5 Lecture 5 - Cauchy Sequences. Base Notion of Functions

5.1 Subsequences (continuation)

5.1.1 Upper and Lower Limits

Definition 5.1. - Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers and A be the set of its subsequential limits. The value

$$
\underline{\lim }_{n \rightarrow \infty} a_{n}= \begin{cases}-\infty, & \text { if } A \text { is unbounded below; } \\ \inf A, & \text { if } A \text { is bounded below and } A \neq\{+\infty\} \\ +\infty, & \text { if } A=\{+\infty\}\end{cases}
$$

is called the lower limit of $\left(a_{n}\right)_{n \geq 1}$.

- The value

$$
\varlimsup_{n \rightarrow \infty} a_{n}= \begin{cases}+\infty, & \text { if } A \text { is unbounded above } \\ \sup A, & \text { if } A \text { is bounded above and } A \neq\{-\infty\} \\ -\infty, & \text { if } A=\{-\infty\}\end{cases}
$$

is called the upper limit of $\left(a_{n}\right)_{n \geq 1}$.
Remark 5.1. If $\left(a_{n}\right)_{n \geq 1}$ is a bounded sequence, then $\underline{n \rightarrow \infty} a_{n}=\inf A$ and $\varlimsup_{n \rightarrow \infty} a_{n}=\sup A$.
Example 5.1. If $a_{n} \rightarrow a, n \rightarrow \infty$, then $\underset{n \rightarrow \infty}{\lim _{n}} a_{n}=\varlimsup_{n \rightarrow \infty} a_{n}=a$, since $A=\{a\}$ in this case.

Theorem 5.1. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers and A be the set of its subsequential limits.

Remark 5.2. If a sequence $\left(a_{n}\right)_{n \geq 1}$ is bounded, then $\inf A=\min A$ and $\sup A=\max A$, by Theorem 5.1, Remark 5.1 and Exercise 2.3. It means that $\underline{\lim }_{n \rightarrow \infty} a_{n}$ and $\varlimsup_{n \rightarrow \infty} a_{n}$ are the minimal and the maximal subsequential limits of the bounded sequence $\left(a_{n}\right)_{n \geq 1}$, respectively.

Theorem 5.2. The following equalities hold: a) $\underline{\underline{\lim }} a_{n \rightarrow \infty}=\lim _{n \rightarrow \infty} \inf \left\{a_{k}: k \geq n\right\}=: \lim _{n \rightarrow \infty} \inf _{k \geq n} a_{k}$;
b) $\varlimsup_{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sup \left\{a_{k}: k \geq n\right\}=: \lim _{n \rightarrow \infty} \sup _{k \geq n} a_{k}$.

Exercise 5.2. Prove Theorem 5.2.
Exercise 5.3. For a sequence $\left(a_{n}\right)_{n \geq 1}$ compute $\underline{\lim }_{n \rightarrow \infty} a_{n}$ and $\varlimsup_{n \rightarrow \infty} a_{n}$, if for all $n \geq 1$
a) $a_{n}=1-\frac{1}{n}$; b) $a_{n}=\frac{(-1)^{n}}{n}+\frac{1+(-1)^{n}}{2}$; c) $a_{n}=\frac{n-1}{n+1} \cos \frac{2 n \pi}{3}$; d) $a_{n}=1+n \sin \frac{n \pi}{2}$;
e) $a_{n}=\left(1+\frac{1}{n}\right)^{n} \cdot(-1)^{n}+\sin \frac{n \pi}{4}$.

Exercise 5.4. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers and $\sigma_{n}:=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}, n \geq 1$. Prove that

$$
\underline{\lim }_{n \rightarrow \infty} a_{n} \leq \underline{\lim }_{n \rightarrow \infty} \sigma_{n} \leq \varlimsup_{n \rightarrow \infty} \sigma_{n} \leq \varlimsup_{n \rightarrow \infty} a_{n} .
$$

Compare with the statement from Exercise 3.16.

