

3 Lecture 3 – Convergence of Sequences

3.1 Limits of Sequences

For more details see [1, Section 2.7].

In this section, we will study some properties of sequences of real numbers which do not depend on finite numbers of their elements. So, we will call a **sequence** any enumerated collection of objects (in our case, real numbers) in which repetitions are allowed. It is often convenient to write the sequence as $(a_m, a_{m+1}, a_{m+2}, \ldots), (a_n)_{n \ge m}$ or $(a_n)_{n=m}^{\infty}$, where m is some integer number. Usually, m equals 1.

Definition 3.1. A sequence $(a_n)_{n\geq 1} = (a_1, a_2, \ldots, a_n, \ldots)$ is called **bounded** if there exists C > 0 such that $|a_n| \leq C$ for all $n \geq 1$. In another words, if all elements of the sequence belong to some interval [-C, C].

- **Example 3.1.** 1. The sequence $((-1)^n)_{n\geq 1} = (-1, 1, -1, 1, ...)$ is bounded and its elements belong to [-1, 1];
 - 2. The sequence $(\sin n)_{n\geq 1}$ is bounded and its elements also belong to [-1,1];
 - 3. The sequence $(n)_{n\geq 1} = (1, 2, 3, \dots, n, \dots)$ is unbounded, since for each C > 0 one can find a number $n \in \mathbb{N}$ larger than C.

Exercise 3.1. Prove the boundedness of the following sequences:

a)
$$\left(\frac{2^{n}}{n!}\right)_{n\geq 1}$$
; b) $\left(a_{n} = \underbrace{\sqrt{2 + \sqrt{2 + \ldots + \sqrt{2 + \sqrt{2}}}}}_{n \text{ square roots}}\right)_{n\geq 1}^{n\geq 1}$;
c) $\left(a_{n} = 1 + \frac{2}{2} + \frac{3}{2^{2}} + \ldots + \frac{n}{2^{n-1}}\right)_{n\geq 1}$ (*Hint:* Use the equality $\frac{1}{2}a_{n} = a_{n} - \frac{1}{2}a_{n}$)

Exercise 3.2. Prove that a sequence $(a_n)_{n\geq 1}$ is bounded iff $(a_n^3 - a_n)_{n\geq 1}$ is.

Definition 3.2. Let $x \in \mathbb{R}$ and $\varepsilon > 0$ be given. A **neighbourhood** or ε -neighbourhood of the point x is the interval $(x - \varepsilon, x + \varepsilon) = \{y \in \mathbb{R} : |y - x| < \varepsilon\}.$

Exercise 3.3. Check that: a) intersection of a finite number of neighbourhoods of x is again a neighbourhood of x; b) intersection of two neighbourhoods is either \emptyset or a neighbourhood.

Definition 3.3. A sequence $(a_n)_{n\geq 1}$ of real numbers is said to **converge** to a real number *a* provided that

for each $\varepsilon > 0$ there exists a number N such that $n \ge N$ implies $|a_n - a| < \varepsilon$,

or, shortly,

 $\forall \varepsilon > 0 \; \exists N \in \mathbb{R} \; \forall n \ge N : \quad |a_n - a| < \varepsilon.$

If $(a_n)_{n\geq 1}$ converges to a, we will write $\lim_{n\to\infty} a_n = a$ or $a_n \to a$, $n \to \infty$. The number a is called the **limit** of the sequence $(a_n)_{n\geq 1}$. A sequence that does not converge to some real number is said to **diverge**.

Remark 3.1. We note that $a_n \to a$, $n \to \infty$, provided that any ε -neighbourhood of point a contains elements a_n for all $n \ge N$, where N is some number depending on ε .

Exercise 3.4. For which sequences $(a_n)_{n\geq 1}$ the number N from Definition 3.3 could be taken independent of ε .

Answer: If $\exists m \in \mathbb{N} \ \forall n \ge m : a_n = a$.

Exercise 3.5. Prove the following statements:

a) $a_n \to a, \ n \to \infty \iff a_n - a \to 0, \ n \to \infty \iff |a_n - a| \to 0, \ n \to \infty;$ b) $a_n \to 0, \ n \to \infty \iff |a_n| \to 0, \ n \to \infty;$ c) $a_n \to a, \ n \to \infty \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \{a_N, a_{N+1}, \ldots\} \subset (x - \varepsilon, x + \varepsilon);$ d) $a_n \to 0, \ n \to \infty \iff \sup\{|a_k| : \ k \ge n\} \to 0, \ n \to \infty;$ e) $a_n \to a, \ n \to \infty \implies |a_n| \to |a|, \ n \to \infty.$

Theorem 3.1. A sequence can have only a unique limit.

