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5 Lecture 5 — Cauchy Sequences. Base Notion of Functions

5.1 Subsequences (continuation)
5.1.1 Upper and Lower Limits

Definition 5.1. e Let (ap)n>1 be a sequence of real numbers and A be the set of its subsequential
limits. The value

—o0, if A is unbounded below;
lim a, = ¢ inf A, if A is bounded below and A # {+o00};
n—oo

+oo, if A= {+o0}

is called the lower limit of (ay,)n>1.

e The value
400, if A is unbounded above;

lim a, = { sup A, if A is bounded above and A # {—oco};

n—oo
—o0, if A={-o0}
is called the upper limit of (ay)p>1.

Remark 5.1. If (a,),>1 is a bounded sequence, then lim a, = inf A and hﬁm a, = sup A.
n—oo

Example 5.1. If a, — a, n — oo, then lim a, = lim a, = a, since A = {a} in this case.
n—00 n—00

Exercise 5.1. Prove that a, — a, n - c0 < lim a, = lim a, = a.
n—00 n—o0

Theorem 5.1. Let (an)n>1 be a sequence of real numbers and A be the set of its subsequential limits.

Then lim a, and hm an belong to A.
n—oo

Remark 5.2. If a sequence (a,)n>1 is bounded, then inf A = min A and sup A = max A, by Theo-

rem 5.1, Remark 5.1 and Exercise 2.3. It means that lim a, and lim a, are the minimal and the
n—00 n—00
maximal subsequential limits of the bounded sequence (ay,)n>1, respectively.

Theorem 5.2. The following equalities hold: a) lim a, = 11m inf{a: k>n}=: lim égf ay;
n—oo n—oo

b) lim a, = lim sup{a;: k>n}=: lim supag.

Exercise 5.2. Prove Theorem 5.2.

Exercise 5.3. For a sequence (ay),>1 compute lim a, and lim a,, if for alln > 1
n—00 n—oo
1+(—

a) anzl—g; b) an:(j) + =5 Dl ; C) an:nﬁcoswé7r d) a, =1+ nsin &F;

e) ap = (14+ )" (=1)" +sin 2.

Exercise 5.4. Let (a,)n>1 be a sequence of real numbers and o), := W, n > 1. Prove that

lim a, < lim o, < lim o, < lim a,.
n—00 n—00 n—o0 n—00

Compare with the statement from Exercise 3.16.
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Exercise 5.5. Check that

n—00 n—00 n—00 n—00 n—00 n—00

5.2 Cauchy Sequences

Definition 5.2. A sequence (ay)n>1 of real numbers is called a Cauchy sequence if
Ve>03INeNVn>NVm>N: |a, —ap| <e.

Example 5.2. 1. The sequence ( 1 is a Cauchy sequence. Indeed, since % — 0, n — 00, (see

ﬁ)nZl
Theorem 3.3), one has that for every given £ > 0 there exists N € N such that for each n > N
2% < e. Consequently, for every n > N and m > N we can estimate |55 — 2%| < 2% < ¢, where

om
k := min{n,m} > N.

2. The sequence (an = (—1)"),5; is not a Cauchy sequence. To check this, we take ¢ := 1. Then
VN € N 3n := N and 3m := N + 1 such that |a, — an| =2 > ¢.

Exercise 5.6. Prove that a monotone sequence which contains a Cauchy subsequence is also a Cauchy
sequence.

Exercise 5.7. Show that (a,)n>1 is a Cauchy sequence iff ~ sup  |ap, —ap| = 0, N — oo.
N m>N,n>N

Lemma 5.1. Fvery convergent sequence is a Cauchy sequence.
Proof. Let a, — a, n — oo, and let € > 0 be given. By the definition of convergence (see Defini-

tion 3.3), for the number § there exists Ny € N such that Vn > N |a, — a| < §. Thus we have that
Vn > N := Ny and Vm > N

e €
]an—am|:|an—a+a—am|§|an—a|+|a—am]<§+§=€,

by the triangular inequality. O

Lemma 5.2. Fvery Cauchy sequence is bounded.

