# 

# 7 Lecture 7 – Limits of Functions. Left- and Right-Sided Limits

### 7.1 Limit of Functions via $\varepsilon - \delta$ Approach

Let A be a subset of  $\mathbb{R}$ . We recall that  $B(a,\varepsilon) = (a - \varepsilon, a + \varepsilon)$  denotes the  $\varepsilon$ -neighbourhood of a.

**Theorem 7.1.** (i) Let p be a real number and  $a \in \mathbb{R}$  be a limit point of A. Then  $\lim_{x \to a} f(x) = p$  is equivalent to

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in A \cap B(a, \delta), \ x \neq a: \ |f(x) - p| < \varepsilon.$ 

ii) If  $p = +\infty$  and  $a \in \mathbb{R}$ , then  $\lim_{x \to a} f(x) = +\infty$  is equivalent to

 $\forall C \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in A \cap B(a, \delta), \ x \neq a : \ f(x) > C.$ 

iii) If  $p \in \mathbb{R}$  and  $a = +\infty$ , then  $\lim_{x \to +\infty} f(x) = p$  is equivalent to

 $\forall \varepsilon > 0 \ \exists D \in \mathbb{R} \ \forall x > D: \ |f(x) - p| < \varepsilon.$ 

iv) If  $p = +\infty$  and  $a = +\infty$ , then  $\lim_{x \to +\infty} f(x) = +\infty$  is equivalent to

$$\forall C \in \mathbb{R} \ \exists D \in \mathbb{R} \ \forall x > D : \ f(x) > D.$$

**Example 7.1.**  $A = \mathbb{R} \setminus \{1\}, a = 1 \text{ and } f(x) = \frac{x^2 - 1}{x - 1}, x \in A$ . Then  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$ . Indeed, let us fix an arbitrary  $\varepsilon > 0$ . Then we can take  $\delta := \varepsilon$  because for all  $x \in A \cap B(1, \delta)$  we have  $\left| \frac{x^2 - 1}{x - 1} - 2 \right| = |x + 1 - 2| = |x - 1| < \delta = \varepsilon$ .

**Example 7.2.** We show that  $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e.$ 

By the definition of the number e (see Section 4.2), we have

$$\left(1+\frac{1}{n+1}\right)^n = \left(1+\frac{1}{n+1}\right)^{n+1} \frac{n+1}{n+2} \to e \quad \text{and} \quad \left(1+\frac{1}{n}\right)^{n+1} \to e, \quad n \to \infty.$$

Hence, using the definition of the limit (see Definition 3.3), we obtain that for each  $\varepsilon > 0$  there exists  $N \in \mathbb{N}$  such that for each  $n \ge N$ 

$$e - \varepsilon < \left(1 + \frac{1}{n+1}\right)^n, \quad \left(1 + \frac{1}{n}\right)^{n+1} < e + \varepsilon.$$

So, taking D := N, we can estimate for each x > D

$$e - \varepsilon < \left(1 + \frac{1}{\lfloor x \rfloor + 1}\right)^{\lfloor x \rfloor} < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{\lfloor x \rfloor}\right)^{\lfloor x \rfloor + 1} < e + \varepsilon,$$

where  $\lfloor x \rfloor$  is the greatest integer number less than or equal to x, e.g.  $\lfloor 1,7 \rfloor = 1$ ,  $\lfloor -\frac{1}{2} \rfloor = -1$ ,  $\lfloor \pi \rfloor = 3$ . Consequently,  $\left| \left( 1 + \frac{1}{x} \right)^x - e \right| < \varepsilon$  for all x > D. This implies  $\lim_{x \to +\infty} \left( 1 + \frac{1}{x} \right)^x = e$ , by Theorem 7.1 (iii).

**Exercise 7.1.** Compute the following limits a)  $\lim_{x\to 0} \left(x \sin \frac{1}{x}\right)$ ; b)  $\lim_{x\to 0} \left(x \left\lfloor \frac{1}{x} \right\rfloor\right)$ .



**Example 7.3.** Let b > 1,  $A = \mathbb{R}$ ,  $m \in \mathbb{N}$  and  $f(x) = x^m b^{-x}$ ,  $x \in \mathbb{R}$ . We show that  $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^m}{b^x} = 0$ .

Solution. Let  $\varepsilon > 0$  be given. According to Theorem 3.3, we have  $\frac{(n+1)^m}{b^n} = \frac{(n+1)^m}{b^{n+1}}b \to 0$ ,  $n \to \infty$ . By the definition of the limit (see Definition 3.3), there exists  $N \in \mathbb{N}$  such that for all  $n \ge N$   $\frac{(n+1)^m}{b^n} < \varepsilon$ . Thus, taking D := N, we obtain that for each  $x > D \left| \frac{x^m}{b^x} - 0 \right| = \frac{x^m}{b^x} < \frac{(\lfloor x \rfloor + 1)^m}{b^{\lfloor x \rfloor}} < \varepsilon$ . This implies  $\lim_{x \to +\infty} \frac{x^m}{b^x} = 0$ , by Theorem 7.1 (iii).

