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9 Lecture 9 – Properties of Continuous Functions

9.1 Boundedness of Continuous Functions and Intermediate Value Theorem

For more details see [1, Section 3.18].
Let −∞ < a < b < +∞ be fixes.

Theorem 9.1 (1st Weierstrass theorem). Let f : [a, b] → R be a continuous function on [a, b]. Then
f is bounded on [a, b].

Proof. We assume that f is unbounded on [a, b]. Then for each n ∈ N there exists xn ∈ [a, b] such
that |f(xn)| ≥ n. Since the sequence (xn)n≥1 is bounded (each xn belongs to the interval [a, b]), it has
a convergent subsequence (xnk

)k≥1, by the Bolzano-Weierstrass theorem (see Theorem 4.6). So, let
xnk

→ x∞, k → ∞. Using the inequalities a ≤ xnk
≤ b for all k ≥ 1 and Theorem 3.6, we have that

a ≤ x∞ ≤ b. Since the function f is continuous on [a, b], we have that f(xnk
) → f(x∞), k → ∞. But

this is impossible because |f(xnk
)| ≥ nk → +∞, k → ∞. So, the function f must be bounded.

Example 9.1. If f : (a, b] → R is a continuous function on (a, b], then the function could be un-
bounded. Indeed, we set (a, b] = (0, 1] and f(x) = 1

x
, x ∈ (0, 1]. Then f ∈ C((0, 1]) but f(x) → +∞,

x → 0+.

Corollary 9.1. Let f : [a,+∞) → R be a continuous function on [a,+∞) and f(x) → p ∈ R,
x → +∞. Then f is bounded on [a,+∞).

Proof. By Theorem 7.1 (iii), for ε := 1 there exists D > a such that |f(x)− p| < ε = 1 for all x ≥ D.
Hence p − 1 < f(x) < p + 1 for all x ≥ D, which implies the boundedness of f on [D,+∞). Next,
since the function is continuous on the interval [a,D], we can apply the 1st Weierstrass theorem.
Consequently, f is also bounded on [a,D]. Hence the function f is bounded on [a,+∞).

Exercise 9.1. Prove that the function f(x) =
(

1 + 1
x

)x
, x > 0, is bounded on (0,+∞).

(Hint: Theorem 9.1 as well as Corollary 9.1 can not be applied to the interval (0,+∞), since the the point a does not

belong to the interval. First find the limits of f as x → 0+ and x → +∞) and then use the argument from Corollary 9.1.)

Theorem 9.2 (2nd Weierstrass theorem). Let f : [a, b] → R be a continuous function on [a, b]. Then
f assumes its minimum and maximum values on [a, b], that is, there exist x∗ and x∗ in [a, b] such that
f(x∗) ≤ f(x) ≤ f(x∗) for all x ∈ [a, b].

Proof. We will prove the existence of x∗. The proof is similar for x∗. By the 1st Weierstrass theorem,
the function f is bounded on [a, b], that implies that the set f([a, b]) = {f(x) : x ∈ [a, b]} is
bounded. So, we set p := sup f([a, b]) = sup

x∈[a,b]
f(x), which exists, by Theorem 2.2 (i). According to

Theorem 2.1 (i), for each n ∈ N there exists xn ∈ [a, b] such that p − 1
n

< f(xn) ≤ p. We apply
the Bolzano-Weierstrass theorem (see Theorem 4.6) to the sequence (xn)n≥1. Consequently, there
exists a convergent subsequence (xnk

)k≥1. We denote its limit by x∗. So, xnk
→ x∗, k → ∞. Since

f ∈ C([a, b]), we have that f(xnk
) → f(x∗), k → ∞. Moreover,

p− 1

nk

< f(xnk
) ≤ p

for all k ≥ 1. Hence, f(xnk
) → p, k → ∞, by the Squeeze theorem (see Theorem 3.7). It implies that

f(x∗) = p. Consequently, f(x∗) = sup
x∈[a,b]

f(x) = max
x∈[a,b]

f(x), that is, f(x) ≤ f(x∗) for all x ∈ [a, b].
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Exercise 9.2. Prove the existence of the point x∗ in the 2nd Weierstrass theorem.