Proof. The proof is similar to the proof of Theorem 3.5. O

Exercise 5.8. Prove Lemma 5.2.
Theorem 5.3. A sequence converges iff it is a Cauchy sequence.

Proof. The necessity was stated in Lemma 5.1. We will prove the sufficiency. Let (an)n>1 be a
Cauchy sequence. By Lemma 5.2, it is bounded. Thus, using the Bolzano-Weierstrass theorem (see
Theorem 4.6), there exists a subsequence (ay, )r>1 which converges to some a € R.

Next, we are going to show that a, — a, n — co. Let € > 0 be given. Since (a,)n>1 is a Cauchy
sequence, for the number § >0 IN; € NVm > N Vn > N such that lam — an| < 5. By the definition
of convergence, we have that 3K € N Vk > K such that |a — a,,| < 5. Thus, Vn > N := N,

e €
an — al = lan — any + any — al < lan — an, |+ lan, —al < 5 + 5 =<,
where k is any number satisfying £ > K and ni > N. O
Exercise 5.9. Show that the sequence (an = 5121111 + 51;22 + ...+ Sgﬂ")nx is a Cauchy sequence.

Exercise 5.10. Let (a,)n>1 be a sequence which satisfies the following property: there exists A € [0, 1)
such that |an12 — any1| < Many1 — apl for all n > 1. Prove that (ay),>1 converges.
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5.3 Base Notion of Functions
Let X and Y be two sets.

Definition 5.3. e A function f is a process or a relation that associates each element x of X to
a single element y of Y. The set X is called the domain of the function f and is denoted by
D(f). The set Y is said to be the codomain of f. We will use the notation f: X — Y.

e The element y € Y which is associated to x € Y by a function f is called the value of f applied
to the argument z or the image of x under f and is denoted by f(z). We will also write

e The set
R(f)={yeY: Iwe X y=f(x)}

is called the range or the image of the function f.
o If Y C R, then f is called a real valued function.
In further sections, we will usually consider real valued functions with D(f) C R.

Exercise 5.11. Determine domains X C R for which the following functions f : X — R are well-
defined:

a) f(@) = &7 b) f(2) = VBz —a% o) f(z) = In(? —4); d) \/eos(a?); e) f(z) = /2.
Exercise 5.12. Compute f(—1), f(—0,001) and f(100), if f(z) = lg(z?).
Exercise 5.13. Compute f(—2), f(—1), f(0), f(1) and f(2), if

f(m):{l—i—x, if z <0,

2t ifx > 0.

Exercise 5.14. Define the range R(f) of the following functions:

a) X =2,Y =Zand f(z)=|z| -1, z € Z;
b) X =R, Y =Rand f(z) =2+, z € R;
c) X=(0,00), Y =Rand f(z) =(x—1)Inz, z > 0.
Exercise 5.15. Let f(z) = ax® 4+ bx + ¢, x € R, where a, b, ¢ are some numbers. Show that
flx+3)=3f(x+2)+3f(x+1)— f(zx)=0.

Exercise 5.16. Find a function of the form f(z) = az? + bz + ¢, * € R, which satisfies the following
properties: f(—2) =0, f(0) =1, f(1) =5.

Definition 5.4. We will say that a function f; : X; — Yj equals a function f5 : X5 — Y5, if X1 = X
and fi(x) = fa(x) for all z € X;. We will use the notation f; = fa.

Definition 5.5. Let f : X — Y be a function and A be a subset of X. The function f|4 : A =Y
defined by f|a(x) = f(x) for all x € A is called the restriction of f to A.
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Definition 5.6. For sets A and B, we will denote the new set A x B that consists of all ordered pairs
(a,b), where a € A and b € B, that is,

Ax B:={(a,b): a€ A, be B}.
The set A x B is called the Cartesian product of A and B.

Definition 5.7. The set G(f) = {(z, f(x)) : = € X} is said to be the graph of a function f : X — Y.
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