9 Lecture 9 - Properties of Continuous Functions

9.1 Boundedness of Continuous Functions and Intermediate Value Theorem

For more details see [1, Section 3.18].
Let $-\infty<a<b<+\infty$ be fixes.
Theorem 9.1 (1st Weierstrass theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. Then f is bounded on $[a, b]$.

Proof. We assume that f is unbounded on $[a, b]$. Then for each $n \in \mathbb{N}$ there exists $x_{n} \in[a, b]$ such that $\left|f\left(x_{n}\right)\right| \geq n$. Since the sequence $\left(x_{n}\right)_{n \geq 1}$ is bounded (each x_{n} belongs to the interval $[a, b]$), it has a convergent subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$, by the Bolzano-Weierstrass theorem (see Theorem 4.6). So, let $x_{n_{k}} \rightarrow x_{\infty}, k \rightarrow \infty$. Using the inequalities $a \leq x_{n_{k}} \leq b$ for all $k \geq 1$ and Theorem 3.6, we have that $a \leq x_{\infty} \leq b$. Since the function f is continuous on $[a, b]$, we have that $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{\infty}\right), k \rightarrow \infty$. But this is impossible because $\left|f\left(x_{n_{k}}\right)\right| \geq n_{k} \rightarrow+\infty, k \rightarrow \infty$. So, the function f must be bounded.

Example 9.1. If $f:(a, b] \rightarrow \mathbb{R}$ is a continuous function on $(a, b]$, then the function could be unbounded. Indeed, we set $(a, b]=(0,1]$ and $f(x)=\frac{1}{x}, x \in(0,1]$. Then $f \in \mathrm{C}((0,1])$ but $f(x) \rightarrow+\infty$, $x \rightarrow 0+$.

Corollary 9.1. Let $f:[a,+\infty) \rightarrow \mathbb{R}$ be a continuous function on $[a,+\infty)$ and $f(x) \rightarrow p \in \mathbb{R}$, $x \rightarrow+\infty$. Then f is bounded on $[a,+\infty)$.

Proof. By Theorem 7.1 (iii), for $\varepsilon:=1$ there exists $D>a$ such that $|f(x)-p|<\varepsilon=1$ for all $x \geq D$. Hence $p-1<f(x)<p+1$ for all $x \geq D$, which implies the boundedness of f on $[D,+\infty)$. Next, since the function is continuous on the interval $[a, D]$, we can apply the 1 st Weierstrass theorem. Consequently, f is also bounded on $[a, D]$. Hence the function f is bounded on $[a,+\infty)$.

Exercise 9.1. Prove that the function $f(x)=\left(1+\frac{1}{x}\right)^{x}, x>0$, is bounded on $(0,+\infty)$.
(Hint: Theorem 9.1 as well as Corollary 9.1 can not be applied to the interval $(0,+\infty)$, since the the point a does not belong to the interval. First find the limits of f as $x \rightarrow 0+$ and $x \rightarrow+\infty$) and then use the argument from Corollary 9.1.)

Theorem 9.2 (2nd Weierstrass theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. Then f assumes its minimum and maximum values on $[a, b]$, that is, there exist x_{*} and x^{*} in $[a, b]$ such that $f\left(x_{*}\right) \leq f(x) \leq f\left(x^{*}\right)$ for all $x \in[a, b]$.

Proof. We will prove the existence of x^{*}. The proof is similar for x_{*}. By the 1st Weierstrass theorem, the function f is bounded on $[a, b]$, that implies that the set $f([a, b])=\{f(x): x \in[a, b]\}$ is bounded. So, we set $p:=\sup f([a, b])=\sup _{x \in[a, b]} f(x)$, which exists, by Theorem 2.2 (i). According to Theorem 2.1 (i), for each $n \in \mathbb{N}$ there exists $x_{n} \in[a, b]$ such that $p-\frac{1}{n}<f\left(x_{n}\right) \leq p$. We apply the Bolzano-Weierstrass theorem (see Theorem 4.6) to the sequence $\left(x_{n}\right)_{n \geq 1}$. Consequently, there exists a convergent subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$. We denote its limit by x^{*}. So, $x_{n_{k}} \rightarrow x^{*}, k \rightarrow \infty$. Since $f \in \mathrm{C}([a, b])$, we have that $f\left(x_{n_{k}}\right) \rightarrow f\left(x^{*}\right), k \rightarrow \infty$. Moreover,