**Exercise 7.2.** Prove that  $\lim_{x \to +\infty} \frac{\ln x}{x} = 0.$ 

#### 7.2 **Properties of Limits**

Let a be a limit point of a set A.

**Theorem 7.2.** If  $\lim_{x \to a} f(x) = p_1$  and  $\lim_{x \to a} f(x) = p_2$ , then  $p_1 = p_2$ .

*Proof.* The theorem immediately follows from the uniqueness of limit for sequences (see Theorem 3.1). Indeed, let  $\{x_n\}_{n\geq 1}$  be an arbitrary sequence from A such that  $x_n \neq a$ , for all  $n \geq 1$  and  $x_n \to a$ , then by the definition of the limit (see Definition 6.6),  $f(x_n) \to p_1$ ,  $n \to \infty$ , and  $f(x_n) \to p_2$ ,  $n \to \infty$ . By the uniqueness of limit for sequences (see Theorem 3.1), one has  $p_1 = p_2$ .

**Theorem 7.3.** Let functions  $f, g: A \to \mathbb{R}$  satisfy the following properties: a)  $f(x) \leq g(x)$  for all  $x \in A$ ; 2)  $\lim_{x \to a} f(x) = p$  and  $\lim_{x \to a} g(x) = q$ . Then  $p \leq q$ , that is,  $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$ .

*Proof.* The theorem immediately follows from Theorem 3.6.

Exercise 7.3. Prove Theorem 7.3.

**Theorem 7.4** (Squeeze theorem for functions). Let  $f, g, h : A \to \mathbb{R}$  satisfy the following conditions:

- a)  $f(x) \le h(x) \le g(x)$  for all  $x \in A$ ;
- b)  $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = p.$

Then  $\lim_{x \to a} h(x) = p$ .

*Proof.* The theorem follows from the Squeeze theorem for sequences (see Theorem 3.7).  $\Box$ 

Exercise 7.4. Prove Theorem 7.4.

**Theorem 7.5.** We assume that for functions  $f, g : A \to \mathbb{R}$  there exists limits  $\lim_{x \to a} f(x) = p \in \mathbb{R}$  and  $\lim_{x \to a} g(x) = q \in \mathbb{R}$ . Then

- $\begin{aligned} a) & \lim_{x \to a} (C \cdot f(x)) = C \cdot \lim_{x \to a} f(x) \text{ for all } C \in \mathbb{R}; \\ b) & \lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x); \end{aligned}$
- c)  $\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x);$

d) 
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
, if  $q \neq 0$ 

*Proof.* The theorem follows from Theorem 3.8.

Exercise 7.5. Prove Theorem 7.5.

**Exercise 7.6.** Let  $a \notin \{\pi n : n \in \mathbb{Z}\}$ . Prove that  $\lim_{n \to \infty} \cot x = \cot a$ . (*Hint:* Use Example 6.6)

**Example 7.4.** Let  $\alpha \in \mathbb{R}$ , and b > 1. Show that  $\lim_{x \to +\infty} \frac{x^{\alpha}}{b^x} = 0$ .

**Exercise 7.7.** Show that for every  $a \ge 0 \lim_{x \to a} \sqrt{x} = \sqrt{a}$ .

Exercise 7.8. Compute the following limits:

a)  $\lim_{x \to +\infty} \frac{x^2 + \cos x + 1}{\sqrt{x^4 + 1} + x + 3};$  b)  $\lim_{x \to +\infty} \left( x(\sqrt{x^2 + 2x + 2} - x - 1) \right);$  c)  $\lim_{x \to 0} \left( \frac{2}{\sin^2 x} - \frac{1}{1 - \cos x} \right);$  d)  $\lim_{x \to 0} \frac{x^2 + x}{\sqrt[3]{1 + \sin x - 1}};$  e)  $\lim_{x \to +\infty} (\sqrt{ax + 1} - \sqrt{x}), \text{ for some } a > 0.$ 

#### 7.3 Left- and Right-Sided Limits

Let A be a subset of  $\mathbb{R}$  and a is a limit point of A satisfying the following property

there exists a sequence 
$$(x_n)_{n\geq 1}$$
 such that  
 $x_n \in A, \ x_n < a \text{ for all } n \geq 1 \text{ and } x_n \to a, \ n \to \infty.$ 
(7)

**Definition 7.1.** A number  $p \in \mathbb{R}$  is the **left-sided limit** of a function  $f : A \to \mathbb{R}$  at the point *a* if for each sequence  $(x_n)_{n\geq 1}$  such that 1)  $x_n \in A$ ,  $x_n < a$  for all  $n \geq 1$ ; 2)  $x_n \to a$ ,  $n \to \infty$ , it follows that  $f(x_n) \to p$ ,  $n \to \infty$ . We will use the notation p = f(a-) or  $p = \lim_{n \to a} f(x)$ .

