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5 Lecture 5 – Cauchy Sequences. Base Notion of Functions

5.1 Subsequences (continuation)

5.1.1 Upper and Lower Limits

Definition 5.1. • Let (an)n≥1 be a sequence of real numbers and A be the set of its subsequential
limits. The value

lim
n→∞

an =











−∞, if A is unbounded below;

inf A, if A is bounded below and A 6= {+∞};
+∞, if A = {+∞}

is called the lower limit of (an)n≥1.

• The value

lim
n→∞

an =











+∞, if A is unbounded above;

supA, if A is bounded above and A 6= {−∞};
−∞, if A = {−∞}

is called the upper limit of (an)n≥1.

Remark 5.1. If (an)n≥1 is a bounded sequence, then lim
n→∞

an = inf A and lim
n→∞

an = supA.

Example 5.1. If an → a, n → ∞, then lim
n→∞

an = lim
n→∞

an = a, since A = {a} in this case.

Exercise 5.1. Prove that an → a, n → ∞ ⇔ lim
n→∞

an = lim
n→∞

an = a.

Theorem 5.1. Let (an)n≥1 be a sequence of real numbers and A be the set of its subsequential limits.
Then lim

n→∞
an and lim

n→∞
an belong to A.

Remark 5.2. If a sequence (an)n≥1 is bounded, then inf A = minA and supA = maxA, by Theo-
rem 5.1, Remark 5.1 and Exercise 2.3. It means that lim

n→∞
an and lim

n→∞
an are the minimal and the

maximal subsequential limits of the bounded sequence (an)n≥1, respectively.

Theorem 5.2. The following equalities hold: a) lim
n→∞

an = lim
n→∞

inf{ak : k ≥ n} =: lim
n→∞

inf
k≥n

ak;

b) lim
n→∞

an = lim
n→∞

sup{ak : k ≥ n} =: lim
n→∞

sup
k≥n

ak.

Exercise 5.2. Prove Theorem 5.2.

Exercise 5.3. For a sequence (an)n≥1 compute lim
n→∞

an and lim
n→∞

an, if for all n ≥ 1

a) an = 1− 1
n
; b) an = (−1)n

n
+ 1+(−1)n

2 ; c) an = n−1
n+1 cos

2nπ
3 ; d) an = 1 + n sin nπ

2 ;

e) an =
(

1 + 1
n

)n · (−1)n + sin nπ
4 .

Exercise 5.4. Let (an)n≥1 be a sequence of real numbers and σn := a1+a2+...+an
n

, n ≥ 1. Prove that

lim
n→∞

an ≤ lim
n→∞

σn ≤ lim
n→∞

σn ≤ lim
n→∞

an.

Compare with the statement from Exercise 3.16.
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Exercise 5.5. Check that

lim
n→∞

an + lim
n→∞

bn ≤ lim
n→∞

(an + bn) ≤ lim
n→∞

(an + bn) ≤ lim
n→∞

an + lim
n→∞

bn.

5.2 Cauchy Sequences

Definition 5.2. A sequence (an)n≥1 of real numbers is called a Cauchy sequence if

∀ε > 0 ∃N ∈ N ∀n ≥ N ∀m ≥ N : |an − am| < ε.

Example 5.2. 1. The sequence
(

1
2n

)

n≥1
is a Cauchy sequence. Indeed, since 1

2n → 0, n → ∞, (see

Theorem 3.3), one has that for every given ε > 0 there exists N ∈ N such that for each n ≥ N
1
2n < ε. Consequently, for every n ≥ N and m ≥ N we can estimate

∣

∣

1
2m − 1

2n

∣

∣ ≤ 1
2k

< ε, where
k := min{n,m} ≥ N .

2. The sequence (an = (−1)n)n≥1 is not a Cauchy sequence. To check this, we take ε := 1. Then
∀N ∈ N ∃n := N and ∃m := N + 1 such that |an − am| = 2 > ε.

Exercise 5.6. Prove that a monotone sequence which contains a Cauchy subsequence is also a Cauchy
sequence.

Exercise 5.7. Show that (an)n≥1 is a Cauchy sequence iff sup
m≥N,n≥N

|am − an| → 0, N → ∞.

Lemma 5.1. Every convergent sequence is a Cauchy sequence.

Proof. Let an → a, n → ∞, and let ε > 0 be given. By the definition of convergence (see Defini-
tion 3.3), for the number ε

2 there exists N1 ∈ N such that ∀n ≥ N1 |an − a| < ε
2 . Thus we have that

∀n ≥ N := N1 and ∀m ≥ N

|an − am| = |an − a+ a− am| ≤ |an − a|+ |a− am| < ε

2
+

ε

2
= ε,

by the triangular inequality.

