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6 Lecture 6 – Limits of Functions

6.1 Base Notion of Functions (continuation)

Definition 6.1. Let f : X → Y and g : Y → Z be functions. The function h : X → Z defined by
h(x) = f(g(x)) for all x ∈ X is called the composition of f and g and it is denoted by h = f ◦ g.

Definition 6.2. Let f : X → Y , A ⊂ X and B ⊂ Y . The set

f(A) := {f(x) : x ∈ X}

is said to be the image of A by f . The set

f−1(B) := {x : f(x) ∈ B}

is called the preimage of B by f .

Be note that f(A) is a subset of Y and f−1(B) is a subset of X.

Example 6.1. Let X = R, Y = R and f(x) = x2, x ∈ R. Then f([0, 1)) = f((−1, 1)) = [0, 1);
f−1([−4, 4]) = f−1([0, 4]) = [−2, 2]; f−1((1, 9]) = [−3,−1) ∪ (1, 3]; f((−∞, 0)) = ∅.

Exercise 6.1. Let f : X → Y and A1 ⊂ X, A2 ⊂ X. Check that
a) f(A1 ∪A2) = f(A1) ∪ f(A2); b) f(A1 ∩A2) ⊂ (f(A1) ∩ f(A2)); c) (f(A1) \ f(A2)) ⊂ f(A1 \A2);
d) A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2); e) A1 ⊂ f−1(f(A1)); f) (f(X) \ f(A1)) ⊂ f(X \A1).

Exercise 6.2. Let f : X → Y and B1 ⊂ Y , B2 ⊂ Y . Show that
a) f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2); b) f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2);
c) f−1(B1\B2) = f−1(B1)\f

−1(B2); d) B1 ⊂ B2 ⇒ f−1(B1) ⊂ f−1(B2); e) f(f−1(B1)) = B1∩f(X);
f) f−1(Bc

1) = (f−1(B1))
c.

Definition 6.3. • A function f : X → Y is surjective or a surjection, if f(X) = Y , i.e. for
every element y in Y there is at least one element x in X such that f(x) = y.

• A function f : X → Y is injective or an injection, if for each x1, x2 ∈ X x1 6= x2 implies
f(x1) 6= f(x2).

• A function f : X → Y is bijective or a bijection or an one-to-one function, if it is surjective
and injective, that is, for each y ∈ Y there exists a unique element x ∈ X such that f(x) = y.
We set f−1(y) := x. The function f−1 : Y → X is called the inverse function to f .

Exercise 6.3. Prove that the composition of two bijective functions is a bijection.

Exercise 6.4. Check the following statements:
a) f : X → Y is a surjection iff for all y ∈ Y f−1({y}) 6= ∅.
b) f : X → Y is an injection iff for all y ∈ Y the set f−1({y}) is either empty or contains only one
element.
c) f : X → Y is a bijection iff for all y ∈ Y the set f−1({y}) contains only one element.

Exercise 6.5. a) Let functions f : X → Y and g : Y → X satisfy the following property g(f(x)) = x

for all x ∈ X. Prove that f is an injection and g is a surjection.
b) Let additionally f(g(y)) = y for all y ∈ Y . Show that f, g are bijections and g = f−1.

Remark 6.1. Every sequence (an)n≥1 of real numbers can be considered as a function f : N → R,
namely, f(n) := an for all n ∈ N.
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6.2 Limit Points of a Set

Definition 6.4. Let a be a real number or the symbol +∞ or −∞. Then a is called a limit point
of a subset A of R, if there exists a sequence (an)n≥1 satisfying the following properties: 1) an ∈ A

and an 6= a for all n ≥ 1; 2) an → a, n → ∞.

Example 6.2. • For the set A = [0, 1], the set of its limit points is A.

• For the set A = (0, 1] ∪ {2}, the set of its limit points is [0, 1].

• The set A =
{

1
n
: n ∈ N

}

has only one limit point 0.

• The limit points of A = Z are +∞ and −∞.

• The set A = {1, 2, 3, . . . , 10} has no limit points.

For convenience, we will denote the ε-neighbourhood of a point a by

B(a, ε) := (a− ε, a+ ε) = {y ∈ R : |a− y| < ε}.

Theorem 6.1. (i) A real number a ∈ R is a limit point of a subset A of R iff

∀ε > 0 ∃y ∈ A, y 6= a : |y − a| < ε, (5)

that is, each ε-neighbourhood B(a, ε) of the point a contains at least one point different from a.