Proof. Let $a_n \to a, n \to \infty$, and $a_n \to b, n \to \infty$. Then by the definition, $\forall \varepsilon > 0 \exists N_1 \in \mathbb{R} \ \forall n \ge N_1 : |a_n - a| < \varepsilon$ and $\forall \varepsilon > 0 \exists N_2 \in \mathbb{R} \ \forall n \ge N_2 : |a_n - b| < \varepsilon$. Thus, using the triangular inequality (see Theorem 2.5 1)), we obtain $\forall \varepsilon > 0 \ \forall n \ge \max\{N_1, N_2\} : |a - b| = |a - a_n + a_n - b| \le |a - a_n| + |a_n - b| < 2\varepsilon$. So, $|a - b| < 2\varepsilon$ for all $\varepsilon > 0$. If $a \ne b$, we set $\varepsilon = \frac{|a - b|}{3} > 0$. Then $|a - b| < \frac{2}{3}|a - b| \Rightarrow \frac{1}{3}|a - b| < 0$, that is impossible.

3.2 Some Examples

For more examples see [1, Section 2.8].

Theorem 3.2. The equality $\lim_{n \to \infty} \frac{1}{n} = 0$ holds.

Proof. We note that for each $\varepsilon > 0$ we have $\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon$ iff $n > \frac{1}{\varepsilon}$. Thus, $\forall \varepsilon > 0 \ \exists N := \left(\frac{1}{\varepsilon} + 1\right) \in \mathbb{R} \ \forall n \ge N : \ \left|\frac{1}{n} - 0\right| < \varepsilon$.

Corollary 3.1. The equality $\lim_{n\to\infty} \frac{1}{n^{\alpha}} = 0$ holds for each $\alpha > 0$.

Theorem 3.3. Let $a \in \mathbb{R}$, |a| > 1, $b \in \mathbb{R}$. Then $\lim_{n \to 0} \frac{n^b}{a^n} = 0$.

Proof. We choose $k \in \mathbb{N}$ such that $k \ge b+1$. By Bernoulli's inequality (see Theorem 2.6), $|a|^n = \left(\left|a|^{\frac{n}{k}}\right)^k = \left(\left(1+\left(|a|^{\frac{1}{k}}-1\right)\right)^n\right)^k > n^k \left(|a|^{\frac{1}{k}}-1\right)^k$. Hence, $\left|\frac{n^b}{a^n}-0\right| = \frac{n^b}{|a|^n} \le \frac{n^{k-1}}{|a|^n} < \frac{1}{n\left(|a|^{\frac{1}{k}}-1\right)^k} < \varepsilon$.

So, $n > \frac{1}{\varepsilon \left(|a|^{\frac{1}{k}} - 1 \right)^k}$. Consequently, one can claim

$$\forall \varepsilon > 0 \; \exists N := \frac{1}{\varepsilon \left(|a|^{\frac{1}{k}} - 1 \right)^k} + 1 \; \forall n \ge N : \; \left| \frac{n^b}{a^n} - 0 \right| < \varepsilon.$$

Theorem 3.4. The equality $\lim_{n \to \infty} \sqrt[n]{n} = 1$ holds.

Proof. By Exercise 3.5 a), it is enough to show that $a_n := \sqrt[n]{n-1} \to 0, n \to \infty$. Since $(1+a_n)^n = (\sqrt[n]{n})^n = n$, one has

$$n = (1 + a_n)^n \ge 1 + na_n + \frac{1}{2}n(n-1)a_n^2 > \frac{1}{2}n(n-1)a_n^2,$$

by the binomial formula. Thus, $a_n < \sqrt{\frac{2}{n-1}}$ for $n \ge 2$. Next using the standard argument, one has $a_n \to 0$.

Exercise 3.6. Check the following equalities:

a) $\lim_{n \to \infty} a^n = 0$ for all 0 < a < 1; b) $\lim_{n \to \infty} \sqrt[n]{a} = 1$ for all a > 0; c) $\lim_{n \to \infty} \frac{\lg n}{n^{\alpha}} = 0$ for all $\alpha > 0$, where $\lg := \log_{10}$.

