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9 Lecture 9 — Properties of Continuous Functions

9.1 Boundedness of Continuous Functions and Intermediate Value Theorem

For more details see [1, Section 3.18].
Let —0o < a < b < 400 be fixes.

Theorem 9.1 (1st Weierstrass theorem). Let f : [a,b] — R be a continuous function on [a,b]. Then
f is bounded on [a,b].

Proof. We assume that f is unbounded on [a,b]. Then for each n € N there exists x,, € [a,b] such
that | f(x,)| > n. Since the sequence (z,,),>1 is bounded (each z,, belongs to the interval [a, b]), it has
a convergent subsequence (xn, )r>1, by the Bolzano-Weierstrass theorem (see Theorem 4.6). So, let
T, — Too, k — 00. Using the inequalities a < x,, < b for all k£ > 1 and Theorem 3.6, we have that
a < T < b. Since the function f is continuous on [a, b], we have that f(z,,) = f(2s), k — 0o. But
this is impossible because |f(zp, )| > ng — +00, kK — 0o. So, the function f must be bounded. O

Example 9.1. If f : (a,b] — R is a continuous function on (a,b], then the function could be un-
bounded. Indeed, we set (a,b] = (0,1] and f(z) = 1, 2 € (0,1]. Then f € C((0,1]) but f(z) — +o0,
x — 0+.

Corollary 9.1. Let f : [a,+00) — R be a continuous function on [a,+00) and f(x) — p € R,
x — 4o00. Then f is bounded on [a,+00).

Proof. By Theorem 7.1 (iii), for € := 1 there exists D > a such that |f(z) —p| <e =1 for all x > D.
Hence p — 1 < f(z) < p+ 1 for all x > D, which implies the boundedness of f on [D, +o00). Next,
since the function is continuous on the interval [a, D], we can apply the 1st Weierstrass theorem.
Consequently, f is also bounded on [a, D]. Hence the function f is bounded on [a, +00). O

Exercise 9.1. Prove that the function f(x) = (1 + %)x, x > 0, is bounded on (0, 400).
(Hint: Theorem 9.1 as well as Corollary 9.1 can not be applied to the interval (0, +00), since the the point a does not
belong to the interval. First find the limits of f as z — 0+ and x — +00) and then use the argument from Corollary 9.1.)

Theorem 9.2 (2nd Weierstrass theorem). Let f : [a,b] — R be a continuous function on [a,b]. Then
[ assumes its minimum and mazimum values on [a,b], that is, there exist x. and x* in [a,b] such that

fzy) < f(z) < f(2*) for all x € [a,b).

Proof. We will prove the existence of z*. The proof is similar for z,. By the 1st Weierstrass theorem,
the function f is bounded on [a,b], that implies that the set f([a,b]) = {f(z) : =z € [a,b]} is
bounded. So, we set p := sup f([a,b]) = sup f(x), which exists, by Theorem 2.2 (i). According to
z€[a,b]

Theorem 2.1 (i), for each n € N there exists z;,, € [a,b] such that p — % < f(zn) < p. We apply
the Bolzano-Weierstrass theorem (see Theorem 4.6) to the sequence (x,),>1. Consequently, there
exists a convergent subsequence (z,, )r>1. We denote its limit by z*. So, z,, — 2*, k — co. Since
f € C([a,b]), we have that f(xy,) — f(z*), k — oo. Moreover,

1
p—— < flan) <p
ng
for all kK > 1. Hence, f(zn,) — p, kK — 00, by the Squeeze theorem (see Theorem 3.7). It implies that
f(z*) = p. Consequently, f(z*) = sup f(x)= ma>§] f(x), that is, f(x) < f(z*) for all x € [a,b]. O

(lfG[d,b] Ze[av
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Exercise 9.2. Prove the existence of the point x, in the 2nd Weierstrass theorem.

Exercise 9.3. Let f : [0,4+00) — R be a continuous function on [0, +00) and f(x) — 400, x — +o0.
Show that there exists x, € [0,+00) such that f(z.) = inf f(z)= min f(x).

z€[0,+00) z€[0,+00)
Theorem 9.3 (Intermediate value theorem). Let f : [a,b] — R be a continuous function on [a,b).
Then for any real number yo between f(a) and f(b), i.e. f(a) <yo < f(b) or f(b) <yo < f(a), there
exists xo from [a,b] such that f(xo) = yo.

Proof. If yo = f(a) or yo = f(b), then zy equals a or b, respectively. Now we assume that f(a) <
yo < f(b). The case f(b) < yo < f(a) is similar. We set M := {x € [a,b] : f(z) < yo}, which is non
empty set because a € M. Moreover, it is bounded as a subset of the interval [a,b]. Consequently,
there exists sup M =: xy.

We are going to show that f(z9) = yo. According to Theorem 2.1 (i), for each n € N there
exists x,, € M such that zg — % < xn < z9. Thus, x, — z9, n — 00, by the Squeeze theorem (see
Theorem 3.7). Since z,, € M, we have that f(x,) < yo for all n > 1. Moreover, f(x,) — f(xo),
n — 0o due to the continuity of f. Thus, using Theorem 3.6, we obtain f(z¢) < yo.

Next, for every x > xy we have that x ¢ M, since z( is the supremum of M. It implies that
f(z) > yo. Consequently, yo < mlg%Jr f(z) = xlingo f(xz) = f(zg). Here we have also used the

continuity of f and Theorem 7.8. Thus, yo = f(xo). O

Exercise 9.4. Prove that the function P(x) = 23 + 222 — 1, € R, has at least one root, that is,
there exists zp € R such that P(xg) = 0.