Exercise 9.3. Let f : [0,+∞) → R be a continuous function on [0,+∞) and f(x) → +∞, x → +∞.
Show that there exists x∗ ∈ [0,+∞) such that f(x∗) = inf

x∈[0,+∞)
f(x) = min

x∈[0,+∞)
f(x).

Theorem 9.3 (Intermediate value theorem). Let f : [a, b] → R be a continuous function on [a, b].
Then for any real number y0 between f(a) and f(b), i.e. f(a) ≤ y0 ≤ f(b) or f(b) ≤ y0 ≤ f(a), there
exists x0 from [a, b] such that f(x0) = y0.

Proof. If y0 = f(a) or y0 = f(b), then x0 equals a or b, respectively. Now we assume that f(a) <

y0 < f(b). The case f(b) < y0 < f(a) is similar. We set M := {x ∈ [a, b] : f(x) ≤ y0}, which is non
empty set because a ∈ M . Moreover, it is bounded as a subset of the interval [a, b]. Consequently,
there exists supM =: x0.

We are going to show that f(x0) = y0. According to Theorem 2.1 (i), for each n ∈ N there
exists xn ∈ M such that x0 − 1

n
< xn ≤ x0. Thus, xn → x0, n → ∞, by the Squeeze theorem (see

Theorem 3.7). Since xn ∈ M , we have that f(xn) ≤ y0 for all n ≥ 1. Moreover, f(xn) → f(x0),
n → ∞ due to the continuity of f . Thus, using Theorem 3.6, we obtain f(x0) ≤ y0.

Next, for every x > x0 we have that x 6∈ M , since x0 is the supremum of M . It implies that
f(x) > y0. Consequently, y0 ≤ lim

x→x0+
f(x) = lim

x→x0

f(x) = f(x0). Here we have also used the

continuity of f and Theorem 7.8. Thus, y0 = f(x0).

Exercise 9.4. Prove that the function P (x) = x3 + 2x2 − 1, x ∈ R, has at least one root, that is,
there exists x0 ∈ R such that P (x0) = 0.

Corollary 9.2. Let f, g ∈ C([a, b]) and f(a) ≤ g(a), f(b) ≥ g(b). Then there exists x0 ∈ [a, b] such
that f(x0) = g(x0).

Proof. We note that the function h(x) := f(x) − g(x), x ∈ [a, b], is continuous on [a, b] and satisfies
h(a) ≤ 0 ≤ h(b). So, taking y0 := 0 and applying the intermediate value theorem, we obtain that
there exists x0 ∈ [a, b] such that h(x0) = f(x0)− g(x0) = 0.

Example 9.2. Let g : [0, 1] → [0, 1] be a continuous function on [0, 1]. Then there exists x0 ∈ [0, 1]
such that g(x0) = x0.

To prove the existence of x0, we take f(x) = x, x ∈ [0, 1], and note that f is continuous on [0, 1]
and f(0) = 0 ≤ g(0), f(1) = 1 ≥ g(1). Thus, by Corollary 9.2, there exists x0 ∈ [0, 1] such that
g(x0) = f(x0) = x0.

Corollary 9.3. Let f ∈ C([a, b]). Then its range f([a, b]) = {f(x) : x ∈ [a, b]} is an interval.

Proof. By the 2nd Weierstrass theorem (see Theorem 9.2), there exists x∗, x
∗ ∈ [a, b] such that f(x∗) ≤

f(x) ≤ f(x∗) for all x ∈ [a, b]. Consequently, f([a, b]) ⊂ [f(x∗), f(x
∗)]. Next, due to the intermediate

value theorem, for each y0 ∈ [f(x∗), f(x
∗)] there exists x0 ∈ [a, b] such that f(x0) = y0. It implies that

y0 ∈ f([a, b]) and, consequently, [f(x∗), f(x
∗)] ⊂ f([a, b]). Hence, f([a, b]) = [f(x∗), f(x

∗)].

Exercise 9.5. Let f : [a, b] → R strictly increase on [a, b] and for each y0 ∈ [f(a), f(b)] there exist
x0 ∈ [a, b] such that f(x0) = y0. Prove that f ∈ C([a, b]).

