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8 Lecture 8 – Continuous Functions

8.1 Definitions and Examples

Let A ⊂ R, a ∈ A be a limit point of A and f : A → R.

Definition 8.1. A function f is said to be continuous at a, if lim
x→a

f(x) = f(a), i.e. lim
x→a

f(x) =

f
(

lim
x→a

x
)

.

By the definition of limit of function (see Definition 6.6) and Theorem 7.1, the following two
definitions are equivalent to Definition 8.1.

Definition 8.2. A function f is said to be continuous at a, if for each sequence (xn)n≥1 such that
1) xn ∈ A for all n ≥ 1; 2) xn → a, n → ∞, it follows that f(xn) → f(a), n → ∞.

Definition 8.3. A function f is said to be continuous at a, if

∀ε > 0 ∃δ > 0 ∀x ∈ A ∩B(a, δ) : |f(x)− f(a)| < ε.

Now we want to introduce the left and right continuity. For this we assume that a ∈ A satisfies (7)
(resp., (8)).

Definition 8.4. A function f is said to be left continuous (resp. right continuous), if f(a−) =
f(a) (resp. f(a+) = f(a)).

Remark 8.1. 1. If (a− γ, a] ⊂ A for some γ > 0, then f is left continuous iff

∀ε > 0 ∃δ > 0 ∀x ∈ (a− δ, a] : |f(x)− f(a)| < ε.

This immediately follows from Theorem 7.6.

2. If [a, a+ γ) ⊂ A for some γ > 0, then f is right continuous iff

∀ε > 0 ∃δ > 0 ∀x ∈ [a, a+ δ) : |f(x)− f(a)| < ε.

This follows from Theorem 7.7.

Remark 8.2. Let a satisfy properties (7) and (8). Then, by Theorem 7.8, a function f is continuous
at the point a iff f is left and right continuous at a.

For convenience we will suppose that every function is continuous at each isolated point, points
from A which are not its limit points.

Definition 8.5. A function f : A → R is called continuous on the set A, if it is continuous at each
point of A. We will often use the notation f ∈ C(A).

Theorem 8.1. Let functions f : A → R and g : A → R be continuous at a ∈ A. Then

a) for each real number c the function c · f is continuous at the point a;

b) the function f + g is continuous at the point a;

c) the function f · g is continuous at the point a;
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d) the function f
g
is continuous at the point a, if additionally g(a) 6= 0.

In the theorem, the functions c · f , f + g, f · g, f
g
are defined in the usual way. For instance,

f · g : A → R is defined as (f · g)(x) = f(x) · g(x) for all x ∈ A.

Example 8.1. For an arbitrary real number c we define the function f(x) = c, x ∈ R. Then f ∈ C(R).

Example 8.2. Let f(x) = x, x ∈ R. Then f ∈ C(R). Indeed, to show this, let us use e.g. Defini-
tion 8.3. We fix any a ∈ R. Then we obtain that for every ε > 0 there exists δ := ε > 0 such that for
each x ∈ B(a, δ) |f(x) − f(a)| = |x − a| < δ = ε. So, f is continuous at a. Since a was an arbitrary
point of R, f is continuous on R.

Example 8.3. Let P (x) = a0x
m + a1x

m−1 + . . . + am−1x + am, x ∈ R, where m ∈ N ∪ {0} and
a0, a1, . . . , am are some real numbers. The function P is called a polynomial function. Theorem 8.1
and examples 8.1, 8.2 imply that P ∈ C(R).

Example 8.4. Let P and Q be two polynomial functions. We define the function R(x) = P (x)
Q(x) ,

x ∈ {z ∈ R : Q(z) 6= 0}, which is called a rational function. By Theorem 8.1 and Example 8.3, the
rational function R is continuous at any point where it is well-defined.

Example 8.5. The functions sin and cos are continuous on R. The functions tan and cot are con-
tinuous on the set where they are well-defined. The continuity of functions sin and cos follows from
Example 6.6. For the functions tan and cot the continuity follows from Theorem 8.1 and the equalities
tanx = sinx

cosx and cotx = cosx
sinx

.

