An example of problem sheet for the exam
 Each of the exercise is 4 points.

Solutions will be discussed during the lecture on Wednesday February 6.

1. Prove that all numbers of the form $5^{n}-4 n-1, n \in \mathbb{N}$ are divisible by 16 .
2. Show that $a_{n} \rightarrow 0, n \rightarrow \infty$ if and only if $\sup \left\{\left|a_{k}\right|: k \geq n\right\} \rightarrow 0, n \rightarrow \infty$.
3. For which $a, b \in \mathbb{R}$ is the following function continuous on \mathbb{R} ? For which $a, b \in \mathbb{R}$ is it differentiable on \mathbb{R} ?

$$
f(x)= \begin{cases}a x+b, & \text { if } x \leq 0 \\ 2^{x}, & \text { if } x>0\end{cases}
$$

4. Compute the limit $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}}$.
5. Prove that $1-\frac{x^{2}}{2} \leq \cos x$ for all $x \geq 0$.
6. Compute the first and the second derivatives of the function $f(x)=\arctan \left(x^{2}\right), x \in \mathbb{R}$.
7. Compute the integral $\int_{0}^{\sqrt{\pi}} x^{3} \sin \left(x^{2}\right) d x$.
8. For which $\alpha>0$ the integral $\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} d x$ converges?
9. Investigate the absolute and conditional convergence of the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{n^{2 n}}$.
10. Prove that $(\sqrt{3}+i)^{120}$ is a real number.
11. Let $\mathbb{R}_{n}[z]$ denote the real vector space of polynomials of degree at most n with real coefficients. Let $p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{R}_{n}[z]$ satisfy $p_{j}(0)=0$ for all $j=0,1, \ldots, n$. Prove that $p_{0}, p_{1}, \ldots, p_{n}$ must be a linearly dependent in $\mathbb{R}_{n}[z]$.
12. Show that the linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is surjective if

$$
\operatorname{ker} T=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}, x_{3}=x_{4}\right\}
$$

13. Give the definition of the upper and lower limits of a sequence $\left(a_{n}\right)_{n \geq 1}$.
14. Give the definition of a rectifiable curve and write the formula for computation of the length of a rectifiable curve.
