{\tan ^{2} x}}$.

Solution.

$$
\begin{gathered}
\lim _{x \rightarrow 0}\left(1+\arcsin ^{2} x\right)^{\frac{1}{\tan ^{2} x}}=\lim _{x \rightarrow 0} e^{\ln \left(1+\arcsin ^{2} x\right)^{\frac{1}{\tan ^{2} x}}}=\lim _{x \rightarrow 0} e^{\frac{\ln \left(1+\arcsin ^{2} x\right)}{\tan ^{2} x}} \\
=e^{\left(\lim _{x \rightarrow 0} \frac{\ln \left(1+\arcsin ^{2} x\right)}{\tan ^{2} x}\right)},
\end{gathered}
$$

by the continuity of the exponential function. So, we compute

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\ln \left(1+\arcsin ^{2} x\right)}{\tan ^{2} x} & =\lim _{x \rightarrow 0} \frac{\arcsin ^{2} x \cdot \ln \left(1+\arcsin ^{2} x\right)}{\arcsin ^{2} x \cdot \tan ^{2} x}=\lim _{x \rightarrow 0} \frac{\ln \left(1+\arcsin ^{2} x\right)}{\arcsin ^{2} x} \cdot \lim _{x \rightarrow 0} \frac{\arcsin ^{2} x}{\tan ^{2} x} \\
& =1 \cdot \lim _{x \rightarrow 0} \frac{x^{2} \cdot \arcsin ^{2} x}{x^{2} \cdot \tan ^{2} x}=\lim _{x \rightarrow 0} \frac{\arcsin ^{2} x}{x^{2}} \cdot \lim _{x \rightarrow 0} \frac{x^{2}}{\tan ^{2} x} \\
& =\left(\lim _{x \rightarrow 0} \frac{\arcsin x}{x}\right)^{2} \cdot\left(\lim _{x \rightarrow 0} \frac{x}{\tan x}\right)^{2}=1 .
\end{aligned}
$$

Hence, $\lim _{x \rightarrow 0}\left(1+\arcsin ^{2} x\right)^{\frac{1}{\tan ^{2} x}}=e^{1}=e$.
5. Find points of local maximum and minimum of the function $f(x)=x^{2}(x-5)^{3}, x \in \mathbb{R}$.

Solution. We first compute critical points of f :

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2}(x-5)^{3}\right)^{\prime}=\left(x^{2}\right)^{\prime}(x-5)^{3}+x^{2}\left((x-5)^{3}\right)^{\prime}=2 x(x-5)^{3}+3 x^{2}(x-5)^{2} \\
& =x(x-5)^{2}(2(x-5)+3 x)=x(x-5)^{2}(5 x-10)=0 .
\end{aligned}
$$

Hence, the points $x=0, x=2, x=5$ are critical.
The point 0 is a point of strict local maximum because the derivative changes its sign from " + " to "-", passing through 0 .
The point 2 is a point of strict local minimum because the derivative changes its sign from "-" to " + ", passing through 2 .
The point 5 is not a point of local extrema because the derivative stays positive, passing through 5.
6. Compute the length of continuous curve defined by the function $y=x^{\frac{3}{2}}, x \in[0,4]$.

Solution. The length of the curve Γ defined by the function $y=x^{\frac{3}{2}}, x \in[0,4]$, can be computed by the formula

$$
\begin{aligned}
l(\Gamma) & =\int_{0}^{4} \sqrt{1+\left(\left(x^{\frac{3}{2}}\right)^{\prime}\right)^{2}} d x=\int_{0}^{4} \sqrt{1+\left(\frac{3}{2} x^{\frac{1}{2}}\right)^{2}} d x=\int_{0}^{4} \sqrt{1+\frac{9}{4} x d x}=\left|\begin{array}{l}
y=1+\frac{9}{4} x, \\
x=\frac{4}{9}(y-1), \\
d x=\frac{4}{9} d y
\end{array}\right| \\
& =\frac{4}{9} \int_{1}^{10} y^{\frac{1}{2}} d y=\left.\frac{4}{9} \cdot \frac{y^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right|_{1} ^{10}=\left.\frac{8}{27} \cdot y^{\frac{3}{2}}\right|_{1} ^{10}=\frac{8}{27}(10 \sqrt{10}-1) .
\end{aligned}
$$