Exercise 5.5. Check that

$$
\underline{\lim _{n \rightarrow \infty}} a_{n}+\underline{\lim }_{n \rightarrow \infty} b_{n} \leq \underline{\lim }_{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \varlimsup_{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \varlimsup_{n \rightarrow \infty} a_{n}+\varlimsup_{n \rightarrow \infty} b_{n}
$$

5.2 Cauchy Sequences

Definition 5.2. A sequence $\left(a_{n}\right)_{n \geq 1}$ of real numbers is called a Cauchy sequence if

$$
\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geq N \forall m \geq N:\left|a_{n}-a_{m}\right|<\varepsilon
$$

Example 5.2. 1. The sequence $\left(\frac{1}{2^{n}}\right)_{n \geq 1}$ is a Cauchy sequence. Indeed, since $\frac{1}{2^{n}} \rightarrow 0, n \rightarrow \infty$, (see Theorem 3.3), one has that for every given $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for each $n \geq N$ $\frac{1}{2^{n}}<\varepsilon$. Consequently, for every $n \geq N$ and $m \geq N$ we can estimate $\left|\frac{1}{2^{m}}-\frac{1}{2^{n}}\right| \leq \frac{1}{2^{k}}<\varepsilon$, where $k:=\min \{n, m\} \geq N$.
2. The sequence $\left(a_{n}=(-1)^{n}\right)_{n \geq 1}$ is not a Cauchy sequence. To check this, we take $\varepsilon:=1$. Then $\forall N \in \mathbb{N} \exists n:=N$ and $\exists m:=N+1$ such that $\left|a_{n}-a_{m}\right|=2>\varepsilon$.
Exercise 5.6. Prove that a monotone sequence which contains a Cauchy subsequence is also a Cauchy sequence.
Exercise 5.7. Show that $\left(a_{n}\right)_{n \geq 1}$ is a Cauchy sequence iff $\sup _{m \geq N, n \geq N}\left|a_{m}-a_{n}\right| \rightarrow 0, N \rightarrow \infty$.
Lemma 5.1. Every convergent sequence is a Cauchy sequence.
Proof. Let $a_{n} \rightarrow a, n \rightarrow \infty$, and let $\varepsilon>0$ be given. By the definition of convergence (see Definition 3.3), for the number $\frac{\varepsilon}{2}$ there exists $N_{1} \in \mathbb{N}$ such that $\forall n \geq N_{1}\left|a_{n}-a\right|<\frac{\varepsilon}{2}$. Thus we have that $\forall n \geq N:=N_{1}$ and $\forall m \geq N$

$$
\left|a_{n}-a_{m}\right|=\left|a_{n}-a+a-a_{m}\right| \leq\left|a_{n}-a\right|+\left|a-a_{m}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

by the triangular inequality.
Lemma 5.2. Every Cauchy sequence is bounded.
Proof. The proof is similar to the proof of Theorem 3.5.
Exercise 5.8. Prove Lemma 5.2.
Theorem 5.3. A sequence converges iff it is a Cauchy sequence.
Proof. The necessity was stated in Lemma 5.1. We will prove the sufficiency. Let $\left(a_{n}\right)_{n \geq 1}$ be a Cauchy sequence. By Lemma 5.2, it is bounded. Thus, using the Bolzano-Weierstrass theorem (see Theorem 4.6), there exists a subsequence $\left(a_{n_{k}}\right)_{k \geq 1}$ which converges to some $a \in \mathbb{R}$.

Next, we are going to show that $a_{n} \rightarrow a, n \rightarrow \infty$. Let $\varepsilon>0$ be given. Since $\left(a_{n}\right)_{n \geq 1}$ is a Cauchy sequence, for the number $\frac{\varepsilon}{2}>0 \exists N_{1} \in \mathbb{N} \forall m \geq N \forall n \geq N$ such that $\left|a_{m}-a_{n}\right|<\frac{\varepsilon}{2}$. By the definition of convergence, we have that $\exists K \in \mathbb{N} \forall k \geq K$ such that $\left|a-a_{n_{k}}\right|<\frac{\varepsilon}{2}$. Thus, $\forall n \geq N:=N_{1}$

$$
\left|a_{n}-a\right|=\left|a_{n}-a_{n_{k}}+a_{n_{k}}-a\right| \leq\left|a_{n}-a_{n_{k}}\right|+\left|a_{n_{k}}-a\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

where k is any number satisfying $k \geq K$ and $n_{k} \geq N$.
Exercise 5.9. Show that the sequence $\left(a_{n}=\frac{\sin 1}{2^{1}}+\frac{\sin 2}{2^{2}}+\ldots+\frac{\sin n}{2^{n}}\right)_{n \geq 1}$ is a Cauchy sequence.
Exercise 5.10. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence which satisfies the following property: there exists $\lambda \in[0,1)$ such that $\left|a_{n+2}-a_{n+1}\right| \leq \lambda\left|a_{n+1}-a_{n}\right|$ for all $n \geq 1$. Prove that $\left(a_{n}\right)_{n \geq 1}$ converges.

