## 8 Lecture 8 - Continuous Functions

### 8.1 Definitions and Examples

Let $A \subset \mathbb{R}, a \in A$ be a limit point of $A$ and $f: A \rightarrow \mathbb{R}$.
Definition 8.1. A function $f$ is said to be continuous at $a$, if $\lim _{x \rightarrow a} f(x)=f(a)$, i.e. $\lim _{x \rightarrow a} f(x)=$ $f\left(\lim _{x \rightarrow a} x\right)$.

By the definition of limit of function (see Definition 6.6) and Theorem 7.1, the following two definitions are equivalent to Definition 8.1.

Definition 8.2. A function $f$ is said to be continuous at $a$, if for each sequence $\left(x_{n}\right)_{n \geq 1}$ such that 1) $x_{n} \in A$ for all $\left.n \geq 1 ; 2\right) x_{n} \rightarrow a, n \rightarrow \infty$, it follows that $f\left(x_{n}\right) \rightarrow f(a), n \rightarrow \infty$.

Definition 8.3. A function $f$ is said to be continuous at $a$, if

$$
\forall \varepsilon>0 \exists \delta>0 \forall x \in A \cap B(a, \delta):|f(x)-f(a)|<\varepsilon
$$

Now we want to introduce the left and right continuity. For this we assume that $a \in A$ satisfies (7) (resp., (8)).

Definition 8.4. A function $f$ is said to be left continuous (resp. right continuous), if $f(a-)=$ $f(a)($ resp. $f(a+)=f(a))$.

Remark 8.1. 1. If $(a-\gamma, a] \subset A$ for some $\gamma>0$, then $f$ is left continuous iff

$$
\forall \varepsilon>0 \exists \delta>0 \forall x \in(a-\delta, a]:|f(x)-f(a)|<\varepsilon
$$

This immediately follows from Theorem 7.6.
2. If $[a, a+\gamma) \subset A$ for some $\gamma>0$, then $f$ is right continuous iff

$$
\forall \varepsilon>0 \exists \delta>0 \forall x \in[a, a+\delta):|f(x)-f(a)|<\varepsilon
$$

This follows from Theorem 7.7.
Remark 8.2. Let $a$ satisfy properties (7) and (8). Then, by Theorem 7.8, a function $f$ is continuous at the point $a$ iff $f$ is left and right continuous at $a$.

For convenience we will suppose that every function is continuous at each isolated point, points from $A$ which are not its limit points.

Definition 8.5. A function $f: A \rightarrow \mathbb{R}$ is called continuous on the set $A$, if it is continuous at each point of $A$. We will often use the notation $f \in \mathrm{C}(A)$.

Theorem 8.1. Let functions $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ be continuous at $a \in A$. Then
a) for each real number $c$ the function $c \cdot f$ is continuous at the point $a$;
b) the function $f+g$ is continuous at the point $a$;
c) the function $f \cdot g$ is continuous at the point $a$;
d) the function $\frac{f}{g}$ is continuous at the point $a$, if additionally $g(a) \neq 0$.