Example 8.6. Let a > 0 and f(x) = ax, x ∈ R. Then f ∈ C(R).

Exercise 8.1. Prove that the function from Example 8.6 is continuous on R.

Exercise 8.2. Compute the following limits:
a) lim

x→0
(tanx− ex); b) lim

x→2

x2−3x+1
x−sinπx

; c) lim
x→3

x cosx+1
x3+1

.

Exercise 8.3. Let a, b be a real numbers, f(x) = x+1, x ≤ 0 and f(x) = ax+ b, x > 0. a) For which
a, b the function f is monotone on R? b) For which a, b the function f is continuous on R?

Exercise 8.4. Let f(x) = ⌊x⌋ sinπx, x ∈ R. Prove that f ∈ C(R) and sketch its graph.
(Hint: If x ∈ [k, k + 1) for some k ∈ Z, then ⌊x⌋ = k and f(x) = k sinπx. Find f(k−) and f(k+) at the points k.)

Exercise 8.5. Let f : R → R be a continuous function on R and f(r) = r3+ r+1 for all r ∈ Q. Find
the function f .

Exercise 8.6. Show that |f | ∈ C(A), if f ∈ C(A), where |f |(x) := |f(x)|, x ∈ A.

Exercise 8.7. For functions f, g ∈ C(A) we set h(x) := min{f(x), g(x)}, x ∈ A, and l(x) :=
max{f(x), g(x)}, x ∈ A. Prove that h, l ∈ C(A).

(Hint: Use the equalities min{a, b} = 1

2
(a+ b− |a− b|) and max{a, b} = 1

2
(a+ b+ |a− b|).)

Definition 8.6. If a function f : A → R is not continuous at a point a ∈ A, then f is said to be
discontinuous at the point a.

Example 8.7. The function sgn, defined in Example 7.5, is continuous on R \ {0} and discontinuous
at 0.

Exercise 8.8. Prove that the function f(x) = sin 1
x
, x 6= 0, and f(0) = 0, is discontinuous at 0.

Exercise 8.9. Show that the Dirichlet function f(x) = 1, x ∈ Q, and f(x) = 0, x ∈ R \ Q is
discontinuous at any point of R.
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8.2 Some Properties of Continuous Functions

Theorem 8.2. Let a function f : A → R be continuous at a ∈ A and f(a) < q. Then

∃δ > 0 ∀x ∈ A ∩B(a, δ) : f(x) < q.

Proof. Using Definition 8.3, we obtain that for ε := q − f(a) > 0 there exists δ > 0 such that for all
x ∈ A ∩ B(a, δ) |f(x) − f(a)| < ε = q − f(a). In particular, f(x) − f(a) < q − f(a), which implies
f(x) < q for all x ∈ A ∩B(a, δ).

Theorem 8.3 (Limit of composition). Let a be a limit point of A (which could be +∞ or −∞)
and let for a function f : A → R there exists a limit lim

x→a
f(x) = p ∈ R. We also assume that

f(A)∩{p} ⊂ B and a function g : B → R is continuous at the point p. Then lim
x→a

g(f(x)) = g(p), that

is, lim
x→a

g(f(x)) = g
(

lim
x→a

f(x)
)

.

Proof. For any sequence (xn)n≥1 satisfying properties 1) and 2) from the definition of limit (see
Definition 6.6), one has f(xn) → p, n → ∞. Since g is continuous, g(f(xn)) → g(p), n → ∞, by
Definition 8.2.

Theorem 8.4 (Continuity of composition). We assume that f : A → R is continuous at a ∈ A,
f(A) ⊂ B and a function g : B → R is continuous at the point f(a). Then the function g ◦ f is
continuous at the point a.

Proof. The statement immediately follows from Theorem 8.3, setting p := f(a).