5.3 Base Notion of Functions

Let X and Y be two sets.
Definition 5.3. - A function f is a process or a relation that associates each element x of X to a single element y of Y. The set X is called the domain of the function f and is denoted by $D(f)$. The set Y is said to be the codomain of f. We will use the notation $f: X \rightarrow Y$.

- The element $y \in Y$ which is associated to $x \in Y$ by a function f is called the value of f applied to the argument x or the image of x under f and is denoted by $f(x)$. We will also write $x \mapsto f(x)$.
- The set

$$
R(f):=\{y \in Y: \exists x \in X y=f(x)\}
$$

is called the range or the image of the function f.

- If $Y \subset \mathbb{R}$, then f is called a real valued function.

In further sections, we will usually consider real valued functions with $D(f) \subset \mathbb{R}$.
Exercise 5.11. Determine domains $X \subset \mathbb{R}$ for which the following functions $f: X \rightarrow \mathbb{R}$ are welldefined:
a) $f(x)=\frac{x^{2}}{x+1}$;
b) $f(x)=\sqrt{3 x-x^{3}}$;
c) $f(x)=\ln \left(x^{2}-4\right)$;
d) $\sqrt{\cos \left(x^{2}\right)}$; e) $f(x)=\frac{\sqrt{x}}{\sin \pi x}$.

Exercise 5.12. Compute $f(-1), f(-0,001)$ and $f(100)$, if $f(x)=\lg \left(x^{2}\right)$.
Exercise 5.13. Compute $f(-2), f(-1), f(0), f(1)$ and $f(2)$, if

$$
f(x)= \begin{cases}1+x, & \text { if } x \leq 0, \\ 2^{x}, & \text { if } x>0\end{cases}
$$

Exercise 5.14. Define the range $R(f)$ of the following functions:
a) $X=\mathbb{Z}, Y=\mathbb{Z}$ and $f(x)=|x|-1, x \in \mathbb{Z}$;
b) $X=\mathbb{R}, Y=\mathbb{R}$ and $f(x)=x^{2}+x, x \in \mathbb{R}$;
c) $X=(0, \infty), Y=\mathbb{R}$ and $f(x)=(x-1) \ln x, x>0$.

Exercise 5.15. Let $f(x)=a x^{2}+b x+c, x \in \mathbb{R}$, where a, b, c are some numbers. Show that

$$
f(x+3)-3 f(x+2)+3 f(x+1)-f(x)=0 .
$$

Exercise 5.16. Find a function of the form $f(x)=a x^{2}+b x+c, x \in \mathbb{R}$, which satisfies the following properties: $f(-2)=0, f(0)=1, f(1)=5$.

Definition 5.4. We will say that a function $f_{1}: X_{1} \rightarrow Y_{1}$ equals a function $f_{2}: X_{2} \rightarrow Y_{2}$, if $X_{1}=X_{2}$ and $f_{1}(x)=f_{2}(x)$ for all $x \in X_{1}$. We will use the notation $f_{1}=f_{2}$.

Definition 5.5. Let $f: X \rightarrow Y$ be a function and A be a subset of X. The function $\left.f\right|_{A}: A \rightarrow Y$ defined by $\left.f\right|_{A}(x)=f(x)$ for all $x \in A$ is called the restriction of f to A.

Definition 5.6. For sets A and B, we will denote the new set $A \times B$ that consists of all ordered pairs (a, b), where $a \in A$ and $b \in B$, that is,

$$
A \times B:=\{(a, b): a \in A, b \in B\}
$$

The set $A \times B$ is called the Cartesian product of A and B.
Definition 5.7. The set $G(f)=\{(x, f(x)): x \in X\}$ is said to be the graph of a function $f: X \rightarrow Y$.

References

[1] K.A. Ross. Elementary Analysis: The Theory of Calculus. Undergraduate Texts in Mathematics. Springer New York, 2013.