In the theorem, the functions $c \cdot f, f+g, f \cdot g, \frac{f}{g}$ are defined in the usual way. For instance, $f \cdot g: A \rightarrow \mathbb{R}$ is defined as $(f \cdot g)(x)=f(x) \cdot g(x)$ for all $x \in A$.
Example 8.1. For an arbitrary real number $c$ we define the function $f(x)=c, x \in \mathbb{R}$. Then $f \in \mathrm{C}(\mathbb{R})$.
Example 8.2. Let $f(x)=x, x \in \mathbb{R}$. Then $f \in \mathbb{C}(\mathbb{R})$. Indeed, to show this, let us use e.g. Definition 8.3. We fix any $a \in \mathbb{R}$. Then we obtain that for every $\varepsilon>0$ there exists $\delta:=\varepsilon>0$ such that for each $x \in B(a, \delta)|f(x)-f(a)|=|x-a|<\delta=\varepsilon$. So, $f$ is continuous at $a$. Since $a$ was an arbitrary point of $\mathbb{R}, f$ is continuous on $\mathbb{R}$.
Example 8.3. Let $P(x)=a_{0} x^{m}+a_{1} x^{m-1}+\ldots+a_{m-1} x+a_{m}, x \in \mathbb{R}$, where $m \in \mathbb{N} \cup\{0\}$ and $a_{0}, a_{1}, \ldots, a_{m}$ are some real numbers. The function $P$ is called a polynomial function. Theorem 8.1 and examples $8.1,8.2$ imply that $P \in \mathrm{C}(\mathbb{R})$.
Example 8.4. Let $P$ and $Q$ be two polynomial functions. We define the function $R(x)=\frac{P(x)}{Q(x)}$, $x \in\{z \in \mathbb{R}: Q(z) \neq 0\}$, which is called a rational function. By Theorem 8.1 and Example 8.3, the rational function $R$ is continuous at any point where it is well-defined.
Example 8.5. The functions $\sin$ and cos are continuous on $\mathbb{R}$. The functions tan and cot are continuous on the set where they are well-defined. The continuity of functions sin and cos follows from Example 6.6. For the functions tan and cot the continuity follows from Theorem 8.1 and the equalities $\tan x=\frac{\sin x}{\cos x}$ and $\cot x=\frac{\cos x}{\sin x}$.
Example 8.6. Let $a>0$ and $f(x)=a^{x}, x \in \mathbb{R}$. Then $f \in \mathrm{C}(\mathbb{R})$.
Exercise 8.1. Prove that the function from Example 8.6 is continuous on $\mathbb{R}$.
Exercise 8.2. Compute the following limits:
a) $\lim _{x \rightarrow 0}\left(\tan x-e^{x}\right)$;
b) $\lim _{x \rightarrow 2} \frac{x^{2}-3^{x}+1}{x-\sin \pi x}$;
c) $\lim _{x \rightarrow 3} \frac{x \cos x+1}{x^{3}+1}$.

Exercise 8.3. Let $a, b$ be a real numbers, $f(x)=x+1, x \leq 0$ and $f(x)=a x+b, x>0$. a) For which $a, b$ the function $f$ is monotone on $\mathbb{R}$ ? b) For which $a, b$ the function $f$ is continuous on $\mathbb{R}$ ?

Exercise 8.4. Let $f(x)=\lfloor x\rfloor \sin \pi x, x \in \mathbb{R}$. Prove that $f \in \mathrm{C}(\mathbb{R})$ and sketch its graph.
(Hint: If $x \in[k, k+1$ ) for some $k \in \mathbb{Z}$, then $\lfloor x\rfloor=k$ and $f(x)=k \sin \pi x$. Find $f(k-)$ and $f(k+)$ at the points $k$.)
Exercise 8.5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function on $\mathbb{R}$ and $f(r)=r^{3}+r+1$ for all $r \in \mathbb{Q}$. Find the function $f$.

Exercise 8.6. Show that $|f| \in \mathrm{C}(A)$, if $f \in \mathrm{C}(A)$, where $|f|(x):=|f(x)|, x \in A$.
Exercise 8.7. For functions $f, g \in \mathrm{C}(A)$ we set $h(x):=\min \{f(x), g(x)\}, x \in A$, and $l(x):=$ $\max \{f(x), g(x)\}, x \in A$. Prove that $h, l \in \mathrm{C}(A)$.
(Hint: Use the equalities $\min \{a, b\}=\frac{1}{2}(a+b-|a-b|)$ and $\max \{a, b\}=\frac{1}{2}(a+b+|a-b|)$.)
Definition 8.6. If a function $f: A \rightarrow \mathbb{R}$ is not continuous at a point $a \in A$, then $f$ is said to be discontinuous at the point $a$.
Example 8.7. The function sgn, defined in Example 7.5, is continuous on $\mathbb{R} \backslash\{0\}$ and discontinuous at 0 .
Exercise 8.8. Prove that the function $f(x)=\sin \frac{1}{x}, x \neq 0$, and $f(0)=0$, is discontinuous at 0 .
Exercise 8.9. Show that the Dirichlet function $f(x)=1, x \in \mathbb{Q}$, and $f(x)=0, x \in \mathbb{R} \backslash \mathbb{Q}$ is discontinuous at any point of $\mathbb{R}$.

