5 Lecture 5 – Cauchy Sequences. Base Notion of Functions

5.1 Subsequences (continuation)

5.1.1 Upper and Lower Limits

Definition 5.1. • Let $(a_n)_{n\geq 1}$ be a sequence of real numbers and A be the set of its subsequential limits. The value

 $\lim_{n \to \infty} a_n = \begin{cases} -\infty, & \text{if } A \text{ is unbounded below;} \\ \inf A, & \text{if } A \text{ is bounded below and } A \neq \{+\infty\}; \\ +\infty, & \text{if } A = \{+\infty\} \end{cases}$

UNIVERSITÄT LEIPZIG

is called the **lower limit** of $(a_n)_{n\geq 1}$.

• The value

$$\lim_{n \to \infty} a_n = \begin{cases} +\infty, & \text{if } A \text{ is unbounded above;} \\ \sup A, & \text{if } A \text{ is bounded above and } A \neq \{-\infty\}; \\ -\infty, & \text{if } A = \{-\infty\} \end{cases}$$

is called the **upper limit** of $(a_n)_{n\geq 1}$.

Remark 5.1. If $(a_n)_{n\geq 1}$ is a bounded sequence, then $\lim_{n\to\infty} a_n = \inf A$ and $\overline{\lim_{n\to\infty}} a_n = \sup A$.

Example 5.1. If $a_n \to a$, $n \to \infty$, then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n = a$, since $A = \{a\}$ in this case.

Exercise 5.1. Prove that $a_n \to a, n \to \infty \Leftrightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n = a$.

Theorem 5.1. Let $(a_n)_{n\geq 1}$ be a sequence of real numbers and A be the set of its subsequential limits. Then $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} a_n$ belong to A.

Remark 5.2. If a sequence $(a_n)_{n\geq 1}$ is bounded, then $\inf A = \min A$ and $\sup A = \max A$, by Theorem 5.1, Remark 5.1 and Exercise 2.3. It means that $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} a_n$ are the minimal and the maximal subsequential limits of the bounded sequence $(a_n)_{n\geq 1}$, respectively.

Theorem 5.2. The following equalities hold: a) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \inf\{a_k : k \ge n\} =: \lim_{n \to \infty} \inf_{k \ge n} a_k;$ b) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sup\{a_k : k \ge n\} =: \lim_{n \to \infty} \sup_{k \ge n} a_k.$

Exercise 5.2. Prove Theorem 5.2.

Exercise 5.3. For a sequence $(a_n)_{n\geq 1}$ compute $\lim_{n\to\infty} a_n$ and $\overline{\lim_{n\to\infty}} a_n$, if for all $n\geq 1$ a) $a_n = 1 - \frac{1}{n}$; b) $a_n = \frac{(-1)^n}{n} + \frac{1+(-1)^n}{2}$; c) $a_n = \frac{n-1}{n+1} \cos \frac{2n\pi}{3}$; d) $a_n = 1 + n \sin \frac{n\pi}{2}$; e) $a_n = \left(1 + \frac{1}{n}\right)^n \cdot (-1)^n + \sin \frac{n\pi}{4}$.

Exercise 5.4. Let $(a_n)_{n\geq 1}$ be a sequence of real numbers and $\sigma_n := \frac{a_1+a_2+\ldots+a_n}{n}$, $n\geq 1$. Prove that

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} \sigma_n \le \overline{\lim_{n \to \infty}} \sigma_n \le \overline{\lim_{n \to \infty}} a_n.$$

Compare with the statement from Exercise 3.16.

Exercise 5.5. Check that

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n \le \lim_{n \to \infty} (a_n + b_n) \le \overline{\lim_{n \to \infty}} (a_n + b_n) \le \overline{\lim_{n \to \infty}} a_n + \overline{\lim_{n \to \infty}} b_n.$$

5.2 Cauchy Sequences

Definition 5.2. A sequence $(a_n)_{n\geq 1}$ of real numbers is called a **Cauchy sequence** if

 $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall n \ge N \; \forall m \ge N : \; |a_n - a_m| < \varepsilon.$

- **Example 5.2.** 1. The sequence $\left(\frac{1}{2^n}\right)_{n\geq 1}$ is a Cauchy sequence. Indeed, since $\frac{1}{2^n} \to 0, n \to \infty$, (see Theorem 3.3), one has that for every given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for each $n \geq N$ $\frac{1}{2^n} < \varepsilon$. Consequently, for every $n \geq N$ and $m \geq N$ we can estimate $\left|\frac{1}{2^m} \frac{1}{2^n}\right| \leq \frac{1}{2^k} < \varepsilon$, where $k := \min\{n, m\} \geq N$.
 - 2. The sequence $(a_n = (-1)^n)_{n \ge 1}$ is not a Cauchy sequence. To check this, we take $\varepsilon := 1$. Then $\forall N \in \mathbb{N} \exists n := N$ and $\exists m := N + 1$ such that $|a_n a_m| = 2 > \varepsilon$.

Exercise 5.6. Prove that a monotone sequence which contains a Cauchy subsequence is also a Cauchy sequence.

Exercise 5.7. Show that $(a_n)_{n\geq 1}$ is a Cauchy sequence iff $\sup_{m\geq N, n\geq N} |a_m - a_n| \to 0, N \to \infty$.

Lemma 5.1. Every convergent sequence is a Cauchy sequence.

Proof. Let $a_n \to a$, $n \to \infty$, and let $\varepsilon > 0$ be given. By the definition of convergence (see Definition 3.3), for the number $\frac{\varepsilon}{2}$ there exists $N_1 \in \mathbb{N}$ such that $\forall n \ge N_1 |a_n - a| < \frac{\varepsilon}{2}$. Thus we have that $\forall n \ge N := N_1$ and $\forall m \ge N$

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a - a_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

by the triangular inequality.

