Retake Solutions

Each of the exercise is 4 points.

1. For which $n \in \mathbb{N}$ the following inequality holds?

$$
\begin{equation*}
3^{n}>5 n+2 \text {. } \tag{1}
\end{equation*}
$$

Solution. We first we note that inequality (1) is not true for $n=1\left(3^{1}<5 \cdot 1+2\right)$ and $n=2$ $\left(3^{2}<5 \cdot 2+2\right)$. If $n=3$, then the inequality holds because $3^{3}=27>5 \cdot 3+2=17$. In order to show that inequality (1) is true for all $n \geq 3$, we will use the mathematical induction. Let us assume that (1) holds for $n=k$ for some $k \geq 3$, i.e. $3^{k}>5 k+2$, and prove it for $n=k+1$. So, $3^{n+1}=3^{n} \cdot 3>(5 k+2) \cdot 3=15 k+6=5(k+1)+2+10 k-1>5(k+1)+2$. Hence, the inequality $3^{n}>5 n+2$ is true for all $n \geq 3$.
2. Compute the following limit

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{5} 5^{n}+n 3^{n}}
$$

Solution. In order to compute the limit we will use the squeeze theorem. For this, we estimate

$$
5(\sqrt[n]{n})^{5}=\sqrt[n]{n^{5} 5^{n}}<\sqrt[n]{n^{5} 5^{n}+n 3^{n}}<\sqrt[n]{n^{5} 5^{n}+n^{5} 5^{n}}=5 \sqrt[n]{2 n^{5}}=5 \sqrt[n]{2}(\sqrt[n]{n})^{5} .
$$

Since $\lim _{n \rightarrow \infty} 5(\sqrt[n]{n})^{5}=5 \cdot 1^{5}=5$ and $\lim _{n \rightarrow \infty} 5 \sqrt[n]{2}(\sqrt[n]{n})^{5}=5 \lim _{n \rightarrow \infty} \sqrt[n]{2} \cdot \lim _{n \rightarrow \infty}(\sqrt[n]{n})^{5}=$ $5 \cdot 1 \cdot 1^{5}=5$, the squeeze theorem implies that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{5} 5^{n}+n 3^{n}}=5
$$

3. Show that a sequence $\left(a_{n}\right)_{n \geq 1}$ of real numbers is a Cauchy sequence if and only if
$\sup _{n \geq k, m \geq k}\left|a_{n}-a_{m}\right| \rightarrow 0, k \rightarrow+\infty$.
Solution. Let $\left(a_{n}\right)_{n \geq 1}$ be a Cauchy sequence and let $\varepsilon>0$ be fixed. By the definition of Cauchy sequence, there exists a number N such that

$$
\forall n, m \geq N \quad\left|a_{n}-a_{m}\right|<\frac{\varepsilon}{2} .
$$

Thus, $\sup _{n \geq k, m \geq k}\left|a_{n}-a_{m}\right| \leq \frac{\varepsilon}{2}<\varepsilon$ for all $k \geq N$. This implies that $\sup _{n \geq k, m \geq k}\left|a_{n}-a_{m}\right| \rightarrow 0$, $k \rightarrow+\infty$.
Next, we assume that $\sup _{n \geq k, m \geq k}\left|a_{n}-a_{m}\right| \rightarrow 0, k \rightarrow+\infty$. Then, by the definition of the convergence, we have that there exists a number N such that

$$
\forall k \geq N \sup _{n \geq k, m \geq k}\left|a_{n}-a_{m}\right|<\varepsilon
$$

In particular, this yields that for all $n, m \geq N\left|a_{n}-a_{m}\right|<\varepsilon$. So, $\left(a_{n}\right)_{n \geq 1}$ is a Cauchy sequence.
4. For which $a \in \mathbb{R}$ the following function f is differentiable?

$$
f(x)=\left\{\begin{array}{ll}
\frac{\sin x}{e^{x}-1}, & x \neq 0, \\
a, & x=0,
\end{array} \quad x \in \mathbb{R} .\right.
$$

Compute the derivative of f.
Solution. It is clear that the function f is differentiable on $\mathbb{R} \backslash\{0\}$. So, we have to check whether f is differentiable at $x=0$. For this we first find a for which f is continuous. Only for that a the function could be differentiable. We compute

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin x}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{x \sin x}{x\left(e^{x}-1\right)}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{x}{e^{x}-1}=1 .
$$

So, only for $a=1 \lim _{x \rightarrow 0} f(x)=f(0)$. This implies that f is continuous on \mathbb{R} for $a=1$. Let us check that f is differentiable at $x=0$ for $a=1$.
We compute for $a=1$

