6 Lecture 6 - Limits of Functions

6.1 Base Notion of Functions (continuation)

Definition 6.1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. The function $h: X \rightarrow Z$ defined by $h(x)=f(g(x))$ for all $x \in X$ is called the composition of f and g and it is denoted by $h=f \circ g$.

Definition 6.2. Let $f: X \rightarrow Y, A \subset X$ and $B \subset Y$. The set

$$
f(A):=\{f(x): x \in X\}
$$

is said to be the image of A by f. The set

$$
f^{-1}(B):=\{x: f(x) \in B\}
$$

is called the preimage of B by f.
Be note that $f(A)$ is a subset of Y and $f^{-1}(B)$ is a subset of X.
Example 6.1. Let $X=\mathbb{R}, Y=\mathbb{R}$ and $f(x)=x^{2}, x \in \mathbb{R}$. Then $f([0,1))=f((-1,1))=[0,1)$; $f^{-1}([-4,4])=f^{-1}([0,4])=[-2,2] ; f^{-1}((1,9])=[-3,-1) \cup(1,3] ; f((-\infty, 0))=\emptyset$.

Exercise 6.1. Let $f: X \rightarrow Y$ and $A_{1} \subset X, A_{2} \subset X$. Check that
a) $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$; b) $f\left(A_{1} \cap A_{2}\right) \subset\left(f\left(A_{1}\right) \cap f\left(A_{2}\right)\right) ;$ c) $\left(f\left(A_{1}\right) \backslash f\left(A_{2}\right)\right) \subset f\left(A_{1} \backslash A_{2}\right)$;
d) $A_{1} \subset A_{2} \Rightarrow f\left(A_{1}\right) \subset f\left(A_{2}\right) ;$ e) $A_{1} \subset f^{-1}\left(f\left(A_{1}\right)\right) ;$ f) $\left(f(X) \backslash f\left(A_{1}\right)\right) \subset f\left(X \backslash A_{1}\right)$.

Exercise 6.2. Let $f: X \rightarrow Y$ and $B_{1} \subset Y, B_{2} \subset Y$. Show that
a) $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right) ;$ b) $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$;
c) $f^{-1}\left(B_{1} \backslash B_{2}\right)=f^{-1}\left(B_{1}\right) \backslash f^{-1}\left(B_{2}\right)$; d) $B_{1} \subset B_{2} \Rightarrow f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right) ;$ e) $f\left(f^{-1}\left(B_{1}\right)\right)=B_{1} \cap f(X)$;
f) $f^{-1}\left(B_{1}^{c}\right)=\left(f^{-1}\left(B_{1}\right)\right)^{c}$.

Definition 6.3. - A function $f: X \rightarrow Y$ is surjective or a surjection, if $f(X)=Y$, i.e. for every element y in Y there is at least one element x in X such that $f(x)=y$.

- A function $f: X \rightarrow Y$ is injective or an injection, if for each $x_{1}, x_{2} \in X x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
- A function $f: X \rightarrow Y$ is bijective or a bijection or an one-to-one function, if it is surjective and injective, that is, for each $y \in Y$ there exists a unique element $x \in X$ such that $f(x)=y$. We set $f^{-1}(y):=x$. The function $f^{-1}: Y \rightarrow X$ is called the inverse function to f.

Exercise 6.3. Prove that the composition of two bijective functions is a bijection.
Exercise 6.4. Check the following statements:
a) $f: X \rightarrow Y$ is a surjection iff for all $y \in Y f^{-1}(\{y\}) \neq \emptyset$.
b) $f: X \rightarrow Y$ is an injection iff for all $y \in Y$ the set $f^{-1}(\{y\})$ is either empty or contains only one element.
c) $f: X \rightarrow Y$ is a bijection iff for all $y \in Y$ the set $f^{-1}(\{y\})$ contains only one element.

Exercise 6.5. a) Let functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ satisfy the following property $g(f(x))=x$ for all $x \in X$. Prove that f is an injection and g is a surjection.
b) Let additionally $f(g(y))=y$ for all $y \in Y$. Show that f, g are bijections and $g=f^{-1}$.

Remark 6.1. Every sequence $\left(a_{n}\right)_{n \geq 1}$ of real numbers can be considered as a function $f: \mathbb{N} \rightarrow \mathbb{R}$, namely, $f(n):=a_{n}$ for all $n \in \mathbb{N}$.

6.2 Limit Points of a Set

Definition 6.4. Let a be a real number or the symbol $+\infty$ or $-\infty$. Then a is called a limit point of a subset A of \mathbb{R}, if there exists a sequence $\left(a_{n}\right)_{n \geq 1}$ satisfying the following properties: 1) $a_{n} \in A$ and $a_{n} \neq a$ for all $n \geq 1$; 2) $a_{n} \rightarrow a, n \rightarrow \infty$.

Example 6.2. - For the set $A=[0,1]$, the set of its limit points is A.

- For the set $A=(0,1] \cup\{2\}$, the set of its limit points is $[0,1]$.
- The set $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ has only one limit point 0 .
- The limit points of $A=\mathbb{Z}$ are $+\infty$ and $-\infty$.
- The set $A=\{1,2,3, \ldots, 10\}$ has no limit points.