**Theorem 7.6.** We assume that  $a \in \mathbb{R}$  and  $(a - \gamma, a) \subset A$  for some  $\gamma > 0$ . Then  $p = \lim_{x \to a_{-}} f(x)$  iff

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (a - \delta, a) : \ |f(x) - p| < \varepsilon.$$

Next, if a is a limit point of A satisfying the following property

there exists a sequence 
$$(x_n)_{n\geq 1}$$
 such that  
 $x_n \in A, \quad x_n > a \text{ for all } n \geq 1 \text{ and } x_n \to a, \quad n \to \infty,$ 
(8)

then we can introduce the right-sided limit of a function.

**Definition 7.2.** A number  $p \in \mathbb{R}$  is the **right-sided limit** of a function  $f : A \to \mathbb{R}$  at the point *a* if for each sequence  $(x_n)_{n\geq 1}$  such that 1)  $x_n \in A$ ,  $x_n > a$  for all  $n \geq 1$ ; 2)  $x_n \to a$ ,  $n \to \infty$ , it follows that  $f(x_n) \to p$ ,  $n \to \infty$ . We will use the notation p = f(a+) or  $p = \lim_{x \to a+} f(x)$ .

**Theorem 7.7.** We assume that  $a \in \mathbb{R}$  and  $(a, a + \gamma) \subset A$  for some  $\gamma > 0$ . Then  $p = \lim_{x \to a+} f(x)$  iff

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (a, a + \delta) : \ |f(x) - p| < \varepsilon.$$

UNIVERSITÄT LEIPZIG



Example 7.5. For the function

$$\operatorname{sgn}(x) := \begin{cases} 1, & \text{if } x > 0, \\ 0, & \text{if } x = 0, \\ -1, & \text{if } x < 0, \end{cases}$$

one has sgn(0-) = -1, sgn(0) = 0 and sgn(0+) = 1.

**Theorem 7.8.** Let  $f : A \to \mathbb{R}$  and a be a limit point of A which satisfies properties (7) and (8). Then the limit  $\lim_{x\to a} f(x)$  exists iff f(a-) and f(a+) exist and are equal to each other. In this case,  $\lim_{x\to a} f(x) = f(a-) = f(a+).$ 

Proof. The necessity of the theorem immediately follows from the definition of the limit of f at a. Next we prove the sufficiency. Setting p := f(a-) = f(a+), we are going to show that  $\lim_{x \to a} f(x) = p$ . Let  $(x_n)_{n \ge 1}$  be as in Definition 6.6, i.e. it satisfies the properties: 1)  $x_n \in A$ ,  $x_n \ne a$  for all  $n \ge 1$ ; 2)  $x_n \to a$ ,  $n \to \infty$ . If all elements of the sequence are from one hand side of a starting from some number N, that is,  $x_n < a$  for all  $n \ge N$  or  $x_n > a$  for all  $n \ge N$ , then  $f(x_n) \to f(a-) = p, n \to \infty$ , or  $f(x_n) \to f(a+) = p, n \to \infty$ , respectively. Next, we assume that infinitely many elements of  $(x_n)_{n\ge 1}$ are from both hand sides of a. We construct two subsequences  $(y_n)_{n\ge 1}$  and  $(z_n)_{n\ge 1}$  of  $(x_n)_{n\ge 1}$ , where  $(y_n)_{n\ge 1}$  consists of all elements of  $(x_n)_{n\ge 1}$  which are less than a and  $(z_n)_{n\ge 1}$  consists of all elements of  $(x_n)_{n\ge 1}$  which are grater than a. Then  $f(y_n) \to f(a-) = p, n \to \infty$ , and  $f(z_n) \to f(a-) = p,$  $n \to \infty$ . This implies  $f(x_n) \to p, n \to \infty$ .