$$
p-\frac{1}{n_{k}}<f\left(x_{n_{k}}\right) \leq p
$$

for all $k \geq 1$. Hence, $f\left(x_{n_{k}}\right) \rightarrow p, k \rightarrow \infty$, by the Squeeze theorem (see Theorem 3.7). It implies that $f\left(x^{*}\right)=p$. Consequently, $f\left(x^{*}\right)=\sup _{x \in[a, b]} f(x)=\max _{x \in[a, b]} f(x)$, that is, $f(x) \leq f\left(x^{*}\right)$ for all $x \in[a, b]$.

Exercise 9.2. Prove the existence of the point x_{*} in the 2 nd Weierstrass theorem.
Exercise 9.3. Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a continuous function on $[0,+\infty)$ and $f(x) \rightarrow+\infty, x \rightarrow+\infty$. Show that there exists $x_{*} \in[0,+\infty)$ such that $f\left(x_{*}\right)=\inf _{x \in[0,+\infty)} f(x)=\min _{x \in[0,+\infty)} f(x)$.

Theorem 9.3 (Intermediate value theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. Then for any real number y_{0} between $f(a)$ and $f(b)$, i.e. $f(a) \leq y_{0} \leq f(b)$ or $f(b) \leq y_{0} \leq f(a)$, there exists x_{0} from $[a, b]$ such that $f\left(x_{0}\right)=y_{0}$.

Proof. If $y_{0}=f(a)$ or $y_{0}=f(b)$, then x_{0} equals a or b, respectively. Now we assume that $f(a)<$ $y_{0}<f(b)$. The case $f(b)<y_{0}<f(a)$ is similar. We set $M:=\left\{x \in[a, b]: f(x) \leq y_{0}\right\}$, which is non empty set because $a \in M$. Moreover, it is bounded as a subset of the interval [a,b]. Consequently, there exists $\sup M=: x_{0}$.

We are going to show that $f\left(x_{0}\right)=y_{0}$. According to Theorem 2.1 (i), for each $n \in \mathbb{N}$ there exists $x_{n} \in M$ such that $x_{0}-\frac{1}{n}<x_{n} \leq x_{0}$. Thus, $x_{n} \rightarrow x_{0}, n \rightarrow \infty$, by the Squeeze theorem (see Theorem 3.7). Since $x_{n} \in M$, we have that $f\left(x_{n}\right) \leq y_{0}$ for all $n \geq 1$. Moreover, $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$, $n \rightarrow \infty$ due to the continuity of f. Thus, using Theorem 3.6, we obtain $f\left(x_{0}\right) \leq y_{0}$.

Next, for every $x>x_{0}$ we have that $x \notin M$, since x_{0} is the supremum of M. It implies that $f(x)>y_{0}$. Consequently, $y_{0} \leq \lim _{x \rightarrow x_{0}+} f(x)=\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$. Here we have also used the continuity of f and Theorem 7.8. Thus, $y_{0}=f\left(x_{0}\right)$.

Exercise 9.4. Prove that the function $P(x)=x^{3}+2 x^{2}-1, x \in \mathbb{R}$, has at least one root, that is, there exists $x_{0} \in \mathbb{R}$ such that $P\left(x_{0}\right)=0$.

Corollary 9.2. Let $f, g \in \mathrm{C}([a, b])$ and $f(a) \leq g(a), f(b) \geq g(b)$. Then there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.

Proof. We note that the function $h(x):=f(x)-g(x), x \in[a, b]$, is continuous on $[a, b]$ and satisfies $h(a) \leq 0 \leq h(b)$. So, taking $y_{0}:=0$ and applying the intermediate value theorem, we obtain that there exists $x_{0} \in[a, b]$ such that $h\left(x_{0}\right)=f\left(x_{0}\right)-g\left(x_{0}\right)=0$.