Let (a, b) ⊂ R, where −∞ ≤ a < b ≤ +∞. Let f : (a, b) → R be an increasing function. By
Theorem 7.9 (ii), there exists lim

x→a+
f(x) =: c ∈ R, if f is bounded below. If f is unbounded below,

then it is easy to see that lim
x→a+

f(x) = −∞ =: c. Consequently, lim
x→a+

f(x) = c can be well defined for

any increasing function. Similarly, lim
x→b−

f(x) =: d ≤ +∞ is also well defined.

Theorem 8.5 (Existence of continuous inverse function). Let a function f : (a, b) → R satisfy the
following properties:

1) f strictly increases on (a, b), that is, for any x1, x2 ∈ (a, b) x1 < x2 implies f(x1) < f(x2);

2) f ∈ C((a, b)).

We set c := lim
x→a+

f(x) and d := lim
x→b−

f(x).

Then there exists a function g : (c, d) → (a, b) such that

a) g is strictly increasing on (c, d);

b) g ∈ C((c, d));

c) g(f(x)) = x for all x ∈ (a, b), and f(g(y)) = y for all y ∈ (c, d), that is, g = f−1.

Remark 8.3. A similar statement also is true for a strictly decreasing function f : (a, b) → R, i.e.
for a function such that for any x1, x2 ∈ (a, b) x1 < x2 implies f(x1) > f(x2).

Remark 8.4. If a ∈ R, then Theorem 8.5 is also valid for the set [a, b).
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8.3 Some Inverse Functions

Example 8.8. n-th root function g(y) = m
√
y, y ≥ 0.

Let m ∈ N be fixed. We set [a, b) = [0,+∞) and f(x) = xm, x ∈ [0,+∞). The function f satisfies
conditions of Theorem 8.5, namely, it strictly increases and is continuous on [0,+∞). Moreover,
c = lim

x→0+
xm = 0 and d = lim

x→+∞
xm = +∞. Thus, according to Theorem 8.5, there exists a function

g : [0,+∞) → [0,+∞) which increases and is continuous on [0,+∞) and inverse to f . Usually, the

function g is denoted as follows m
√
y = y

1

m := g(y), y ≥ 0. Moreover, m
√
xm = x for each x ≥ 0 and

( m
√
y)m = y for each y ≥ 0 .

Example 8.9. Logarithmic function g(y) = logp y, y > 0.
Let p > 0, p 6= 1 and f(x) = px, x ∈ R. We want to prove that the function f has the inverse

function, which is called the logarithm. We will consider the case p > 1, for which the function f

is strictly increasing and continuous, by Example 8.6. Moreover, c = lim
x→−∞

px = 0 and d = lim
x→+∞

px.

By Theorem 8.5, there exists a function g : (0,+∞) → R, which is continuous on (0,+∞) and inverse
to f . The function g is denoted by logp y := g(y), y > 0, and it satisfies logp p

x = x for all x ∈ R and

plogp y = y for all y > 0.

Example 8.10. Trigonometric functions arcsin, arccos, arctan, arccot.
Let [a, b] =

[

−π
2 ,

π
2

]

, f(x) = sinx, x ∈
[

−π
2 ,

π
2

]

. By the definition of sin, it is strictly increasing
on

[

−π
2 ,

π
2

]

. Furthermore, by Example 8.5, sin is continuous on R and, in particular, on
[

−π
2 ,

π
2

]

.
Thus, using Theorem 8.5, there exists the continuous inverse function g : [−1, 1] →

[

−π
2 ,

π
2

]

to f . It
is denoted by arcsin y := g(y), y ∈ [−1, 1], and satisfies arcsin(sinx) = x for all x ∈

[

−π
2 ,

π
2

]

and
sin(arcsin y) = y for all y ∈ [−1, 1].

Similarly, one can define the functions arccos : [−1, 1] → [0, π], arctan : R →
(

−π
2 ,

π
2

)

and arccot :
R → (0, π), which are inverse to cos : [0, π] → [−1, 1], tan :

(

−π
2 ,

π
2

)

→ R and cot : (0, π) → R,
respectively. Moreover, each function is continuous on the set where it is defined.

Exercise 8.10. Sketch the graphs of the functions ln = loge, log 1

2

, arcsin, arccos, arctan and arccot.