Exercise 7.9. Compute the following limits:

a)  $\lim_{x \to \frac{\pi}{2} - \frac{x - \frac{\pi}{2}}{\sqrt{1 - \sin x}}};$  b)  $\lim_{x \to \frac{\pi}{2} + \frac{x - \frac{\pi}{2}}{\sqrt{1 - \sin x}}};$  c)  $\lim_{x \to 0+} e^{-\frac{1}{x}};$  d)  $\lim_{x \to 0+} \frac{e^{-\frac{1}{x}}}{x}.$ 

#### 7.4 Existence of Limit of Function

Let A be a subset of  $\mathbb{R}$ .

**Definition 7.3.** A function  $f : A \to \mathbb{R}$  is said to be **increasing** (decreasing) on A if for all  $x_1, x_2 \in A$  the inequality  $x_1 < x_2$  implies  $f(x_1) \le f(x_2)$  ( $f(x_1) \ge f(x_2)$ ).

**Example 7.6.** The function  $f(x) = x^2$ ,  $x \in \mathbb{R}$ , decreases on  $(-\infty, 0]$  and increases on  $[0, +\infty)$ .

**Definition 7.4.** A function  $f : A \to \mathbb{R}$  is called a monotone function on A if it is either increasing or decreasing on A.

**Definition 7.5.** A function  $f : A \to \mathbb{R}$  is said to be **bounded on** A if the set f(A) is bounded, that is, there exists C > 0 such that  $|f(x)| \leq C$  for all  $x \in A$ .

**Theorem 7.9.** (i) If  $f : A \to \mathbb{R}$  be a monotone and bounded function, then for each limit point a of A which satisfies (7) the left-sided limit  $\lim_{x\to a^-} f(x)$  exists and belongs to  $\mathbb{R}$ .

(ii) If  $f : A \to \mathbb{R}$  be a monotone and bounded function, then for each limit point a of A which satisfies (8) the right-sided limit  $\lim_{x\to a+} f(x)$  exists and belongs to  $\mathbb{R}$ .



*Proof.* We will prove only Part (i). Let  $f : A \to \mathbb{R}$  increase and be bounded. We consider the set  $B := \{x \in A : x < a\}$ . By (7), it is non-empty. Consequently, the set f(B) is also non-empty. Moreover, it is bounded, by the boundedness of the function f. We set

$$p := \sup f(B) = \sup_{x < a} f(x),$$

which exists according to Theorem 2.2.

We are going to show that f(a-) = p. Let  $(x_n)_{n\geq 1}$  be an arbitrary sequence such that 1)  $x_n \in A$ ,  $x_n < a$  for all  $n \geq 1$ ; 2)  $x_n \to a$ ,  $n \to \infty$ . Since for each  $n \geq 1$   $x_n < a$ , we have  $f(x_n) \leq p$  for each  $n \geq 1$ , by the definition of supremum (see Definition 2.6).

Next, we fix  $\varepsilon > 0$  and show that there exists  $N \in \mathbb{N}$  such that  $|p - f(x_n)| = p - f(x_n) < \varepsilon$  for all  $n \ge N$ . By Theorem 2.1 (i), there exists b < a such that  $p - \varepsilon < f(b)$ . Since  $x_n \to a$ ,  $n \to \infty$ , for  $\varepsilon_1 := a - b > 0$  there exists N such that for all  $n \ge N |a - x_n| = a - x_n < \varepsilon_1 = a - b$ . Hence,  $x_n > b$  for all  $n \ge N$ . Consequently, using the increasing of f, we obtain  $|p - f(x_n)| = p - f(x_n) \le p - f(b) < \varepsilon$ . This proves that  $f(x_n) \to p, n \to \infty$ , and, thus, f(a-) = p.

If the function f decreases and is bounded, then  $f(a-) := \inf_{x \le a} f(x)$ . The proof is similar.

Exercise 7.10. Prove Part (ii) of Theorem 7.9.

**Exercise 7.11.** Let f be an increasing function on an interval [a, b].

a) For each  $c \in (a, b)$  show that the one-sided limits f(a+), f(c-), f(c+), f(b-) exist.

b) Check the inequalities

$$f(a) \le f(a+) \le f(c-) \le f(c) \le f(c+) \le f(b-) \le f(b),$$

for all  $c \in (a, b)$ . c) Prove that  $\lim_{x \to c+} f(x-) = f(c+)$  and  $\lim_{x \to c-} f(x+) = f(c-)$  for all  $c \in (a, b)$ .

**Theorem 7.10** (Cauchy Criterion). Let  $a \in \mathbb{R}$  be a limit point of A and  $f : A \to \mathbb{R}$ . A (finite) limit of f at the point a exists iff

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A \cap B(a, \delta), \ x \neq a, \ y \neq a : \ |f(x) - f(y)| < \varepsilon.$$

## References

 K.A. Ross. *Elementary Analysis: The Theory of Calculus*. Undergraduate Texts in Mathematics. Springer New York, 2013.