Example 9.2. Let $g:[0,1] \rightarrow[0,1]$ be a continuous function on $[0,1]$. Then there exists $x_{0} \in[0,1]$ such that $g\left(x_{0}\right)=x_{0}$.

To prove the existence of x_{0}, we take $f(x)=x, x \in[0,1]$, and note that f is continuous on $[0,1]$ and $f(0)=0 \leq g(0), f(1)=1 \geq g(1)$. Thus, by Corollary 9.2 , there exists $x_{0} \in[0,1]$ such that $g\left(x_{0}\right)=f\left(x_{0}\right)=x_{0}$.

Corollary 9.3. Let $f \in \mathrm{C}([a, b])$. Then its range $f([a, b])=\{f(x): x \in[a, b]\}$ is an interval.
Proof. By the 2nd Weierstrass theorem (see Theorem 9.2), there exists $x_{*}, x^{*} \in[a, b]$ such that $f\left(x_{*}\right) \leq$ $f(x) \leq f\left(x^{*}\right)$ for all $x \in[a, b]$. Consequently, $f([a, b]) \subset\left[f\left(x_{*}\right), f\left(x^{*}\right)\right]$. Next, due to the intermediate value theorem, for each $y_{0} \in\left[f\left(x_{*}\right), f\left(x^{*}\right)\right]$ there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=y_{0}$. It implies that $y_{0} \in f([a, b])$ and, consequently, $\left[f\left(x_{*}\right), f\left(x^{*}\right)\right] \subset f([a, b])$. Hence, $f([a, b])=\left[f\left(x_{*}\right), f\left(x^{*}\right)\right]$.

Exercise 9.5. Let $f:[a, b] \rightarrow \mathbb{R}$ strictly increase on $[a, b]$ and for each $y_{0} \in[f(a), f(b)]$ there exist $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=y_{0}$. Prove that $f \in \mathrm{C}([a, b])$.

Exercise 9.6. Let $f, g:[0,1] \rightarrow[0,1]$ be continuous and f be a surjection. Prove that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.

9.2 Uniformly Continuous Functions

For more details see [1, Section 3.19].
Let A be a subset of \mathbb{R} and $f: A \rightarrow \mathbb{R}$. We recall that f is continuous at point x_{0} provided $\forall \varepsilon>0 \exists \delta>0$ such that for each $x \in A$ the inequality $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ (see Definition 8.3). The choice of δ depends on ε and the point x_{0}. It turns out to be very useful to know when the δ can be chosen to depend only on ε. Such functions are said to be uniformly continuous on A.

Definition 9.1. A function $f: A \rightarrow \mathbb{R}$ is said to be uniformly continuous on A, if

$$
\forall \varepsilon>0 \exists \delta>0 \forall x^{\prime}, x^{\prime \prime} \in A,\left|x^{\prime}-x^{\prime \prime}\right|<\delta:\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon .
$$

Remark 9.1. Any uniformly continuous function on A is continuous on A. The converse statement is not true, see Example 9.5 below.

Example 9.3. The function $f(x)=x, x \in \mathbb{R}$, is uniformly continuous on \mathbb{R}, since for each $\varepsilon>0$ we can take $\delta:=\varepsilon$. Then for all $x^{\prime}, x^{\prime \prime} \in \mathbb{R}$ such that $\left|x^{\prime}-x^{\prime \prime}\right|<\delta$ we have $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|=\left|x^{\prime}-x^{\prime \prime}\right|<\delta=\varepsilon$.

Example 9.4. The functions \sin and cos are uniformly continuous on \mathbb{R}.
The function \sin is uniformly continuous on \mathbb{R}, since for each $\varepsilon>0$ we can take $\delta:=\varepsilon>0$. Then for all $x^{\prime}, x^{\prime \prime} \in \mathbb{R}$ such that $\left|x^{\prime}-x^{\prime \prime}\right|<\delta$ we have