### 8.2 Some Properties of Continuous Functions

Theorem 8.2. Let a function $f: A \rightarrow \mathbb{R}$ be continuous at $a \in A$ and $f(a)<q$. Then

$$
\exists \delta>0 \forall x \in A \cap B(a, \delta): f(x)<q
$$

Proof. Using Definition 8.3, we obtain that for $\varepsilon:=q-f(a)>0$ there exists $\delta>0$ such that for all $x \in A \cap B(a, \delta)|f(x)-f(a)|<\varepsilon=q-f(a)$. In particular, $f(x)-f(a)<q-f(a)$, which implies $f(x)<q$ for all $x \in A \cap B(a, \delta)$.

Theorem 8.3 (Limit of composition). Let a be a limit point of $A$ (which could be $+\infty$ or $-\infty$ ) and let for a function $f: A \rightarrow \mathbb{R}$ there exists a limit $\lim _{x \rightarrow a} f(x)=p \in \mathbb{R}$. We also assume that $f(A) \cap\{p\} \subset B$ and a function $g: B \rightarrow \mathbb{R}$ is continuous at the point $p$. Then $\lim _{x \rightarrow a} g(f(x))=g(p)$, that $i s, \lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)$.
Proof. For any sequence $\left(x_{n}\right)_{n \geq 1}$ satisfying properties 1) and 2) from the definition of limit (see Definition 6.6), one has $f\left(x_{n}\right) \rightarrow p, n \rightarrow \infty$. Since $g$ is continuous, $g\left(f\left(x_{n}\right)\right) \rightarrow g(p), n \rightarrow \infty$, by Definition 8.2.

Theorem 8.4 (Continuity of composition). We assume that $f: A \rightarrow \mathbb{R}$ is continuous at $a \in A$, $f(A) \subset B$ and a function $g: B \rightarrow \mathbb{R}$ is continuous at the point $f(a)$. Then the function $g \circ f$ is continuous at the point $a$.

Proof. The statement immediately follows from Theorem 8.3, setting $p:=f(a)$.
Let $(a, b) \subset \mathbb{R}$, where $-\infty \leq a<b \leq+\infty$. Let $f:(a, b) \rightarrow \mathbb{R}$ be an increasing function. By Theorem 7.9 (ii), there exists $\lim _{x \rightarrow a+} f(x)=: c \in \mathbb{R}$, if $f$ is bounded below. If $f$ is unbounded below, then it is easy to see that $\lim _{x \rightarrow a+} f(x)=-\infty=: c$. Consequently, $\lim _{x \rightarrow a+} f(x)=c$ can be well defined for any increasing function. Similarly, $\lim _{x \rightarrow b-} f(x)=: d \leq+\infty$ is also well defined.

Theorem 8.5 (Existence of continuous inverse function). Let a function $f:(a, b) \rightarrow \mathbb{R}$ satisfy the following properties:

1) $f$ strictly increases on $(a, b)$, that is, for any $x_{1}, x_{2} \in(a, b) x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$;
2) $f \in \mathrm{C}((a, b))$.

We set $c:=\lim _{x \rightarrow a+} f(x)$ and $d:=\lim _{x \rightarrow b-} f(x)$.
Then there exists a function $g:(c, d) \rightarrow(a, b)$ such that
a) $g$ is strictly increasing on $(c, d)$;
b) $g \in \mathrm{C}((c, d))$;
c) $g(f(x))=x$ for all $x \in(a, b)$, and $f(g(y))=y$ for all $y \in(c, d)$, that is, $g=f^{-1}$.

Remark 8.3. A similar statement also is true for a strictly decreasing function $f:(a, b) \rightarrow \mathbb{R}$, i.e. for a function such that for any $x_{1}, x_{2} \in(a, b) x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Remark 8.4. If $a \in \mathbb{R}$, then Theorem 8.5 is also valid for the set $[a, b)$.

