3 Lecture 3 - Convergence of Sequences

3.1 Limits of Sequences

For more details see [1, Section 2.7].
In this section, we will study some properties of sequences of real numbers which do not depend on finite numbers of their elements. So, we will call a sequence any enumerated collection of objects (in our case, real numbers) in which repetitions are allowed. It is often convenient to write the sequence as $\left(a_{m}, a_{m+1}, a_{m+2}, \ldots\right),\left(a_{n}\right)_{n \geq m}$ or $\left(a_{n}\right)_{n=m}^{\infty}$, where m is some integer number. Usually, m equals 1.

Definition 3.1. A sequence $\left(a_{n}\right)_{n \geq 1}=\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)$ is called bounded if there exists $C>0$ such that $\left|a_{n}\right| \leq C$ for all $n \geq 1$. In another words, if all elements of the sequence belong to some interval $[-C, C]$.

Example 3.1. 1. The sequence $\left((-1)^{n}\right)_{n \geq 1}=(-1,1,-1,1, \ldots)$ is bounded and its elements belong to $[-1,1]$;
2. The sequence $(\sin n)_{n \geq 1}$ is bounded and its elements also belong to $[-1,1]$;
3. The sequence $(n)_{n \geq 1}=(1,2,3, \ldots, n, \ldots)$ is unbounded, since for each $C>0$ one can find a number $n \in \mathbb{N}$ larger than C.

Exercise 3.1. Prove the boundedness of the following sequences:
a) $\left(\frac{2^{n}}{n!}\right)_{n \geq 1}$; b) $(a_{n}=\underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+\sqrt{2}}}}}_{n \text { square roots }})_{n \geq 1}$;
c) $\left(a_{n}=1+\frac{2}{2}+\frac{3}{2^{2}}+\ldots+\frac{n}{2^{n-1}}\right)_{n \geq 1} \quad$ (Hint: Use the equality $\left.\frac{1}{2} a_{n}=a_{n}-\frac{1}{2} a_{n}\right)$

Exercise 3.2. Prove that a sequence $\left(a_{n}\right)_{n \geq 1}$ is bounded iff $\left(a_{n}^{3}-a_{n}\right)_{n \geq 1}$ is.
Definition 3.2. Let $x \in \mathbb{R}$ and $\varepsilon>0$ be given. A neighbourhood or ε-neighbourhood of the point x is the interval $(x-\varepsilon, x+\varepsilon)=\{y \in \mathbb{R}:|y-x|<\varepsilon\}$.

Exercise 3.3. Check that: a) intersection of a finite number of neighbourhoods of x is again a neighbourhood of $x ; \mathrm{b}$) intersection of two neighbourhoods is either \emptyset or a neighbourhood.

Definition 3.3. A sequence $\left(a_{n}\right)_{n \geq 1}$ of real numbers is said to converge to a real number a provided that
for each $\varepsilon>0$ there exists a number N such that $n \geq N$ implies $\left|a_{n}-a\right|<\varepsilon$, or, shortly,

$$
\forall \varepsilon>0 \exists N \in \mathbb{R} \forall n \geq N: \quad\left|a_{n}-a\right|<\varepsilon .
$$

If $\left(a_{n}\right)_{n \geq 1}$ converges to a, we will write $\lim _{n \rightarrow \infty} a_{n}=a$ or $a_{n} \rightarrow a, n \rightarrow \infty$. The number a is called the limit of the sequence $\left(a_{n}\right)_{n \geq 1}$. A sequence that does not converge to some real number is said to diverge.

Remark 3.1. We note that $a_{n} \rightarrow a, n \rightarrow \infty$, provided that any ε-neighbourhood of point a contains elements a_{n} for all $n \geq N$, where N is some number depending on ε.

Exercise 3.4. For which sequences $\left(a_{n}\right)_{n \geq 1}$ the number N from Definition 3.3 could be taken independent of ε.

Answer: If $\exists m \in \mathbb{N} \forall n \geq m: a_{n}=a$.
Exercise 3.5. Prove the following statements:
a) $a_{n} \rightarrow a, n \rightarrow \infty \Leftrightarrow a_{n}-a \rightarrow 0, n \rightarrow \infty \Leftrightarrow\left|a_{n}-a\right| \rightarrow 0, n \rightarrow \infty$;
b) $a_{n} \rightarrow 0, n \rightarrow \infty \Leftrightarrow\left|a_{n}\right| \rightarrow 0, n \rightarrow \infty$;
c) $a_{n} \rightarrow a, n \rightarrow \infty \Leftrightarrow \forall \varepsilon>0 \exists N \in \mathbb{N}:\left\{a_{N}, a_{N+1}, \ldots\right\} \subset(x-\varepsilon, x+\varepsilon)$;
d) $a_{n} \rightarrow 0, n \rightarrow \infty \Leftrightarrow \sup \left\{\left|a_{k}\right|: k \geq n\right\} \rightarrow 0, n \rightarrow \infty$;
e) $a_{n} \rightarrow a, n \rightarrow \infty \Rightarrow\left|a_{n}\right| \rightarrow|a|, n \rightarrow \infty$.

