23 Lecture 23 - Vector Subspaces and Span

23.1 Vector Subspaces

Throughout this section, V denotes a vector space over \mathbb{F}.
Definition 23.1. Let V be a vector space over \mathbb{F}, and let $U \subset V$ be a subset of V. Then U is called a subspace of V if U is a vector space over \mathbb{F}

To check that a subset $U \subset V$ is a subspace, it is suffices to check only a few of the conditions of a vector space.

Lemma 23.1. Let $U \subset V$ be a subset of a vector space V over \mathbb{F}. Then U is a subspace of V iff the following conditions holds:
(1) closure under addition: $\mathbf{u}, \mathbf{v} \in U$ implies $\mathbf{u}+\mathbf{v} \in U$;
(2) closure under scalar multiplication: $a \in \mathbb{F}, \mathbf{u} \in U$ implies that $a \mathbf{u} \in U$.

Exercise 23.1. Prove Lemma 23.1.
Example 23.1. In every vector space V, the subset $U=\{\mathbf{0}\}$ is a vector subspace of V.
Exercise 23.2. Show that the set $\left\{\left(x_{1}, 0\right): x_{1} \in \mathbb{R}\right\}$ is a vector subspace of \mathbb{R}^{2}.
Exercise 23.3. Show that the set $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}+2 x_{2}-x_{3}+1=0\right\}$ is not a vector subspace of \mathbb{R}^{3}.

Exercise 23.4. Let U_{1} and U_{2} be a vector subspaces of V. Prove that the intersection $U_{1} \cap U_{2}$ is also a vector subspace. Is the union $U_{1} \cup U_{2}$ a vector subspace?

23.2 Sums and Direct Sums of Vector Subspaces

Let U_{1}, U_{2} be a vector subspaces of V.
Definition 23.2. Let U_{1}, U_{2} be a vector subspaces of V. The set

$$
U_{1}+U_{2}=\left\{\mathbf{u}_{1}+\mathbf{u}_{2}: \mathbf{u}_{1} \in U_{1}, \mathbf{u}_{2} \in U_{2}\right\}
$$

is said to be a sum of vector subspaces U_{1} and U_{2}.
Exercise 23.5. Check that a direct sum of two vector subspaces is a vector space.
Example 23.2. Let

$$
\begin{aligned}
& U_{1}=\left\{(x, 0,0) \in \mathbb{F}^{3}: x \in \mathbb{F}\right\} \\
& U_{2}=\left\{(0, y, 0) \in \mathbb{F}^{3}: y \in \mathbb{F}\right\} \\
& U_{3}=\left\{(y, y, 0) \in \mathbb{F}^{3}: y \in \mathbb{F}\right\} .
\end{aligned}
$$

Then

$$
U_{1}+U_{2}=U_{1}+U_{3}=\left\{(x, y, 0) \in \mathbb{F}^{3}: x, y \in \mathbb{F}\right\}
$$

We remark that $\mathbf{u} \in U=U_{1}+U_{2}$ if and only if there exist vectors $\mathbf{u}_{1} \in U_{1}$ and $\mathbf{u}_{2} \in U_{2}$ such that $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}$.

Definition 23.3. If every vector $\mathbf{u} \in U=U_{1}+U_{2}$ can be uniquely written as $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}$ for $\mathbf{u}_{1} \in U_{1}$ and $\mathbf{u}_{2} \in U_{2}$. Then we call the vector space U the direct sum of U_{1}, U_{2} and denote by

$$
U=U_{1} \oplus U_{2}
$$

Example 23.3. Let

$$
\begin{aligned}
U_{1} & =\left\{(x, y, 0) \in \mathbb{R}^{3}: x, y \in \mathbb{R}\right\} \\
U_{2} & =\left\{(0,0, z) \in \mathbb{R}^{3}: z \in \mathbb{R}\right\} \\
U_{3} & =\left\{(0, y, z) \in \mathbb{R}^{3}: y, z \in \mathbb{R}\right\}
\end{aligned}
$$

Then $\mathbb{R}^{3}=U_{1} \oplus U_{2}$. But $\mathbb{R}^{3}=U_{1}+U_{3}$ and $\mathbb{R}^{3} \neq U_{1} \oplus U_{3}$ (the vector $(0,0,0)$ can be written as $(0,0,0)+(0,0,0)$ and $(0,-1,0)+(0,1,0))$.