7. Compute the improper integral $\int_{2}^{+\infty} \frac{\ln x}{x^{2}} d x$.

Solution. First we change the variable and then use the integration by parts formula:

$$
\begin{aligned}
\int_{2}^{+\infty} \frac{\ln x}{x^{2}} d x & =\left|\begin{array}{l}
y=\ln x \\
x=e^{y}, \\
d x=e^{y} d y
\end{array}\right|=\int_{\ln 2}^{+\infty} \frac{y e^{y}}{e^{2 y}} d y=\int_{\ln 2}^{+\infty} y e^{-y} d y=-\int_{\ln 2}^{+\infty} y d e^{-y} \\
& =-\left.y e^{-y}\right|_{\ln 2} ^{+\infty}+\int_{\ln 2}^{+\infty} e^{-y} d y=\ln 2 \cdot e^{-\ln 2}-\left.e^{-y}\right|_{\ln 2} ^{+\infty}=\frac{\ln 2}{2}+e^{-\ln 2}=\frac{1+\ln 2}{2}
\end{aligned}
$$

Another way of the computation without change of variable:

$$
\begin{aligned}
\int_{2}^{+\infty} \frac{\ln x}{x^{2}} d x & =-\int_{2}^{+\infty} \ln x d \frac{1}{x}=-\left.\ln x \frac{1}{x}\right|_{2} ^{+\infty}+\int_{2}^{+\infty} \frac{1}{x} d \ln x=\frac{\ln 2}{2}+\int_{2}^{+\infty} \frac{1}{x^{2}} d x \\
& =\frac{\ln 2}{2}-\left.\frac{1}{x}\right|_{2} ^{+\infty}=\frac{1+\ln 2}{2}
\end{aligned}
$$

8. Investigate the absolute and conditional convergence of the series $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{\sqrt{n}}\right)$.

Solution. The series

$$
\sum_{n=1}^{\infty}\left|(-1)^{n} \ln \left(1+\frac{1}{\sqrt{n}}\right)\right|=\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{\sqrt{n}}\right)
$$

diverges because $\ln \left(1+\frac{1}{\sqrt{n}}\right) \sim \frac{1}{\sqrt{n}}, n \rightarrow \infty$, and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges.
Since the sequence $\ln \left(1+\frac{1}{\sqrt{n}}\right), n \geq 1$, is monotone and converges to 0 , the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{\sqrt{n}}\right)
$$

converges, according to Leibniz's test. This implies the conditional convergence of the series.
9. Compute $\left(\frac{1+\sqrt{3} i}{1-i}\right)^{12}$.

Solution. We first write the numbers $1+\sqrt{3} i$ and $1-i$ in the polar form. We compute the absolute volume r and the argument θ of $1+\sqrt{3} i$. So, $r=\sqrt{1^{2}+(\sqrt{3})^{2}}=2$ and $\cos \theta=\frac{1}{2}$, $\sin \theta=\frac{\sqrt{3}}{2}$. Thus, $\theta=\frac{\pi}{3}$. So, we obtain

$$
1+\sqrt{3} i=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
$$

Similarly,

$$
1-i=\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right) .
$$

Hence

$$
\begin{aligned}
\left(\frac{1+\sqrt{3} i}{1-i}\right)^{12} & =\left(\frac{2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)}{\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)}\right)^{12}=2^{6}\left(\cos \left(\frac{\pi}{3}+\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right)\right)^{12} \\
& =64\left(\cos \frac{7 \pi}{12}+i \sin \frac{7 \pi}{12}\right)^{12}=64\left(\cos \frac{12 \cdot 7 \pi}{12}+i \sin \frac{12 \cdot 7 \pi}{12}\right)=-64
\end{aligned}
$$

10. Show that there does not exist any linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ with

$$
\begin{equation*}
\operatorname{ker} T=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right): x_{1}=x_{2}, x_{3}=x_{4}=-x_{5}\right\} \tag{2}
\end{equation*}
$$

Solution. We assume that there exists a map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ with the kernel given by (2). We first note that

$$
\operatorname{ker} T=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right): x_{1}=x_{2}, x_{3}=x_{4}=-x_{5}\right\}=\{(a, a, b, b,-b): a, b \in \mathbb{R}\} .
$$

Thus, the vectors $v_{1}=(1,1,0,0,0)$ and $v_{2}=(0,0,1,1,-1)$ form a basis of ker T, since they are linearly independent and span $\operatorname{ker} T$. Hence, $\operatorname{dim}(\operatorname{ker} T)=2$. Since $5=\operatorname{dim}\left(\mathbb{R}^{5}\right)=\operatorname{dim}(\operatorname{ker} T)+$ $\operatorname{dim}(\operatorname{range} T)=2+\operatorname{dim}(\operatorname{range} T)$, we have that $\operatorname{dim}($ range $T)=3$. But that is impossible because range $T \subset \mathbb{R}^{2}$ and $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.