Theorem 3.1. A sequence can have only a unique limit.
Proof. Let $a_{n} \rightarrow a, n \rightarrow \infty$, and $a_{n} \rightarrow b, n \rightarrow \infty$. Then by the definition, $\forall \varepsilon>0 \exists N_{1} \in \mathbb{R} \forall n \geq N_{1}$: $\left|a_{n}-a\right|<\varepsilon$ and $\forall \varepsilon>0 \exists N_{2} \in \mathbb{R} \forall n \geq N_{2}: \quad\left|a_{n}-b\right|<\varepsilon$. Thus, using the triangular inequality (see Theorem 2.51)), we obtain $\forall \varepsilon>0 \forall n \geq \max \left\{N_{1}, N_{2}\right\}: \quad|a-b|=\left|a-a_{n}+a_{n}-b\right| \leq\left|a-a_{n}\right|+\left|a_{n}-b\right|<$ 2ε. So, $|a-b|<2 \varepsilon$ for all $\varepsilon>0$. If $a \neq b$, we set $\varepsilon=\frac{|a-b|}{3}>0$. Then $|a-b|<\frac{2}{3}|a-b| \Rightarrow \frac{1}{3}|a-b|<0$, that is impossible.

3.2 Some Examples

For more examples see [1, Section 2.8].
Theorem 3.2. The equality $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ holds.
Proof. We note that for each $\varepsilon>0$ we have $\left|\frac{1}{n}-0\right|=\frac{1}{n}<\varepsilon$ iff $n>\frac{1}{\varepsilon}$. Thus, $\forall \varepsilon>0 \exists N:=\left(\frac{1}{\varepsilon}+1\right) \in$ $\mathbb{R} \forall n \geq N:\left|\frac{1}{n}-0\right|<\varepsilon$.
Corollary 3.1. The equality $\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}=0$ holds for each $\alpha>0$.
Theorem 3.3. Let $a \in \mathbb{R},|a|>1, b \in \mathbb{R}$. Then $\lim _{n \rightarrow 0} \frac{n^{b}}{a^{n}}=0$.
Proof. We choose $k \in \mathbb{N}$ such that $k \geq b+1$. By Bernoulli's inequality (see Theorem 2.6), $|a|^{n}=$ $\left(|a|^{\frac{n}{k}}\right)^{k}=\left(\left(1+\left(|a|^{\frac{1}{k}}-1\right)\right)^{n}\right)^{k}>n^{k}\left(|a|^{\frac{1}{k}}-1\right)^{k}$. Hence, $\left|\frac{n^{b}}{a^{n}}-0\right|=\frac{n^{b}}{|a|^{n}} \leq \frac{n^{k-1}}{|a|^{n}}<\frac{1}{n\left(|a|^{\frac{1}{k}}-1\right)^{k}}<\varepsilon$. So, $n>\frac{1}{\varepsilon\left(|a|^{\frac{1}{k}}-1\right)^{k}}$. Consequently, one can claim

$$
\forall \varepsilon>0 \exists N:=\frac{1}{\varepsilon\left(|a|^{\frac{1}{k}}-1\right)^{k}}+1 \forall n \geq N:\left|\frac{n^{b}}{a^{n}}-0\right|<\varepsilon .
$$

Theorem 3.4. The equality $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$ holds.

Proof. By Exercise 3.5 a), it is enough to show that $a_{n}:=\sqrt[n]{n}-1 \rightarrow 0, n \rightarrow \infty$. Since $\left(1+a_{n}\right)^{n}=$ $(\sqrt[n]{n})^{n}=n$, one has

$$
n=\left(1+a_{n}\right)^{n} \geq 1+n a_{n}+\frac{1}{2} n(n-1) a_{n}^{2}>\frac{1}{2} n(n-1) a_{n}^{2}
$$

by the binomial formula. Thus, $a_{n}<\sqrt{\frac{2}{n-1}}$ for $n \geq 2$. Next using the standard argument, one has $a_{n} \rightarrow 0$.

Exercise 3.6. Check the following equalities:
a) $\lim _{n \rightarrow \infty} a^{n}=0$ for all $0<a<1$;
b) $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$ for all $a>0$;
c) $\lim _{n \rightarrow \infty} \frac{\lg n}{n^{\alpha}}=0$ for all $\alpha>0$, where $\lg :=\log _{10}$.