### 8.3 Some Inverse Functions

Example 8.8. n-th root function $g(y)=\sqrt[m]{y}, y \geq 0$.
Let $m \in \mathbb{N}$ be fixed. We set $[a, b)=[0,+\infty)$ and $f(x)=x^{m}, x \in[0,+\infty)$. The function $f$ satisfies conditions of Theorem 8.5, namely, it strictly increases and is continuous on $[0,+\infty)$. Moreover, $c=\lim _{x \rightarrow 0+} x^{m}=0$ and $d=\lim _{x \rightarrow+\infty} x^{m}=+\infty$. Thus, according to Theorem 8.5, there exists a function $g:[0,+\infty) \rightarrow[0,+\infty)$ which increases and is continuous on $[0,+\infty)$ and inverse to $f$. Usually, the function $g$ is denoted as follows $\sqrt[m]{y}=y^{\frac{1}{m}}:=g(y), y \geq 0$. Moreover, $\sqrt[m]{x^{m}}=x$ for each $x \geq 0$ and $(\sqrt[m]{y})^{m}=y$ for each $y \geq 0$.

Example 8.9. Logarithmic function $g(y)=\log _{p} y, y>0$.
Let $p>0, p \neq 1$ and $f(x)=p^{x}, x \in \mathbb{R}$. We want to prove that the function $f$ has the inverse function, which is called the logarithm. We will consider the case $p>1$, for which the function $f$ is strictly increasing and continuous, by Example 8.6. Moreover, $c=\lim _{x \rightarrow-\infty} p^{x}=0$ and $d=\lim _{x \rightarrow+\infty} p^{x}$. By Theorem 8.5, there exists a function $g:(0,+\infty) \rightarrow \mathbb{R}$, which is continuous on $(0,+\infty)$ and inverse to $f$. The function $g$ is denoted by $\log _{p} y:=g(y), y>0$, and it satisfies $\log _{p} p^{x}=x$ for all $x \in \mathbb{R}$ and $p^{\log _{p} y}=y$ for all $y>0$.

Example 8.10. Trigonometric functions arcsin, arccos, arctan, arccot.
Let $[a, b]=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], f(x)=\sin x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. By the definition of sin, it is strictly increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Furthermore, by Example 8.5, sin is continuous on $\mathbb{R}$ and, in particular, on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Thus, using Theorem 8.5, there exists the continuous inverse function $g:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ to $f$. It is denoted by $\arcsin y:=g(y), y \in[-1,1]$, and satisfies $\arcsin (\sin x)=x$ for all $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\sin (\arcsin y)=y$ for all $y \in[-1,1]$.

Similarly, one can define the functions arccos : $[-1,1] \rightarrow[0, \pi]$, $\arctan : \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and arccot : $\mathbb{R} \rightarrow(0, \pi)$, which are inverse to cos : $[0, \pi] \rightarrow[-1,1], \tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ and cot $:(0, \pi) \rightarrow \mathbb{R}$, respectively. Moreover, each function is continuous on the set where it is defined.

Exercise 8.10. Sketch the graphs of the functions $\ln =\log _{e}, \log _{\frac{1}{2}}$, arcsin, arccos, arctan and arccot.
Exercise 8.11. Compute the following limits:
a) $\lim _{x \rightarrow 0} \frac{\ln (1+x)+\arcsin x^{2}}{\arccos x+\cos x}$;
b) $\lim _{x \rightarrow 1} \frac{\arctan x}{1+\arctan x^{2}}$;
c) $\lim _{x \rightarrow 0} \frac{\arcsin x}{x}$;
d) $\lim _{x \rightarrow 0} \frac{x}{\sin x+\arcsin x}$;
e) $\lim _{x \rightarrow 0} \frac{\arctan x}{x}$;
f) $\lim _{x \rightarrow 0} \frac{\arccos x-\frac{\pi}{2}}{x}$;
g) $\lim _{x \rightarrow 0} \frac{\sin (\arctan x)}{\tan x}$.