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{\sin x}{e^{x}-1}-1}{x}=\lim _{x \rightarrow 0} \frac{\sin x-e^{x}+1}{\left(e^{x}-1\right) x} \\
& =\lim _{x \rightarrow 0} \frac{\not x-\frac{x^{3}}{3!}+o\left(x^{3}\right)-\not-\not x-\frac{x^{2}}{2!}-o\left(x^{2}\right)+\nmid}{(\not 1+x+o(x)-\nmid) x} \\
& =\lim _{x \rightarrow 0} \frac{\not x^{2}\left(-\frac{x}{3!}+\frac{o\left(x^{3}\right)}{x^{2}}-\frac{1}{2!}-\frac{o\left(x^{2}\right)}{x^{2}}\right)}{\not x^{2}\left(1+\frac{o(x)}{x}\right)}=-\frac{1}{2!}=-\frac{1}{2} .
\end{aligned}
$$

Consequently, $f^{\prime}(0)=-\frac{1}{2}$ for $a=1$. If $a \neq 1$, then the function f is not differentiable at $x=0$ because it is not continuous.
It remains to compute

$$
f^{\prime}(x)=\left(\frac{\sin x}{e^{x}-1}\right)^{\prime}=\frac{\cos x\left(e^{x}-1\right)-e^{x} \sin x}{\left(e^{x}-1\right)^{2}}, \quad x \neq 0 .
$$

5. Prove that the function $f(x)=x^{x}$ is increasing on $\left(\frac{1}{e}, \infty\right)$. Is it convex on $\left(\frac{1}{e}, \infty\right)$?

Solution. In order to show that f is increasing, it is enough to show that its derivative is positive. So, we compute

$$
f^{\prime}(x)=\left(x^{x}\right)^{\prime}=\left(e^{\ln x^{x}}\right)^{\prime}=\left(e^{x \ln x}\right)^{\prime}=e^{x \ln x}\left(\ln x+\frac{x}{x}\right)=x^{x}(\ln x+1)>0
$$

for $x \in\left(\frac{1}{e}, \infty\right)$. Hence the function f is strictly increasing on $\left(\frac{1}{e}, \infty\right)$. To check the convexity, we compute the second derivative:

$$
f^{\prime \prime}(x)=\left(x^{x}(\ln x+1)\right)^{\prime}=\left(x^{x}\right)^{\prime}(\ln x+1)+x^{x}(\ln x+1)^{\prime}=x^{x}(\ln x+1)^{2}+x^{x} \frac{1}{x}>0
$$

on $\left(\frac{1}{e}, \infty\right)$. Thus, the function f is strictly convex on $\left(\frac{1}{e}, \infty\right)$.
6. Compute the area of the region bounded by the graphs of the following functions $2 x=y^{2}$ and $2 y=x^{2}$.
Solution. We have to compute the region between two parabolas which intersect each other at points $x=0$ and $x=2$ (the points of intersection can be found from the equation $2 x=\left(\frac{x^{2}}{2}\right)^{2}$). Thus, the area can be computed by the formula

$$
\int_{0}^{2}\left(\sqrt{2 x}-\frac{x^{2}}{2}\right) d x=\sqrt{2} \int_{0}^{2} x^{\frac{1}{2}} d x-\frac{1}{2} \int_{0}^{2} x^{2} d x=\left.\sqrt{2} \frac{2}{3} x^{\frac{3}{2}}\right|_{0} ^{2}-\left.\frac{1}{6} x^{3}\right|_{0} ^{2}=\frac{4}{3}
$$

7. Compute the improper integral $\int_{0}^{\infty}|x-1| e^{-x} d x$.

Solution.

$$
\int_{0}^{\infty}|x-1| e^{-x} d x=\int_{0}^{1}|x-1| e^{-x} d x+\int_{1}^{\infty}|x-1| e^{-x} d x=-\int_{0}^{1}(x-1) e^{-x} d x+\int_{1}^{\infty}(x-1) e^{-x} d x
$$

Let us compute the indefinite integral

$$
\begin{aligned}
\int(x-1) e^{-x} d x & =-\int(x-1) d e^{-x}=-(x-1) e^{-x}+\int e^{-x} d(x-1) \\
& =-(x-1) e^{-x}+\int e^{-x} d x=-(x-1) e^{-x}-e^{-x}+C=-x e^{-x}+C .
\end{aligned}
$$

By the fundamental theorem of calculus,

$$
\int_{0}^{\infty}|x-1| e^{-x} d x=-\left.\left(-x e^{-x}\right)\right|_{0} ^{1}+\left.\left(-x e^{-x}\right)\right|_{1} ^{\infty}=e^{-1}-0+0+e^{-1}=2 e^{-1}=\frac{2}{e}
$$

8. Does the following series converges?

$$
\sum_{n=1}^{\infty} \frac{1}{n\left(\ln ^{2} n+1\right)}
$$

Solution. Since the sequence $\frac{1}{n\left(\ln ^{2} n+1\right)}$ decreases, we can use the integral criterion. According to that criterion, the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n\left(\ln ^{2} n+1\right)}$ is equivalent to the convergence of the improper integral

$$
\int_{1}^{\infty} \frac{d x}{x\left(\ln ^{2} x+1\right)}=\int_{1}^{\infty} \frac{d \ln x}{\ln ^{2} x+1} \stackrel{y=\ln x}{=} \int_{0}^{\infty} \frac{d y}{y^{2}+1}=\left.\arctan y\right|_{0} ^{\infty}=\frac{\pi}{2}<\infty
$$

Hence, the series $\sum_{n=1}^{\infty} \frac{1}{n\left(\ln ^{2} n+1\right)}$ converges.
9. Write the following complex numbers in algebraic form: $\frac{i}{(1-i)^{2}},(1-\sqrt{3} i)^{15}$.

