

An example of problem sheet for the exam

Each of the exercise is 4 points.

Solutions will be discussed during the lecture on Wednesday February 6.

- 1. Prove that all numbers of the form $5^n 4n 1$, $n \in \mathbb{N}$ are divisible by 16.
- 2. Show that $a_n \to 0$, $n \to \infty$ if and only if $\sup\{|a_k|: k \ge n\} \to 0$, $n \to \infty$.
- 3. For which $a, b \in \mathbb{R}$ is the following function continuous on \mathbb{R} ? For which $a, b \in \mathbb{R}$ is it differentiable on \mathbb{R} ?

$$f(x) = \begin{cases} ax + b, & \text{if } x \le 0, \\ 2^x, & \text{if } x > 0. \end{cases}$$

- 4. Compute the limit $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.
- 5. Prove that $1 \frac{x^2}{2} \le \cos x$ for all $x \ge 0$.
- 6. Compute the first and the second derivatives of the function $f(x) = \arctan(x^2), x \in \mathbb{R}$.
- 7. Compute the integral $\int_0^{\sqrt{\pi}} x^3 \sin(x^2) dx$.
- 8. For which $\alpha > 0$ the integral $\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} dx$ converges?
- 9. Investigate the absolute and conditional convergence of the series $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^{2n}}$.
- 10. Prove that $(\sqrt{3}+i)^{120}$ is a real number.
- 11. Let $\mathbb{R}_n[z]$ denote the real vector space of polynomials of degree at most n with real coefficients. Let $p_0, p_1, \ldots, p_n \in \mathbb{R}_n[z]$ satisfy $p_j(0) = 0$ for all $j = 0, 1, \ldots, n$. Prove that p_0, p_1, \ldots, p_n must be a linearly dependent in $\mathbb{R}_n[z]$.
- 12. Show that the linear map $T: \mathbb{R}^4 \to \mathbb{R}^2$ is surjective if

ker
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2, x_3 = x_4\}.$$

- 13. Give the definition of the upper and lower limits of a sequence $(a_n)_{n\geq 1}$.
- 14. Give the definition of a rectifiable curve and write the formula for computation of the length of a rectifiable curve.