Exercise 9.6. Let f, g : [0, 1] → [0, 1] be continuous and f be a surjection. Prove that there exists
x0 ∈ [0, 1] such that f(x0) = g(x0).
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9.2 Uniformly Continuous Functions

For more details see [1, Section 3.19].
Let A be a subset of R and f : A → R. We recall that f is continuous at point x0 provided

∀ε > 0 ∃δ > 0 such that for each x ∈ A the inequality |x − x0| < δ implies |f(x) − f(x0)| < ε (see
Definition 8.3). The choice of δ depends on ε and the point x0. It turns out to be very useful to know
when the δ can be chosen to depend only on ε. Such functions are said to be uniformly continuous on
A.

Definition 9.1. A function f : A → R is said to be uniformly continuous on A, if

∀ε > 0 ∃δ > 0 ∀x′, x′′ ∈ A, |x′ − x′′| < δ : |f(x′)− f(x′′)| < ε.

Remark 9.1. Any uniformly continuous function on A is continuous on A. The converse statement
is not true, see Example 9.5 below.

Example 9.3. The function f(x) = x, x ∈ R, is uniformly continuous on R, since for each ε > 0 we can
take δ := ε. Then for all x′, x′′ ∈ R such that |x′−x′′| < δ we have |f(x′)− f(x′′)| = |x′−x′′| < δ = ε.

Example 9.4. The functions sin and cos are uniformly continuous on R.
The function sin is uniformly continuous on R, since for each ε > 0 we can take δ := ε > 0. Then

for all x′, x′′ ∈ R such that |x′ − x′′| < δ we have

| sinx′ − sinx′′| = 2

∣

∣

∣

∣

cos
x′ + x′′

2

∣

∣

∣

∣

·
∣

∣

∣

∣

sin
x′ − x′′

2

∣

∣

∣

∣

≤ 2 · 1 · |x
′ − x′′|
2

= |x′ − x′′| < δ = ε,

where we have also used Remark 6.3 for the estimation of
∣

∣

∣
sin x′−x′′

2

∣

∣

∣
.

Example 9.5. The function f(x) = 1
x
, x ∈ (0, 1], is not uniformly continuous on (0, 1].

Indeed, for ε := 1 we have that for all δ > 0 we can take x′ := 1
n
and x′′ := 1

n+1 from (0, 1] such

that |x′ − x′′| < δ and
∣

∣

1
x′ − 1

x′′

∣

∣ = |n− (n+ 1)| = 1 = ε, where n ∈ N and n > 1
δ
.

Exercise 9.7. Prove that the following functions are uniformly continuous on their domains:
a) f(x) = lnx, x ∈ [1,+∞); b) f(x) =

√
x, x ∈ [0,+∞); c) f(x) = x sin 1

x
, x ∈ (0,+∞).

Exercise 9.8. Prove that the following functions are not uniformly continuous on their domains:
a) f(x) = lnx, x ∈ (0, 1]; b) f(x) = sin(x2), x ∈ [0,+∞); c) f(x) = x sinx, x ∈ [0,+∞).

Theorem 9.4 (Heine-Cantor theorem). Let a function f : [a, b] → R be continuous on [a, b]. Then f

is uniformly continuous on [a, b].

Proof. Be assume that f is not uniformly continuous on [a, b]. Then there exists ε > 0 such that
for all δ > 0 there exists x′ and x′′ from [a, b] such that |x′ − x′′| < δ and |f(x′) − f(x′′)| ≥ ε. So,
for each n ∈ N taking δ := 1

n
, we can find x′n and x′′n from [a, b] such that |x′n − x′′n| < δ = 1

n
and

|f(x′n)− f(x′′n)| ≥ ε.
We will consider the obtained sequences (x′n)n≥1 and (x′′n)n≥1. By the Bolzano-Weierstrass theorem

(see Theorem 4.6), there exists a subsequence (x′nk
)n≥1 of (x

′
n)n≥1 which converges to some real number

x∞ ∈ [a, b]. Since |x′nk
− x′′nk

| < 1
nk

for all k ≥ 1, we have x′′nk
→ x∞. By the continuity of f ,

f(x′nk
) → f(x∞), k → ∞, and f(x′′nk

) → f(x∞), k → ∞. But |f(x′nk
)− f(x′′nk

)| ≥ ε > 0, for all k ≥ 1,
that contradict our assumption.
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