For convenience, we will denote the ε-neighbourhood of a point a by

$$
B(a, \varepsilon):=(a-\varepsilon, a+\varepsilon)=\{y \in \mathbb{R}:|a-y|<\varepsilon\} .
$$

Theorem 6.1. (i) A real number $a \in \mathbb{R}$ is a limit point of a subset A of \mathbb{R} iff

$$
\begin{equation*}
\forall \varepsilon>0 \exists y \in A, y \neq a:|y-a|<\varepsilon \tag{5}
\end{equation*}
$$

that is, each ε-neighbourhood $B(a, \varepsilon)$ of the point a contains at least one point different from a.
(ii) The symbol $a=+\infty(a=-\infty)$ is a limit point of a subset A of \mathbb{R} iff

$$
\forall C \in \mathbb{R} \exists y \in A: y>C(y<C)
$$

Proof. We will prove only Part (i). If a is a limit point of A, then (5) immediately follows from the definition of the limit of a sequence and the definition of a limit point (see definitions 3.3 and 6.4).

Next, let (5) hold. Then for each $\varepsilon:=\frac{1}{n}$ there exists $a_{n} \in A$ and $a_{n} \neq a$ such that $\left|a_{n}-a\right|<\varepsilon=\frac{1}{n}$. By theorems 3.7 and 3.2 and Exercise 3.5 a), $a_{n} \rightarrow a, n \rightarrow \infty$. So, a is a limit point of A.

Exercise 6.6. Prove that the set of all limit points of \mathbb{Q} equals $\mathbb{R} \cup\{-\infty,+\infty\}$.
Exercise 6.7. Let a be a limit point of A. Show that every neighbourhood of the point a contains infinitely many points from A.

Definition 6.5. A point $a \in A$ is an isolated point of a set A, if it is not a limit point of A.
Remark 6.2. A point $a \in A$ is an isolated point of A iff $\exists \varepsilon>0$ such that $B(a, \varepsilon) \cap A=\{a\}$.
Example 6.3. - The set $A=[0,1]$ has no isolated points.

- The set $A=(0,1] \cup\{2\}$ has only one isolated point 2 .
- For the set $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, the set of its isolated points is A.

6.3 Limits of Functions

In this section, we will assume that A is any subset of \mathbb{R} and $f: A \rightarrow \mathbb{R}$.
Definition 6.6. Let a be a limit point of A. The value p (maybe $p=-\infty$ or $p=+\infty$) is called a limit of the function f at the point a, if for every sequence $\left(x_{n}\right)_{n \geq 1}$ satisfying the properties: 1) $x_{n} \in A, x_{n} \neq a$ for all $n \geq 1$; 2) $x_{n} \rightarrow a, n \rightarrow \infty$, implies $f\left(x_{n}\right) \rightarrow p, n \rightarrow \infty$. In this case, we will write $\lim _{x \rightarrow a} f(x)=p$ or $f(x) \rightarrow p, x \rightarrow a$.

Example 6.4. Let $A=\mathbb{R}, f(x)=x^{2}, x \in \mathbb{R}$. Then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x^{2}=a^{2}$ for each $a \in \mathbb{R}$. Indeed, let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence of real numbers such that $x_{n} \neq a$ for all $n \geq 1$ and $x_{n} \rightarrow a, n \rightarrow \infty$. Then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}^{2}=\lim _{n \rightarrow \infty} x_{n} \cdot \lim _{n \rightarrow \infty} x_{n}=a \cdot a=a^{2}$, by Theorem 3.8 c).

Example 6.5. Let $A=\mathbb{R} \backslash\{0\}, a=0$, and $f(x)=\frac{\sin x}{x}, x \in A$. Then $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. To show this, we will compare areas of triangles and a sector of a circle with radius 1 . So, we obtain for each $x \in\left(0, \frac{\pi}{2}\right)$

$$
\frac{1}{2} \sin x<\frac{1}{2} x<\frac{1}{2} \tan x .
$$

This yields

$$
\begin{equation*}
\cos x<\frac{\sin x}{x}<1 \tag{6}
\end{equation*}
$$

for all x satisfying $0<x<\frac{\pi}{2}$, and, consequently, for all $0<|x|<\frac{\pi}{2}$ because each function in the latter inequalities is even. Thus, if $\left\{x_{n}\right\}_{n \geq 0}$ is any sequence such that $x_{n} \neq 0$ for all $n \geq 1$ and $x_{n} \rightarrow 0$, then inequality (6) and the Squeeze theorem (see Theorem 3.7) implies that $\lim _{n \rightarrow \infty} \frac{\sin x_{n}}{x_{n}}=1$.

Remark 6.3. Inequality (6) implies that $|\sin x| \leq|x|$ for all $x \in \mathbb{R}$. Moreover, $|\sin x|=|x|$ iff $x=0$.
Exercise 6.8. Prove that $\frac{1}{f(x)} \rightarrow 0, x \rightarrow a$, if $f(x) \rightarrow+\infty, x \rightarrow a$.
Example 6.6. Show that for every $a \in \mathbb{R} \lim _{x \rightarrow a} \sin x=\sin a$ and $\lim _{x \rightarrow a} \cos x=\cos a$.
Solution. We prove only the first equality. The proof of the second one is similar. So, using properties of sin and cos and Remark 6.3, we can estimate

$$
|\sin x-\sin a|=2\left|\cos \frac{x+a}{2}\right| \cdot\left|\sin \frac{x-a}{2}\right| \leq 2 \cdot 1 \cdot \frac{|x-a|}{2}=|x-a|
$$

for all $x \in \mathbb{R}$. Thus, if $\left(x_{n}\right)_{n \geq 1}$ is any sequence which convergences to a, one has $\sin x_{n} \rightarrow \sin a$, by the Squeeze theorem (see Theorem 3.7).

Exercise 6.9. Prove that the limit of the function $f(x)=\sin \frac{1}{x}, x \in \mathbb{R} \backslash\{0\}$, does not exists at the point $a=0$.

References

[1] K.A. Ross. Elementary Analysis: The Theory of Calculus. Undergraduate Texts in Mathematics. Springer New York, 2013.