$$
\left|\sin x^{\prime}-\sin x^{\prime \prime}\right|=2\left|\cos \frac{x^{\prime}+x^{\prime \prime}}{2}\right| \cdot\left|\sin \frac{x^{\prime}-x^{\prime \prime}}{2}\right| \leq 2 \cdot 1 \cdot \frac{\left|x^{\prime}-x^{\prime \prime}\right|}{2}=\left|x^{\prime}-x^{\prime \prime}\right|<\delta=\varepsilon
$$

where we have also used Remark 6.3 for the estimation of $\left|\sin \frac{x^{\prime}-x^{\prime \prime}}{2}\right|$.
Example 9.5. The function $f(x)=\frac{1}{x}, x \in(0,1]$, is not uniformly continuous on $(0,1]$.
Indeed, for $\varepsilon:=1$ we have that for all $\delta>0$ we can take $x^{\prime}:=\frac{1}{n}$ and $x^{\prime \prime}:=\frac{1}{n+1}$ from $(0,1]$ such that $\left|x^{\prime}-x^{\prime \prime}\right|<\delta$ and $\left|\frac{1}{x^{\prime}}-\frac{1}{x^{\prime \prime}}\right|=|n-(n+1)|=1=\varepsilon$, where $n \in \mathbb{N}$ and $n>\frac{1}{\delta}$.

Exercise 9.7. Prove that the following functions are uniformly continuous on their domains:
a) $f(x)=\ln x, x \in[1,+\infty)$;
b) $f(x)=\sqrt{x}, x \in[0,+\infty)$;
c) $f(x)=x \sin \frac{1}{x}, x \in(0,+\infty)$.

Exercise 9.8. Prove that the following functions are not uniformly continuous on their domains:
a) $f(x)=\ln x, x \in(0,1]$;
b) $f(x)=\sin \left(x^{2}\right), x \in[0,+\infty)$;
c) $f(x)=x \sin x, x \in[0,+\infty)$.

Theorem 9.4 (Heine-Cantor theorem). Let a function $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$. Then f is uniformly continuous on $[a, b]$.

Proof. Be assume that f is not uniformly continuous on $[a, b]$. Then there exists $\varepsilon>0$ such that for all $\delta>0$ there exists x^{\prime} and $x^{\prime \prime}$ from $[a, b]$ such that $\left|x^{\prime}-x^{\prime \prime}\right|<\delta$ and $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| \geq \varepsilon$. So, for each $n \in \mathbb{N}$ taking $\delta:=\frac{1}{n}$, we can find x_{n}^{\prime} and $x_{n}^{\prime \prime}$ from $[a, b]$ such that $\left|x_{n}^{\prime}-x_{n}^{\prime \prime}\right|<\delta=\frac{1}{n}$ and $\left|f\left(x_{n}^{\prime}\right)-f\left(x_{n}^{\prime \prime}\right)\right| \geq \varepsilon$.

We will consider the obtained sequences $\left(x_{n}^{\prime}\right)_{n>1}$ and $\left(x_{n}^{\prime \prime}\right)_{n>1}$. By the Bolzano-Weierstrass theorem (see Theorem 4.6), there exists a subsequence $\left(x_{n_{k}}^{\prime}\right)_{n \geq 1}$ of $\left(x_{n}^{\prime}\right)_{n \geq 1}$ which converges to some real number $x_{\infty} \in[a, b]$. Since $\left|x_{n_{k}}^{\prime}-x_{n_{k}}^{\prime \prime}\right|<\frac{1}{n_{k}}$ for all $k \geq 1$, we have $x_{n_{k}}^{\prime \prime} \rightarrow x_{\infty}$. By the continuity of f, $f\left(x_{n_{k}}^{\prime}\right) \rightarrow f\left(x_{\infty}\right), k \rightarrow \infty$, and $f\left(x_{n_{k}}^{\prime \prime}\right) \rightarrow f\left(x_{\infty}\right), k \rightarrow \infty$. But $\left|f\left(x_{n_{k}}^{\prime}\right)-f\left(x_{n_{k}}^{\prime \prime}\right)\right| \geq \varepsilon>0$, for all $k \geq 1$, that contradict our assumption.

References

[1] K.A. Ross. Elementary Analysis: The Theory of Calculus. Undergraduate Texts in Mathematics. Springer New York, 2013.