Lemma 5.2. Every Cauchy sequence is bounded.

Proof. The proof is similar to the proof of Theorem 3.5.

Exercise 5.8. Prove Lemma 5.2.

Theorem 5.3. A sequence converges iff it is a Cauchy sequence.

Proof. The necessity was stated in Lemma 5.1. We will prove the sufficiency. Let (an)n≥1 be a
Cauchy sequence. By Lemma 5.2, it is bounded. Thus, using the Bolzano-Weierstrass theorem (see
Theorem 4.6), there exists a subsequence (ank

)k≥1 which converges to some a ∈ R.
Next, we are going to show that an → a, n → ∞. Let ε > 0 be given. Since (an)n≥1 is a Cauchy

sequence, for the number ε
2 > 0 ∃N1 ∈ N ∀m ≥ N ∀n ≥ N such that |am − an| < ε

2 . By the definition
of convergence, we have that ∃K ∈ N ∀k ≥ K such that |a− ank

| < ε
2 . Thus, ∀n ≥ N := N1

|an − a| = |an − ank
+ ank

− a| ≤ |an − ank
|+ |ank

− a| < ε

2
+

ε

2
= ε,

where k is any number satisfying k ≥ K and nk ≥ N .

Exercise 5.9. Show that the sequence
(

an = sin 1
21

+ sin 2
22

+ . . .+ sinn
2n

)

n≥1
is a Cauchy sequence.

Exercise 5.10. Let (an)n≥1 be a sequence which satisfies the following property: there exists λ ∈ [0, 1)
such that |an+2 − an+1| ≤ λ|an+1 − an| for all n ≥ 1. Prove that (an)n≥1 converges.
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5.3 Base Notion of Functions

Let X and Y be two sets.

Definition 5.3. • A function f is a process or a relation that associates each element x of X to
a single element y of Y . The set X is called the domain of the function f and is denoted by
D(f). The set Y is said to be the codomain of f . We will use the notation f : X → Y .

• The element y ∈ Y which is associated to x ∈ Y by a function f is called the value of f applied
to the argument x or the image of x under f and is denoted by f(x). We will also write
x 7→ f(x).

• The set
R(f) := {y ∈ Y : ∃x ∈ X y = f(x)}

is called the range or the image of the function f .

• If Y ⊂ R, then f is called a real valued function.

In further sections, we will usually consider real valued functions with D(f) ⊂ R.

Exercise 5.11. Determine domains X ⊂ R for which the following functions f : X → R are well-
defined:
a) f(x) = x2

x+1 ; b) f(x) =
√
3x− x3; c) f(x) = ln(x2 − 4); d)

√

cos(x2); e) f(x) =
√
x

sinπx
.

Exercise 5.12. Compute f(−1), f(−0, 001) and f(100), if f(x) = lg(x2).

Exercise 5.13. Compute f(−2), f(−1), f(0), f(1) and f(2), if

f(x) =

{

1 + x, if x ≤ 0,

2x, if x > 0.

Exercise 5.14. Define the range R(f) of the following functions:

a) X = Z, Y = Z and f(x) = |x| − 1, x ∈ Z;

b) X = R, Y = R and f(x) = x2 + x, x ∈ R;

c) X = (0,∞), Y = R and f(x) = (x− 1) lnx, x > 0.

Exercise 5.15. Let f(x) = ax2 + bx+ c, x ∈ R, where a, b, c are some numbers. Show that

f(x+ 3)− 3f(x+ 2) + 3f(x+ 1)− f(x) = 0.

Exercise 5.16. Find a function of the form f(x) = ax2 + bx+ c, x ∈ R, which satisfies the following
properties: f(−2) = 0, f(0) = 1, f(1) = 5.

Definition 5.4. We will say that a function f1 : X1 → Y1 equals a function f2 : X2 → Y2, if X1 = X2

and f1(x) = f2(x) for all x ∈ X1. We will use the notation f1 = f2.

Definition 5.5. Let f : X → Y be a function and A be a subset of X. The function f |A : A → Y

defined by f |A(x) = f(x) for all x ∈ A is called the restriction of f to A.
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Definition 5.6. For sets A and B, we will denote the new set A×B that consists of all ordered pairs
(a, b), where a ∈ A and b ∈ B, that is,

A×B := {(a, b) : a ∈ A, b ∈ B}.

The set A×B is called the Cartesian product of A and B.

Definition 5.7. The set G(f) = {(x, f(x)) : x ∈ X} is said to be the graph of a function f : X → Y .
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