Lemma 5.2. Every Cauchy sequence is bounded.

Proof. The proof is similar to the proof of Theorem 3.5.

Exercise 5.8. Prove Lemma 5.2.

Theorem 5.3. A sequence converges iff it is a Cauchy sequence.

Proof. The necessity was stated in Lemma 5.1. We will prove the sufficiency. Let $(a_n)_{n\geq 1}$ be a Cauchy sequence. By Lemma 5.2, it is bounded. Thus, using the Bolzano-Weierstrass theorem (see Theorem 4.6), there exists a subsequence $(a_{n_k})_{k\geq 1}$ which converges to some $a \in \mathbb{R}$.

Next, we are going to show that $a_n \to a$, $n \to \infty$. Let $\varepsilon > 0$ be given. Since $(a_n)_{n \ge 1}$ is a Cauchy sequence, for the number $\frac{\varepsilon}{2} > 0 \exists N_1 \in \mathbb{N} \forall m \ge N \forall n \ge N$ such that $|a_m - a_n| < \frac{\varepsilon}{2}$. By the definition of convergence, we have that $\exists K \in \mathbb{N} \forall k \ge K$ such that $|a - a_{n_k}| < \frac{\varepsilon}{2}$. Thus, $\forall n \ge N := N_1$

$$|a_n - a| = |a_n - a_{n_k} + a_{n_k} - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon_1$$

where k is any number satisfying $k \ge K$ and $n_k \ge N$.

Exercise 5.9. Show that the sequence $\left(a_n = \frac{\sin 1}{2^1} + \frac{\sin 2}{2^2} + \ldots + \frac{\sin n}{2^n}\right)_{n \ge 1}$ is a Cauchy sequence.

Exercise 5.10. Let $(a_n)_{n\geq 1}$ be a sequence which satisfies the following property: there exists $\lambda \in [0, 1)$ such that $|a_{n+2} - a_{n+1}| \leq \lambda |a_{n+1} - a_n|$ for all $n \geq 1$. Prove that $(a_n)_{n\geq 1}$ converges.

5.3 Base Notion of Functions

Let X and Y be two sets.

- **Definition 5.3.** A function f is a process or a relation that associates each element x of X to a single element y of Y. The set X is called the **domain** of the function f and is denoted by D(f). The set Y is said to be the **codomain** of f. We will use the notation $f : X \to Y$.
 - The element y ∈ Y which is associated to x ∈ Y by a function f is called the value of f applied to the argument x or the image of x under f and is denoted by f(x). We will also write x ↦ f(x).
 - The set

$$R(f) := \{ y \in Y : \exists x \in X \ y = f(x) \}$$

is called the **range** or the **image** of the function f.

• If $Y \subset \mathbb{R}$, then f is called a **real valued function**.

In further sections, we will usually consider real valued functions with $D(f) \subset \mathbb{R}$.

Exercise 5.11. Determine domains $X \subset \mathbb{R}$ for which the following functions $f: X \to \mathbb{R}$ are well-defined:

a) $f(x) = \frac{x^2}{x+1}$; b) $f(x) = \sqrt{3x - x^3}$; c) $f(x) = \ln(x^2 - 4)$; d) $\sqrt{\cos(x^2)}$; e) $f(x) = \frac{\sqrt{x}}{\sin \pi x}$.

Exercise 5.12. Compute f(-1), f(-0,001) and f(100), if $f(x) = \lg(x^2)$.

Exercise 5.13. Compute f(-2), f(-1), f(0), f(1) and f(2), if

$$f(x) = \begin{cases} 1+x, & \text{if } x \le 0, \\ 2^x, & \text{if } x > 0. \end{cases}$$

Exercise 5.14. Define the range R(f) of the following functions:

- a) $X = \mathbb{Z}, Y = \mathbb{Z}$ and $f(x) = |x| 1, x \in \mathbb{Z};$
- b) $X = \mathbb{R}, Y = \mathbb{R}$ and $f(x) = x^2 + x, x \in \mathbb{R}$;
- c) $X = (0, \infty), Y = \mathbb{R}$ and $f(x) = (x 1) \ln x, x > 0.$

Exercise 5.15. Let $f(x) = ax^2 + bx + c$, $x \in \mathbb{R}$, where a, b, c are some numbers. Show that

$$f(x+3) - 3f(x+2) + 3f(x+1) - f(x) = 0.$$

Exercise 5.16. Find a function of the form $f(x) = ax^2 + bx + c$, $x \in \mathbb{R}$, which satisfies the following properties: f(-2) = 0, f(0) = 1, f(1) = 5.

Definition 5.4. We will say that a function $f_1 : X_1 \to Y_1$ equals a function $f_2 : X_2 \to Y_2$, if $X_1 = X_2$ and $f_1(x) = f_2(x)$ for all $x \in X_1$. We will use the notation $f_1 = f_2$.

Definition 5.5. Let $f : X \to Y$ be a function and A be a subset of X. The function $f|_A : A \to Y$ defined by $f|_A(x) = f(x)$ for all $x \in A$ is called the **restriction of** f **to** A.

Definition 5.6. For sets A and B, we will denote the new set $A \times B$ that consists of all ordered pairs (a, b), where $a \in A$ and $b \in B$, that is,

$$A \times B := \{(a, b) : a \in A, b \in B\}.$$

The set $A \times B$ is called the **Cartesian product** of A and B.

Definition 5.7. The set $G(f) = \{(x, f(x)) : x \in X\}$ is said to be the **graph** of a function $f : X \to Y$.

References

[1] K.A. Ross. *Elementary Analysis: The Theory of Calculus*. Undergraduate Texts in Mathematics. Springer New York, 2013.