Definition 3.4. 1. $\lim_{n \to \infty} a_n = +\infty \iff \forall C \in \mathbb{R} \ \exists N \in \mathbb{R} \ \forall n \ge N : a_n \ge C.$

 $2. \ \lim_{n \to \infty} a_n = -\infty \ \Leftrightarrow \ \forall C \in \mathbb{R} \ \exists N \in \mathbb{R} \ \forall n \geq N: \ a_n \leq C.$

Exercise 3.7. Prove that for a sequence $(a_n)_{n\geq 1}$ with $a_n \neq 0$ the equality $\lim_{n\to\infty} |a_n| = +\infty$ is equivalent to $\lim_{n\to\infty} \frac{1}{a_n} = 0$.

Exercise 3.8. Let $(a_n)_{n\geq 1}$ be a sequence such that $\frac{a_n}{n} \to 0$, $n \to \infty$. Prove that $\frac{\max\{a_1, a_2, \dots, a_n\}}{n} \to 0$, $n \to \infty$.

Exercise 3.9. Assume that $a_n \to a$, $n \to \infty$, and $b_n \to b$, $n \to \infty$. Show that $\max\{a_n, b_n\} \to \max\{a, b\}, n \to \infty$.

3.3 Limit Theorems for Sequences

See also [1, Section 2.9].

In this section, we will prove some properties of convergent sequences and their limits. We recall that a sequence $(a_n)_{n\geq 1}$ of real numbers is said to be bounded if there exists a constant C such that $|a_n| \leq C$ for all n.

Theorem 3.5. Any convergent sequence is bounded.

Proof. Let $a_n \to a, n \to \infty$. We have to show that $(a_n)_{n\geq 1}$ is bounded. By the definition of convergence (see Definition 3.3), for each $\epsilon > 0$, in particular for $\varepsilon = 1$, there exists a number N, which can be taken from \mathbb{N} , such that $|a_n - a| < \varepsilon = 1$ for all $n \geq N$. Thus, setting $C := \max\{|a_1|, \ldots, |a_{N-1}|, |a|+1\}$, one trivially obtains for $n \in \{1, 2, \ldots, N-1\}$

$$|a_n| \leq C.$$

Next, using the triangular inequality (inequality 1) of Theorem 2.5), we have

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a| \le C,$$

for all $n \geq N$.

Exercise 3.10. Give an example of a bounded divergent sequence.

Theorem 3.6. Let $a_n \to a \in \mathbb{R}$, $n \to \infty$, $b_n \to b$, $n \to \infty$, and let $a_n \leq b_n$ for all $n \geq 1$. Then $a \leq b$.

Exercise 3.11. Prove Theorem 3.6.

Remark 3.2. We note that replacing the inequality $a_n \leq b_n$ by the strong one, i.e. $a_n < b_n$, it does not imply a < b. Indeed, for $a_n := 0$ and $b_n := \frac{1}{n}$, $n \geq 1$, one has $a_n < b_n$ but $a_n \to 0$, $b_n \to 0$, $n \to \infty$.

Remark 3.3. Theorem 3.6 remains valid, if the inequality $a_n \leq b_n$ holds only for all $n \geq M$, where M is some number N.

Theorem 3.7 (Squeeze theorem). Let sequences $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ and $(c_n)_{n\geq 1}$ satisfy the following conditions:

- a) $a_n \leq b_n \leq c_n$ for all $n \geq 1$;
- b) $a_n \to a, n \to \infty, and c_n \to a, n \to \infty$.

Then $b_n \to a, n \to \infty$.

Proof. According to Remark 3.1, for each $\varepsilon > 0$ there exists N_1 and N_2 from \mathbb{R} such that a_n belongs to the ε -neighbourhood $(a - \varepsilon, a + \varepsilon)$ of the point a for all $n \ge N_1$ and c_n belongs to $(a - \varepsilon, a + \varepsilon)$ for all $n \ge N_2$. Thus, for all $n \ge \max\{N_1, N_2\}$ elements b_n also belong to $(a - \varepsilon, a + \varepsilon)$ due to property a).

Example 3.2. Show that $\lim_{n \to \infty} \sqrt[n]{1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}} = 1.$ Solution. We take $a_n := \sqrt[n]{1} = 1$ and $c_n := \underbrace{\sqrt[n]{1 + 1 + 1 + \ldots + 1}}_{n \text{ times}} = \sqrt[n]{n}$. Then

$$a_n \le \sqrt[n]{1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}} \le c_n$$

for all $n \ge 1$. Moreover, $a_n \to 1$, $n \to \infty$, and $c_n \to 1$, $n \to \infty$, by Theorem 3.4. Hence, Theorem 3.7 implies $\lim_{n\to\infty} \sqrt[n]{1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}} = 1$.