Exercise 8.11. Compute the following limits:

a) lim
x→0

ln(1+x)+arcsinx2

arccosx+cosx ; b) lim
x→1

arctanx
1+arctanx2 ; c) lim

x→0

arcsinx
x

; d) lim
x→0

x
sinx+arcsinx

; e) lim
x→0

arctanx
x

;

f) lim
x→0

arccosx−π

2

x
; g) lim

x→0

sin(arctanx)
tanx

.

8.4 Some Important Limits

Theorem 8.6. Let a > 0 and a 6= 1. Then

lim
x→0

loga(1 + x)

x
= loga e,

in particular, for a = e

lim
x→0

ln(1 + x)

x
= 1.

Proof. We are going to use Theorem 8.3 about limit of composition in order to prove the needed
equality. Let A = (−1,+∞), f(x) = (1 + x)

1

x , x > −1, p = lim
x→0

(1 + x)
1

x = e > 0; B = (0,+∞) and

33



University of Leipzig – WS18/19
10-PHY-BIPMA1 – Mathematics 1 / Vitalii Konarovskyi

g(y) = loga y, y > 0. In Example 8.9, we have proved that g is continuous and, consequently, it is
continuous at p = e > 0. Thus, using Theorem 8.3, we obtain

lim
x→0

loga(1 + x)

x
= lim

x→0
loga(1 + x)

1

x = loga

(

lim
x→0

(1 + x)
1

x

)

= loga e.

Theorem 8.7. Let a > 0. Then

lim
x→0

ax − 1

x
= ln a,

in particular, for a = e

lim
x→0

ex − 1

x
= 1.

Proof. If a = 1, then the statement is true. We assume that a 6= 1. By the continuity and monotonicity
of the function h(x) = ax (see Example 8.6), one can easily seen that z := ax−1 → 0 provided x → 0.
Moreover, x = loga(1 + z). Hence, by Theorem 8.6, we obtain

lim
x→0

ax − 1

x
= lim

z→0

z

loga(1 + z)
=

1

loga e
= loge a = ln a.

Theorem 8.8. Let α ∈ R. Then

lim
x→0

(1 + x)α − 1

x
= α.

Proof. For α = 0 the statement holds. We assume that α 6= 0. Using the continuity of ln (see
Example 8.9), we have ln(1 + x) → ln 1 = 0, x → 0. By theorems 8.1, 8.6 and 8.7, we get

lim
x→0

(1 + x)α − 1

x
= lim

x→0

(

eα ln(1+x) − 1
)

α ln(1 + x)

xα ln(1 + x)
= α lim

x→0

eα ln(1+x) − 1

α ln(1 + x)
· lim
x→0

ln(1 + x)

x
= α.

Theorem 8.9. Let α ∈ R and f(x) = xα, x > 0. Then f is continuous on (0,+∞).

Proof. Since for each x > 0, one has f(x) = eα lnx, the statement follows from the continuities of the
exponential function and the logarithm (see examples 8.6 and 8.9, respectively) and Theorem 8.4.

Exercise 8.12. Compute the following limits:

a) lim
x→0

(cosx)x; b) lim
x→+∞

x(ln(1+x)− lnx); c) lim
x→0

(

1+sin 2x
cos 2x

)
1

x ; d) lim
x→0

1−cosx
1−cos 2x ; e) lim

x→0

ln(1+x)+ex−cosx

ex
2
−1+sinx

;

f) lim
x→0

(cosx)
1

x2 ; g) lim
x→0

arcsin(x−1)
xm−1 for m ∈ N; h) lim

x→0

1−(cosmx)m

x2 for m ∈ N; i) lim
x→0

1−(cosmx)
1
m

x2 for

m ∈ N; k) lim
x→1

(sin(π·2x))2

ln(cos(π·2x)) ; l) lim
x→0

(

1+x·2x

1+x·3x

)
1

x2 ; m) lim
x→0

xx−aa

x−a
, for a > 0; n) lim

x→1
(1− x) logx 2.
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