(ii) The symbol a = +∞ (a = −∞) is a limit point of a subset A of R iff

∀C ∈ R ∃y ∈ A : y > C (y < C).

Proof. We will prove only Part (i). If a is a limit point of A, then (5) immediately follows from the
definition of the limit of a sequence and the definition of a limit point (see definitions 3.3 and 6.4).

Next, let (5) hold. Then for each ε := 1
n
there exists an ∈ A and an 6= a such that |an − a| < ε = 1

n
.

By theorems 3.7 and 3.2 and Exercise 3.5 a), an → a, n → ∞. So, a is a limit point of A.

Exercise 6.6. Prove that the set of all limit points of Q equals R ∪ {−∞,+∞}.

Exercise 6.7. Let a be a limit point of A. Show that every neighbourhood of the point a contains
infinitely many points from A.

Definition 6.5. A point a ∈ A is an isolated point of a set A, if it is not a limit point of A.

Remark 6.2. A point a ∈ A is an isolated point of A iff ∃ε > 0 such that B(a, ε) ∩A = {a}.

Example 6.3. • The set A = [0, 1] has no isolated points.

• The set A = (0, 1] ∪ {2} has only one isolated point 2.

• For the set A =
{

1
n
: n ∈ N

}

, the set of its isolated points is A.
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6.3 Limits of Functions

In this section, we will assume that A is any subset of R and f : A → R.

Definition 6.6. Let a be a limit point of A. The value p (maybe p = −∞ or p = +∞) is called a
limit of the function f at the point a, if for every sequence (xn)n≥1 satisfying the properties: 1)
xn ∈ A, xn 6= a for all n ≥ 1; 2) xn → a, n → ∞, implies f(xn) → p, n → ∞. In this case, we will
write lim

x→a
f(x) = p or f(x) → p, x → a.

Example 6.4. Let A = R, f(x) = x2, x ∈ R. Then lim
x→a

f(x) = lim
x→a

x2 = a2 for each a ∈ R. Indeed,

let {xn}n≥1 be a sequence of real numbers such that xn 6= a for all n ≥ 1 and xn → a, n → ∞. Then
lim
n→∞

f(xn) = lim
n→∞

x2n = lim
n→∞

xn · lim
n→∞

xn = a · a = a2, by Theorem 3.8 c).

Example 6.5. Let A = R \ {0}, a = 0, and f(x) = sinx
x

, x ∈ A. Then lim
x→0

sinx
x

= 1. To show this, we

will compare areas of triangles and a sector of a circle with radius 1. So, we obtain for each x ∈
(

0, π2
)

1

2
sinx <

1

2
x <

1

2
tanx.

This yields

cosx <
sinx

x
< 1, (6)

for all x satisfying 0 < x < π
2 , and, consequently, for all 0 < |x| < π

2 because each function in the
latter inequalities is even. Thus, if {xn}n≥0 is any sequence such that xn 6= 0 for all n ≥ 1 and xn → 0,
then inequality (6) and the Squeeze theorem (see Theorem 3.7) implies that lim

n→∞

sinxn

xn

= 1.

Remark 6.3. Inequality (6) implies that | sinx| ≤ |x| for all x ∈ R. Moreover, | sinx| = |x| iff x = 0.

Exercise 6.8. Prove that 1
f(x) → 0, x → a, if f(x) → +∞, x → a.

Example 6.6. Show that for every a ∈ R lim
x→a

sinx = sin a and lim
x→a

cosx = cos a.

Solution. We prove only the first equality. The proof of the second one is similar. So, using
properties of sin and cos and Remark 6.3, we can estimate

| sinx− sin a| = 2

∣

∣

∣

∣

cos
x+ a

2

∣

∣

∣

∣

·

∣

∣

∣

∣

sin
x− a

2

∣

∣

∣

∣

≤ 2 · 1 ·
|x− a|

2
= |x− a|,

for all x ∈ R. Thus, if (xn)n≥1 is any sequence which convergences to a, one has sinxn → sin a, by
the Squeeze theorem (see Theorem 3.7).

Exercise 6.9. Prove that the limit of the function f(x) = sin 1
x
, x ∈ R \ {0}, does not exists at the

point a = 0.

References

[1] K.A. Ross. Elementary Analysis: The Theory of Calculus. Undergraduate Texts in Mathematics.
Springer New York, 2013.

24