Corollary 9.2. Let f,g € C([a,b]) and f(a) < g(a), f(b) > g(b). Then there exists xo € [a,b] such
that f(xo) = g(zo).

Proof. We note that the function h(x) := f(x) — g(z), z € [a,b], is continuous on [a, b] and satisfies
h(a) < 0 < h(b). So, taking yo := 0 and applying the intermediate value theorem, we obtain that
there exists g € [a, b] such that h(zg) = f(xzo) — g(xo) = 0. O

Example 9.2. Let g : [0,1] — [0,1] be a continuous function on [0,1]. Then there exists xg € [0, 1]
such that g(xg) = xo.

To prove the existence of zg, we take f(x) = x, © € [0,1], and note that f is continuous on [0, 1]
and f(0) =0 < ¢(0), f(1) =1 > g(1). Thus, by Corollary 9.2, there exists xo € [0, 1] such that
9(xo) = f(z0) = 0.

Corollary 9.3. Let f € C([a,b]). Then its range f([a,b]) = {f(x): x € [a,b]} is an interval.

Proof. By the 2nd Weierstrass theorem (see Theorem 9.2), there exists z.,z* € [a, b] such that f(x.) <
f(z) < f(z*) for all z € [a,b]. Consequently, f([a,b]) C [f(z«), f(z*)]. Next, due to the intermediate
value theorem, for each yo € [f(z4), f(z*)] there exists x¢ € [a, b] such that f(z¢) = yo. It implies that

yo € f([a,b]) and, consequently, [f(z.), f(«")] C f([a,b]). Hence, f([a,b]) = [f(2.), f(2")]. ]

Exercise 9.5. Let f : [a,b] — R strictly increase on [a,b] and for each yo € [f(a), f(b)] there exist
xo € [a,b] such that f(xg) = yo. Prove that f € C([a,]).

Exercise 9.6. Let f,g : [0,1] — [0,1] be continuous and f be a surjection. Prove that there exists
xo € [0,1] such that f(z¢) = g(zo).
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9.2 Uniformly Continuous Functions

For more details see [1, Section 3.19].

Let A be a subset of R and f : A — R. We recall that f is continuous at point zy provided
Ve > 0 3§ > 0 such that for each z € A the inequality |z — z¢| < 0 implies |f(z) — f(zo)| < & (see
Definition 8.3). The choice of § depends on € and the point z¢. It turns out to be very useful to know
when the § can be chosen to depend only on €. Such functions are said to be uniformly continuous on

A.

Definition 9.1. A function f: A — R is said to be uniformly continuous on A, if
Ve>035>0Va, 2" € A, |2/ —2"| <d: |f(a') — f(2")] <e.

Remark 9.1. Any uniformly continuous function on A is continuous on A. The converse statement
is not true, see Example 9.5 below.

Example 9.3. The function f(z) = z, x € R, is uniformly continuous on R, since for each ¢ > 0 we can
take 0 := . Then for all 2/,2” € R such that |2/ —2”| < 6 we have |f(2') — f(2”)| = |2/ —2"| < d =e.

Example 9.4. The functions sin and cos are uniformly continuous on R.
The function sin is uniformly continuous on R, since for each € > 0 we can take § := & > 0. Then
for all 2/, 2” € R such that |2’ — 2”| < § we have

/ 7

z + " o — / //|

|o/ — x
2

|sinz’ — sinz”| = 2 |cos - |sin <2-1- =2 —2"| <=k,

where we have also used Remark 6.3 for the estimation of ‘sin #

Example 9.5. The function f(x) = %, x € (0, 1], is not uniformly continuous on (0, 1].
Indeed, for £ := 1 we have that for all § > 0 we can take 2’ := 1 and 2 := 1+ from (0, 1] such

n+1
that |2/ —2”| < and |5 — J| =|n—(n+1)|=1=¢, where n € Nand n > 3.

1./

Exercise 9.7. Prove that the following functions are uniformly continuous on their domains:
a) f(z) =z, x € [1,+00); b) f(z) =/, z € [0,+00); ¢) f(x) =wsin 3, x € (0, +00).

Exercise 9.8. Prove that the following functions are not uniformly continuous on their domains:
a) f(z) =Inxz, x € (0,1]; b) f(x) =sin(z?), x € [0, +00); c) f(x) = zsinz, z € [0, +00).

Theorem 9.4 (Heine-Cantor theorem). Let a function f : [a,b] — R be continuous on [a,b]. Then f
is uniformly continuous on |a,b].

Proof. Be assume that f is not uniformly continuous on [a,b]. Then there exists ¢ > 0 such that
for all 6 > 0 there exists ' and 2’ from [a,b] such that |2’ — 2”| < 0 and |f(2') — f(2")] > e. So,
for each n € N taking 6 := %, we can find z/, and =/, from [a,b] such that |2}, — z])| < § = 1 and
() - F)] > e

We will consider the obtained sequences (z},),>1 and (2//),>1. By the Bolzano-Weierstrass theorem
(see Theorem 4.6), there exists a subsequence (7, )n>1 of (27,)n>1 Which converges to some real number
Too € [a,b]. Since |z, — ) | < % for all k& > 1, we have x;; — Zoo. By the continuity of f,

f@n,) = f(2eo), k — 00, and f(xy, ) — f(Te0), k — 00. But |f(a),, ) — f(2y, )| > e >0, forall k > 1,
that contradict our assumption. O

IV
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