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Retake Solutions
Each of the exercise is 4 points.

1. For which n ∈ N the following inequality holds?

3n > 5n+ 2. (1)

Solution. We first we note that inequality (1) is not true for n = 1 (31 < 5 · 1 + 2) and n = 2
(32 < 5 · 2 + 2). If n = 3, then the inequality holds because 33 = 27 > 5 · 3 + 2 = 17. In order
to show that inequality (1) is true for all n ≥ 3, we will use the mathematical induction. Let us
assume that (1) holds for n = k for some k ≥ 3, i.e. 3k > 5k + 2, and prove it for n = k + 1.
So, 3n+1 = 3n · 3 > (5k + 2) · 3 = 15k + 6 = 5(k + 1) + 2 + 10k − 1 > 5(k + 1) + 2. Hence, the
inequality 3n > 5n+ 2 is true for all n ≥ 3.

2. Compute the following limit

lim
n→∞

n
√
n55n + n3n.

Solution. In order to compute the limit we will use the squeeze theorem. For this, we estimate

5
(

n
√
n
)5

=
n
√
n55n <

n
√
n55n + n3n <

n
√
n55n + n55n = 5

n
√

2n5 = 5
n
√

2
(

n
√
n
)5
.

Since limn→∞ 5 ( n
√
n)

5
= 5 · 15 = 5 and limn→∞ 5 n

√
2 ( n
√
n)

5
= 5 limn→∞

n
√

2 · limn→∞ ( n
√
n)

5
=

5 · 1 · 15 = 5, the squeeze theorem implies that

lim
n→∞

n
√
n55n + n3n = 5.

3. Show that a sequence (an)n≥1 of real numbers is a Cauchy sequence if and only if
sup

n≥k,m≥k
|an − am| → 0, k → +∞.

Solution. Let (an)n≥1 be a Cauchy sequence and let ε > 0 be fixed. By the definition of Cauchy
sequence, there exists a number N such that

∀n,m ≥ N |an − am| <
ε

2
.

Thus, sup
n≥k,m≥k

|an − am| ≤ ε
2 < ε for all k ≥ N . This implies that sup

n≥k,m≥k
|an − am| → 0,

k → +∞.

Next, we assume that sup
n≥k,m≥k

|an − am| → 0, k → +∞. Then, by the definition of the conver-

gence, we have that there exists a number N such that

∀k ≥ N sup
n≥k,m≥k

|an − am| < ε.

In particular, this yields that for all n,m ≥ N |an − am| < ε. So, (an)n≥1 is a Cauchy sequence.
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4. For which a ∈ R the following function f is differentiable?

f(x) =

{
sinx
ex−1 , x 6= 0,

a, x = 0,
x ∈ R.

Compute the derivative of f .

Solution. It is clear that the function f is differentiable on R\{0}. So, we have to check whether
f is differentiable at x = 0. For this we first find a for which f is continuous. Only for that a
the function could be differentiable. We compute

lim
x→0

f(x) = lim
x→0

sinx

ex − 1
= lim

x→0

x sinx

x(ex − 1)
= lim

x→0

sinx

x
· lim
x→0

x

ex − 1
= 1.

So, only for a = 1 limx→0 f(x) = f(0). This implies that f is continuous on R for a = 1. Let us
check that f is differentiable at x = 0 for a = 1.

We compute for a = 1

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

sinx
ex−1 − 1

x
= lim

x→0

sinx− ex + 1

(ex − 1)x

= lim
x→0

6 x− x3

3! + o(x3)− 6 1− 6 x− x2

2! − o(x
2)+ 6 1

( 6 1 + x+ o(x)− 6 1)x

= lim
x→0

6 x2
(
− x

3! + o(x3)
x2
− 1

2! −
o(x2)
x2

)
6 x2
(

1 + o(x)
x

) = − 1

2!
= −1

2
.

Consequently, f ′(0) = −1
2 for a = 1. If a 6= 1, then the function f is not differentiable at x = 0

because it is not continuous.

It remains to compute

f ′(x) =

(
sinx

ex − 1

)′
=

cosx (ex − 1)− ex sinx

(ex − 1)2
, x 6= 0.

5. Prove that the function f(x) = xx is increasing on
(
1
e ,∞

)
. Is it convex on

(
1
e ,∞

)
?

Solution. In order to show that f is increasing, it is enough to show that its derivative is positive.
So, we compute

f ′(x) = (xx)′ =
(
elnx

x
)′

=
(
ex lnx

)′
= ex lnx

(
lnx+

x

x

)
= xx (lnx+ 1) > 0

for x ∈
(
1
e ,∞

)
. Hence the function f is strictly increasing on

(
1
e ,∞

)
. To check the convexity,

we compute the second derivative:

f ′′(x) = (xx (lnx+ 1))′ = (xx)′ (lnx+ 1) + xx (lnx+ 1)′ = xx (lnx+ 1)2 + xx
1

x
> 0

on
(
1
e ,∞

)
. Thus, the function f is strictly convex on

(
1
e ,∞

)
.
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6. Compute the area of the region bounded by the graphs of the following functions 2x = y2 and
2y = x2.