### 8.4 Some Important Limits

Theorem 8.6. Let $a>0$ and $a \neq 1$. Then

$$
\lim _{x \rightarrow 0} \frac{\log _{a}(1+x)}{x}=\log _{a} e,
$$

in particular, for $a=e$

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1
$$

Proof. We are going to use Theorem 8.3 about limit of composition in order to prove the needed equality. Let $A=(-1,+\infty), f(x)=(1+x)^{\frac{1}{x}}, x>-1, p=\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e>0 ; B=(0,+\infty)$ and
$g(y)=\log _{a} y, y>0$. In Example 8.9, we have proved that $g$ is continuous and, consequently, it is continuous at $p=e>0$. Thus, using Theorem 8.3, we obtain

$$
\lim _{x \rightarrow 0} \frac{\log _{a}(1+x)}{x}=\lim _{x \rightarrow 0} \log _{a}(1+x)^{\frac{1}{x}}=\log _{a}\left(\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}\right)=\log _{a} e
$$

Theorem 8.7. Let $a>0$. Then

$$
\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\ln a
$$

in particular, for $a=e$

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

Proof. If $a=1$, then the statement is true. We assume that $a \neq 1$. By the continuity and monotonicity of the function $h(x)=a^{x}$ (see Example 8.6), one can easily seen that $z:=a^{x}-1 \rightarrow 0$ provided $x \rightarrow 0$. Moreover, $x=\log _{a}(1+z)$. Hence, by Theorem 8.6, we obtain

$$
\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\lim _{z \rightarrow 0} \frac{z}{\log _{a}(1+z)}=\frac{1}{\log _{a} e}=\log _{e} a=\ln a .
$$

Theorem 8.8. Let $\alpha \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow 0} \frac{(1+x)^{\alpha}-1}{x}=\alpha
$$

Proof. For $\alpha=0$ the statement holds. We assume that $\alpha \neq 0$. Using the continuity of $\ln$ (see Example 8.9), we have $\ln (1+x) \rightarrow \ln 1=0, x \rightarrow 0$. By theorems 8.1, 8.6 and 8.7, we get

$$
\lim _{x \rightarrow 0} \frac{(1+x)^{\alpha}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(e^{\alpha \ln (1+x)}-1\right) \alpha \ln (1+x)}{x \alpha \ln (1+x)}=\alpha \lim _{x \rightarrow 0} \frac{e^{\alpha \ln (1+x)}-1}{\alpha \ln (1+x)} \cdot \lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\alpha
$$

Theorem 8.9. Let $\alpha \in \mathbb{R}$ and $f(x)=x^{\alpha}, x>0$. Then $f$ is continuous on $(0,+\infty)$.
Proof. Since for each $x>0$, one has $f(x)=e^{\alpha \ln x}$, the statement follows from the continuities of the exponential function and the logarithm (see examples 8.6 and 8.9 , respectively) and Theorem 8.4.

Exercise 8.12. Compute the following limits:
a) $\lim _{x \rightarrow 0}(\cos x)^{x}$; b) $\lim _{x \rightarrow+\infty} x(\ln (1+x)-\ln x)$;
c) $\lim _{x \rightarrow 0}\left(\frac{1+\sin 2 x}{\cos 2 x}\right)^{\frac{1}{x}}$;
d) $\lim _{x \rightarrow 0} \frac{1-\cos x}{1-\cos 2 x}$;
e) $\lim _{x \rightarrow 0} \frac{\ln (1+x)+e^{x}-\cos x}{e^{x^{2}}-1+\sin x}$; f) $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}} ;$ g) $\lim _{x \rightarrow 0} \frac{\arcsin (x-1)}{x^{m}-1}$ for $m \in \mathbb{N}$;
h) $\lim _{x \rightarrow 0} \frac{1-(\cos m x)^{m}}{x^{2}}$ for $m \in \mathbb{N}$; i) $\lim _{x \rightarrow 0} \frac{1-(\cos m x)^{\frac{1}{m}}}{x^{2}}$ for $m \in \mathbb{N} ;$ k) $\lim _{x \rightarrow 1} \frac{\left(\sin \left(\pi \cdot 2^{x}\right)\right)^{2}}{\ln \left(\cos \left(\pi \cdot 2^{x}\right)\right)}$; l) $\lim _{x \rightarrow 0}\left(\frac{1+x \cdot 2^{x}}{1+x \cdot 3^{x}}\right)^{\frac{1}{x^{2}}}$;
m) $\lim _{x \rightarrow 0} \frac{x^{x}-a^{a}}{x-a}$, for $a>0 ;$
n) $\lim _{x \rightarrow 1}(1-x) \log _{x} 2$.

## References

[1] K.A. Ross. Elementary Analysis: The Theory of Calculus. Undergraduate Texts in Mathematics. Springer New York, 2013.