Definition 3.4. 1. $\lim _{n \rightarrow \infty} a_{n}=+\infty \Leftrightarrow \forall C \in \mathbb{R} \exists N \in \mathbb{R} \forall n \geq N: a_{n} \geq C$.
2. $\lim _{n \rightarrow \infty} a_{n}=-\infty \Leftrightarrow \forall C \in \mathbb{R} \exists N \in \mathbb{R} \forall n \geq N: a_{n} \leq C$.

Exercise 3.7. Prove that for a sequence $\left(a_{n}\right)_{n \geq 1}$ with $a_{n} \neq 0$ the equality $\lim _{n \rightarrow \infty}\left|a_{n}\right|=+\infty$ is equivalent to $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$.

Exercise 3.8. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence such that $\frac{a_{n}}{n} \rightarrow 0, n \rightarrow \infty$. Prove that $\frac{\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}}{n} \rightarrow 0$, $n \rightarrow \infty$.

Exercise 3.9. Assume that $a_{n} \rightarrow a, n \rightarrow \infty$, and $b_{n} \rightarrow b, n \rightarrow \infty$. Show that $\max \left\{a_{n}, b_{n}\right\} \rightarrow$ $\max \{a, b\}, n \rightarrow \infty$.

3.3 Limit Theorems for Sequences

See also [1, Section 2.9].
In this section, we will prove some properties of convergent sequences and their limits. We recall that a sequence $\left(a_{n}\right)_{n \geq 1}$ of real numbers is said to be bounded if there exists a constant C such that $\left|a_{n}\right| \leq C$ for all n.

Theorem 3.5. Any convergent sequence is bounded.
Proof. Let $a_{n} \rightarrow a, n \rightarrow \infty$. We have to show that $\left(a_{n}\right)_{n \geq 1}$ is bounded. By the definition of convergence (see Definition 3.3), for each $\epsilon>0$, in particular for $\varepsilon=1$, there exists a number N, which can be taken from \mathbb{N}, such that $\left|a_{n}-a\right|<\varepsilon=1$ for all $n \geq N$. Thus, setting $C:=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{N-1}\right|,|a|+1\right\}$, one trivially obtains for $n \in\{1,2, \ldots, N-1\}$

$$
\left|a_{n}\right| \leq C
$$

Next, using the triangular inequality (inequality 1) of Theorem 2.5), we have

$$
\left|a_{n}\right|=\left|a_{n}-a+a\right| \leq\left|a_{n}-a\right|+|a|<1+|a| \leq C
$$

for all $n \geq N$.
Exercise 3.10. Give an example of a bounded divergent sequence.

Theorem 3.6. Let $a_{n} \rightarrow a \in \mathbb{R}, n \rightarrow \infty, b_{n} \rightarrow b, n \rightarrow \infty$, and let $a_{n} \leq b_{n}$ for all $n \geq 1$. Then $a \leq b$.
Exercise 3.11. Prove Theorem 3.6.
Remark 3.2. We note that replacing the inequality $a_{n} \leq b_{n}$ by the strong one, i.e. $a_{n}<b_{n}$, it does not imply $a<b$. Indeed, for $a_{n}:=0$ and $b_{n}:=\frac{1}{n}, n \geq 1$, one has $a_{n}<b_{n}$ but $a_{n} \rightarrow 0, b_{n} \rightarrow 0, n \rightarrow \infty$.

Remark 3.3. Theorem 3.6 remains valid, if the inequality $a_{n} \leq b_{n}$ holds only for all $n \geq M$, where M is some number N.

Theorem 3.7 (Squeeze theorem). Let sequences $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n \geq 1}$ and $\left(c_{n}\right)_{n \geq 1}$ satisfy the following conditions:
a) $a_{n} \leq b_{n} \leq c_{n}$ for all $n \geq 1$;
b) $a_{n} \rightarrow a, n \rightarrow \infty$, and $c_{n} \rightarrow a, n \rightarrow \infty$.

Then $b_{n} \rightarrow a, n \rightarrow \infty$.
Proof. According to Remark 3.1, for each $\varepsilon>0$ there exists N_{1} and N_{2} from \mathbb{R} such that a_{n} belongs to the ε-neighbourhood $(a-\varepsilon, a+\varepsilon)$ of the point a for all $n \geq N_{1}$ and c_{n} belongs to ($a-\varepsilon, a+\varepsilon$) for all $n \geq N_{2}$. Thus, for all $n \geq \max \left\{N_{1}, N_{2}\right\}$ elements b_{n} also belong to $(a-\varepsilon, a+\varepsilon)$ due to property a).

Example 3.2. Show that $\lim _{n \rightarrow \infty} \sqrt[n]{1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}}=1$.
Solution. We take $a_{n}:=\sqrt[n]{1}=1$ and $c_{n}:=\underbrace{\sqrt[n]{1+1+1+\ldots+1}}_{n \text { times }}=\sqrt[n]{n}$. Then

$$
a_{n} \leq \sqrt[n]{1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}} \leq c_{n}
$$

for all $n \geq 1$. Moreover, $a_{n} \rightarrow 1, n \rightarrow \infty$, and $c_{n} \rightarrow 1, n \rightarrow \infty$, by Theorem 3.4. Hence, Theorem 3.7 implies $\lim _{n \rightarrow \infty} \sqrt[n]{1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}}=1$.