Solution. We have to compute the region between two parabolas which intersect each other at

points x = 0 and x = 2 (the points of intersection can be found from the equation 2x =
(
x2

2

)2
).

Thus, the area can be computed by the formula∫ 2

0

(√
2x− x2

2

)
dx =

√
2

∫ 2

0
x

1
2dx− 1

2

∫ 2

0
x2dx =

√
2

2

3
x

3
2

∣∣∣2
0
− 1

6
x3
∣∣∣2
0

=
4

3
.

7. Compute the improper integral
∫∞
0 |x− 1|e−xdx.

Solution.∫ ∞
0
|x− 1|e−xdx =

∫ 1

0
|x− 1|e−xdx+

∫ ∞
1
|x− 1|e−xdx = −

∫ 1

0
(x− 1)e−xdx+

∫ ∞
1

(x− 1)e−xdx.

Let us compute the indefinite integral∫
(x− 1)e−xdx = −

∫
(x− 1)de−x = −(x− 1)e−x +

∫
e−xd(x− 1)

= −(x− 1)e−x +

∫
e−xdx = −(x− 1)e−x − e−x + C = −xe−x + C.

By the fundamental theorem of calculus,∫ ∞
0
|x− 1|e−xdx = −

(
−xe−x

) ∣∣∣1
0

+
(
−xe−x

) ∣∣∣∞
1

= e−1 − 0 + 0 + e−1 = 2e−1 =
2

e
.

8. Does the following series converges?

∞∑
n=1

1

n
(
ln2 n+ 1

) .
Solution. Since the sequence 1

n(ln2 n+1)
decreases, we can use the integral criterion. According

to that criterion, the convergence of the series
∑∞

n=1
1

n(ln2 n+1)
is equivalent to the convergence

of the improper integral∫ ∞
1

dx

x
(
ln2 x+ 1

) =

∫ ∞
1

d lnx

ln2 x+ 1

y=lnx
=

∫ ∞
0

dy

y2 + 1
= arctan y

∣∣∣∞
0

=
π

2
<∞.

Hence, the series
∑∞

n=1
1

n(ln2 n+1)
converges.

9. Write the following complex numbers in algebraic form: i
(1−i)2 , (1−

√
3i)15.

Solution.

i

(1− i)2
=

i

1− 2i+ i2
=

i

1− 2i− 1
=

i

−2i
= −1

2
.
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In order to compute (1−
√

3i)15, we will use de Moivre’s formula. For this, we need to rewrite
the complex number 1−

√
3i in polar form. So, the absolute value r of 1−

√
3i is given by the

formula r =

√
12 +

(√
3
)2

= 2. The argument θ of 1 −
√

3i can be found from the equalities

cos θ = 1
2 and sin θ =

√
3
2 . Hence, θ = −π

3 . Consequently, we can compute

(1−
√

3i)15 =
(

2
(

cos
(
−π

3

)
+ i sin

(
−π

3

)))15
= 215

(
cos

(
−15π

3

)
+ i sin

(
−15π

3

))
= 215 (cos(−5π) + i sin(−5π)) = −215.

10. Let R4[z] denotes the vector space of all polynomials of degree at most 4 with coefficients in R
and let the linear operator T : R4[z] → R4[z] is defined as follows (Tp)(z) = p′′(z) (Tp is the
second order derivative of polynomial p). Identify kerT and rangeT . Find a subspace W of
R4[z] such that kerT ⊕W = R4[z].

Solution. We take p ∈ Rn[z]. Then p can be written as p(z) = a4z
4 + a3z

3 + a2z
2 + a1z + a0,

where ai ∈ R, i = 0, . . . , 4. So, by the definition of T ,

(Tp)(z) = 12a4z
2 + 6a3z + 2a2 ∈ R2[z]. (2)

This implies that Tp = 0 if and only if a2 = a3 = a4 = 0. Hence,

kerT = {p ∈ R4[z] : Tp = 0} = {p(z) = a1z + a0 : a0, a1 ∈ R} = R1[z].

Next, we compute

rangeT = {q ∈ R4[z] : ∃p ∈ R4[z] such that Tp = q} = R2[z].

Indeed, if q(z) = b2z
2 + b1z + b0 ∈ R2[z], then for p(z) = b2

12z
4 + b1

6 z
3 + b1

2 z
2 we trivially have

Tp = q. So, rangeT ⊃ R2[z]. Moreover, equality (2) implies rangeT ⊂ R2[z].

In order to find a vector subspace W of R4[z] such that kerT ⊕W = R4[z], we recall that it
should be a vector subspace such that kerT +W = R4[z] and kerT ∩W = {0}. We set

W =
{
q(z) = b4z

4 + b3z
3 + b2z

2 : b2, b3, b4 ∈ R
}
.

It is easily to see that W is a vector subspace of R4[z] and kerT + W = R2[z] + W = R4[z].
Moreover, only zero polynomial belongs to both kerT = R2[z] and W . Hence, kerT⊕W = R4[z].
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