Theorem 3.8. Let $a_n \to a \in \mathbb{R}$, $n \to \infty$, and $b_n \to b \in \mathbb{R}$, $n \to \infty$. Then

- a) $\lim_{n \to \infty} (c \cdot a_n) = c \cdot \lim_{n \to \infty} a_n$ for all $c \in \mathbb{R}$;
- b) $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n;$
- c) $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n;$

d)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$
, if $b \neq 0$.

Proof. For proof of the theorem see Section 2.9 [1].

Example 3.3. Compute the limit $\lim_{n \to \infty} \frac{2n^2 + \lg n}{3n^2 + n \cos n + 5}$.

Solution. We cannot apply Theorem 3.8 directly, since the numerator and denominator of $\frac{2n^2 + \lg n}{3n^2 + n \cos n + 5}$ tend to infinity. So, first we rewrite them as follows:

$$\frac{2n^2 + \lg n}{3n^2 + n\cos n + 5} = \frac{n^2 \cdot \left(2 + \frac{\lg n}{n^2}\right)}{n^2 \cdot \left(3 + \frac{\cos n}{n} + \frac{5}{n^2}\right)} = \frac{2 + \frac{\lg n}{n^2}}{3 + \frac{\cos n}{n} + \frac{5}{n^2}}.$$

Now, we can use Theorem 3.8 d) to the right hand side of the latter equality. Indeed, we first compute

$$\lim_{n \to \infty} \left(2 + \frac{\lg n}{n^2} \right) = 2 + \lim_{n \to \infty} \frac{\lg n}{n^2} = 2,$$

by, Theorem 3.8 b) and Exercise 3.6 c). Next, due to the inequality

$$-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}, \quad n \ge 1,$$

theorems 3.7 and 3.2, one has $\lim_{n\to\infty} \frac{\cos n}{n} = 0$. Thus, by Theorem 3.8 a), b)

$$\lim_{n \to \infty} \left(3 + \frac{\cos n}{n} + \frac{5}{n^2} \right) = 3 + \lim_{n \to \infty} \frac{\cos n}{n} + 5 \lim_{n \to \infty} \frac{1}{n^2} = 3 \neq 0.$$

So, we can apply Theorem 3.7 d) and obtain

$$\lim_{n \to \infty} \frac{2n^2 + \lg n}{3n^2 + n \cos n + 5} = \lim_{n \to \infty} \frac{2 + \frac{\lg n}{n^2}}{3 + \frac{\cos n}{n} + \frac{5}{n^2}} = \frac{2}{3}$$

Exercise 3.12. Compute the following limits: a) $\lim_{n\to\infty} \frac{\sin^2 n}{\sqrt{n}}$; b) $\lim_{n\to\infty} \frac{n^2 + \sin n}{n^2 + n\cos n}$; c) $\lim_{n\to\infty} \sqrt[n]{n^2 2^n + 3^n}$; d) $\lim_{n\to\infty} \frac{2^n + n^3}{3^n + 1}$; e) $\sqrt[n+1]{n}$.

Exercise 3.13. Let $(a_n)_{n\geq 1}$ be a bounded sequence and $b_n \to 0$, $n \geq \infty$. Prove that $a_n b_n \to 0$, $n \to \infty$.

Exercise 3.14. Let $(a_n)_{n\geq 1}$ be a bounded sequence and $b_n \to +\infty$, $n \geq \infty$. Prove that $a_n + b_n \to +\infty$, $n \to \infty$.

Exercise 3.15. Let $a_n \ge 0$ for all $n \ge 1$ and $a_n \to a$, $n \to \infty$. Show that for all $k \in \mathbb{N}$ one has $\sqrt[k]{a_n} \to \sqrt[k]{a}, n \to \infty.$

Exercise 3.16. Let $a_n \to a \in \mathbb{R}$, $n \to \infty$. Prove that $\frac{a_1 + \dots + a_n}{n} \to a$, $n \to \infty$.

References

[1] K.A. Ross. *Elementary Analysis: The Theory of Calculus.* Undergraduate Texts in Mathematics. Springer New York, 2013.