Theorem 3.8. Let $a_{n} \rightarrow a \in \mathbb{R}, n \rightarrow \infty$, and $b_{n} \rightarrow b \in \mathbb{R}, n \rightarrow \infty$. Then
a) $\lim _{n \rightarrow \infty}\left(c \cdot a_{n}\right)=c \cdot \lim _{n \rightarrow \infty} a_{n}$ for all $c \in \mathbb{R}$;
b) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$;
c) $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$;
d) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, if $b \neq 0$.

Proof. For proof of the theorem see Section 2.9 [1].

Example 3.3. Compute the limit $\lim _{n \rightarrow \infty} \frac{2 n^{2}+\lg n}{3 n^{2}+n \cos n+5}$.
Solution. We cannot apply Theorem 3.8 directly, since the numerator and denominator of $\frac{2 n^{2}+\lg n}{3 n^{2}+n \cos n+5}$ tend to infinity. So, first we rewrite them as follows:

$$
\frac{2 n^{2}+\lg n}{3 n^{2}+n \cos n+5}=\frac{n^{2} \cdot\left(2+\frac{\lg n}{n^{2}}\right)}{n^{2} \cdot\left(3+\frac{\cos n}{n}+\frac{5}{n^{2}}\right)}=\frac{2+\frac{\lg n}{n^{2}}}{3+\frac{\cos n}{n}+\frac{5}{n^{2}}}
$$

Now, we can use Theorem 3.8 d) to the right hand side of the latter equality. Indeed, we first compute

$$
\lim _{n \rightarrow \infty}\left(2+\frac{\lg n}{n^{2}}\right)=2+\lim _{n \rightarrow \infty} \frac{\lg n}{n^{2}}=2
$$

by, Theorem 3.8 b) and Exercise 3.6 c). Next, due to the inequality

$$
-\frac{1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n}, \quad n \geq 1
$$

theorems 3.7 and 3.2 , one has $\lim _{n \rightarrow \infty} \frac{\cos n}{n}=0$. Thus, by Theorem 3.8 a), b)

$$
\lim _{n \rightarrow \infty}\left(3+\frac{\cos n}{n}+\frac{5}{n^{2}}\right)=3+\lim _{n \rightarrow \infty} \frac{\cos n}{n}+5 \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=3 \neq 0
$$

So, we can apply Theorem 3.7 d) and obtain

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}+\lg n}{3 n^{2}+n \cos n+5}=\lim _{n \rightarrow \infty} \frac{2+\frac{\lg n}{n^{2}}}{3+\frac{\cos n}{n}+\frac{5}{n^{2}}}=\frac{2}{3}
$$

Exercise 3.12. Compute the following limits:
a) $\lim _{n \rightarrow \infty} \frac{\sin ^{2} n}{\sqrt{n}}$;
b) $\lim _{n \rightarrow \infty} \frac{n^{2}+\sin n}{n^{2}+n \cos n}$;
c) $\lim _{n \rightarrow \infty} \sqrt[n]{n^{2} 2^{n}+3^{n}}$;
d) $\lim _{n \rightarrow \infty} \frac{2^{n}+n^{3}}{3^{n}+1}$; e) $\sqrt[n+1]{n}$.

Exercise 3.13. Let $\left(a_{n}\right)_{n \geq 1}$ be a bounded sequence and $b_{n} \rightarrow 0, n \geq \infty$. Prove that $a_{n} b_{n} \rightarrow 0$, $n \rightarrow \infty$.

Exercise 3.14. Let $\left(a_{n}\right)_{n \geq 1}$ be a bounded sequence and $b_{n} \rightarrow+\infty, n \geq \infty$. Prove that $a_{n}+b_{n} \rightarrow+\infty$, $n \rightarrow \infty$.

Exercise 3.15. Let $a_{n} \geq 0$ for all $n \geq 1$ and $a_{n} \rightarrow a, n \rightarrow \infty$. Show that for all $k \in \mathbb{N}$ one has $\sqrt[k]{a_{n}} \rightarrow \sqrt[k]{a}, n \rightarrow \infty$.

Exercise 3.16. Let $a_{n} \rightarrow a \in \mathbb{R}, n \rightarrow \infty$. Prove that $\frac{a_{1}+\ldots+a_{n}}{n} \rightarrow a, n \rightarrow \infty$.

References

[1] K.A. Ross. Elementary Analysis: The Theory of Calculus. Undergraduate Texts in Mathematics. Springer New York, 2013.