Solution.

$$
\frac{i}{(1-i)^{2}}=\frac{i}{1-2 i+i^{2}}=\frac{i}{1-2 i-1}=\frac{i}{-2 i}=-\frac{1}{2} .
$$

In order to compute $(1-\sqrt{3} i)^{15}$, we will use de Moivre's formula. For this, we need to rewrite the complex number $1-\sqrt{3} i$ in polar form. So, the absolute value r of $1-\sqrt{3} i$ is given by the formula $r=\sqrt{1^{2}+(\sqrt{3})^{2}}=2$. The argument θ of $1-\sqrt{3} i$ can be found from the equalities $\cos \theta=\frac{1}{2}$ and $\sin \theta=\frac{\sqrt{3}}{2}$. Hence, $\theta=-\frac{\pi}{3}$. Consequently, we can compute

$$
\begin{aligned}
(1-\sqrt{3} i)^{15} & =\left(2\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)\right)^{15}=2^{15}\left(\cos \left(-\frac{15 \pi}{3}\right)+i \sin \left(-\frac{15 \pi}{3}\right)\right) \\
& =2^{15}(\cos (-5 \pi)+i \sin (-5 \pi))=-2^{15}
\end{aligned}
$$

10. Let $\mathbb{R}_{4}[z]$ denotes the vector space of all polynomials of degree at most 4 with coefficients in \mathbb{R} and let the linear operator $T: \mathbb{R}_{4}[z] \rightarrow \mathbb{R}_{4}[z]$ is defined as follows $(T \mathbf{p})(z)=\mathbf{p}^{\prime \prime}(z)$ ($T \mathbf{p}$ is the second order derivative of polynomial \mathbf{p}). Identify $\operatorname{ker} T$ and range T. Find a subspace W of $\mathbb{R}_{4}[z]$ such that $\operatorname{ker} T \oplus W=\mathbb{R}_{4}[z]$.
Solution. We take $\mathbf{p} \in \mathbb{R}_{n}[z]$. Then \mathbf{p} can be written as $\mathbf{p}(z)=a_{4} z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$, where $a_{i} \in \mathbb{R}, i=0, \ldots, 4$. So, by the definition of T,

$$
\begin{equation*}
(T \mathbf{p})(z)=12 a_{4} z^{2}+6 a_{3} z+2 a_{2} \in \mathbb{R}_{2}[z] . \tag{2}
\end{equation*}
$$

This implies that $T \mathbf{p}=\mathbf{0}$ if and only if $a_{2}=a_{3}=a_{4}=0$. Hence,

$$
\operatorname{ker} T=\left\{\mathbf{p} \in \mathbb{R}_{4}[z]: T \mathbf{p}=\mathbf{0}\right\}=\left\{\mathbf{p}(z)=a_{1} z+a_{0}: a_{0}, a_{1} \in \mathbb{R}\right\}=\mathbb{R}_{1}[z]
$$

Next, we compute

$$
\text { range } T=\left\{\mathbf{q} \in \mathbb{R}_{4}[z]: \exists \mathbf{p} \in \mathbb{R}_{4}[z] \text { such that } T \mathbf{p}=\mathbf{q}\right\}=\mathbb{R}_{2}[z] .
$$

Indeed, if $\mathbf{q}(z)=b_{2} z^{2}+b_{1} z+b_{0} \in \mathbb{R}_{2}[z]$, then for $\mathbf{p}(z)=\frac{b_{2}}{12} z^{4}+\frac{b_{1}}{6} z^{3}+\frac{b_{1}}{2} z^{2}$ we trivially have $T \mathbf{p}=\mathbf{q}$. So, range $T \supset \mathbb{R}_{2}[z]$. Moreover, equality (2) implies range $T \subset \mathbb{R}_{2}[z]$.
In order to find a vector subspace W of $\mathbb{R}_{4}[z]$ such that $\operatorname{ker} T \oplus W=\mathbb{R}_{4}[z]$, we recall that it should be a vector subspace such that $\operatorname{ker} T+W=\mathbb{R}_{4}[z]$ and $\operatorname{ker} T \cap W=\{\mathbf{0}\}$. We set

$$
W=\left\{\mathbf{q}(z)=b_{4} z^{4}+b_{3} z^{3}+b_{2} z^{2}: b_{2}, b_{3}, b_{4} \in \mathbb{R}\right\} .
$$

It is easily to see that W is a vector subspace of $\mathbb{R}_{4}[z]$ and $\operatorname{ker} T+W=\mathbb{R}_{2}[z]+W=\mathbb{R}_{4}[z]$. Moreover, only zero polynomial belongs to both $\operatorname{ker} T=\mathbb{R}_{2}[z]$ and W. Hence, $\operatorname{ker} T \oplus W=\mathbb{R}_{4}[z]$.