Proposition 23.1. Let U_{1} and U_{2} be a vector subspaces of V. Then $V=U_{1} \oplus U_{2}$ iff the following conditions hold:
(1) $V=U_{1}+U_{2}$;
(2) If $\mathbf{0}=\mathbf{u}_{1}+\mathbf{u}_{2}$ with $\mathbf{u}_{1} \in U_{1}$ and $\mathbf{u}_{2} \in U_{2}$, then $\mathbf{u}_{1}=\mathbf{u}_{2}=\mathbf{0}$.

Proof. We assume that $V=U_{1} \oplus U_{2}$. Then Condition (1) follows from the definition. Since $\mathbf{0}$ can be uniquely written as $\mathbf{0}+\mathbf{0}$, we have that Condition (2) is also true.

Next, let conditions (1) and (2) hold. By Condition (1), for every vector $\mathbf{u} \in V$ there exist $\mathbf{u}_{1} \in U_{1}$ and $\mathbf{u}_{2} \in U_{2}$ such that $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}$. We assume that $\mathbf{u}=\mathbf{v}_{1}+\mathbf{v}_{2}$ for some $\mathbf{v}_{1} \in U_{1}$ and $\mathbf{v}_{2} \in U_{2}$. Subtracting the two equations, we obtain

$$
0=\left(\mathbf{u}_{1}-\mathbf{v}_{1}\right)+\left(\mathbf{u}_{2}-\mathbf{v}_{2}\right)
$$

where $\mathbf{u}_{1}-\mathbf{v}_{1} \in U_{1}$ and $\mathbf{u}_{2}-\mathbf{v}_{2} \in U_{2}$. By Condition (2), we have that $\mathbf{u}_{1}=\mathbf{v}_{1}$ and $\mathbf{u}_{2}=\mathbf{v}_{2}$. This implies that $V=U_{1} \oplus U_{2}$.

Proposition 23.2. Let U_{1} and U_{2} be a vector subspaces of V. Then $V=U_{1} \oplus U_{2}$ iff the following conditions hold:
(1) $V=U_{1}+U_{2}$;
(2) $U_{1} \cap U_{2}=\{\mathbf{0}\}$.

Proof. We assume that $V=U_{1} \oplus U_{2}$. Then Condition (1) follows from the definition. Next, we suppose that $\mathbf{u} \in U_{1} \cap U_{2}$. Then by Exercise 23.4, $\mathbf{- u}$ also belongs to $U_{1} \cap U_{2}$ because $U_{1} \cap U_{2}$ is a vector space. Thus, $\mathbf{0}=\mathbf{u}+(-\mathbf{u})$, where $\mathbf{u} \in U_{1} \cap U_{2} \subset U_{1}$ and $-\mathbf{u} \in U_{1} \cap U_{2} \subset U_{2}$. By Proposition 23.1, $\mathbf{u}=\mathbf{0}$.

Next, we assume that conditions (1) and (2) hold. In order to prove that $V=U_{1} \oplus U_{2}$, we show that $\mathbf{0}=\mathbf{u}_{1}+\mathbf{u}_{2}$, where $\mathbf{u}_{1} \in U_{1}$ and $\mathbf{u}_{2} \in U_{2}$, implies $\mathbf{u}_{1}=\mathbf{u}_{2}=\mathbf{0}$. Since $\mathbf{0}=\mathbf{u}_{1}+\mathbf{u}_{2}, \mathbf{u}_{1}=-\mathbf{u}_{2}$. So, $\mathbf{u}_{1}=-\mathbf{u}_{2} \in U_{2}$ because U_{2} is a vector space. Thus, $u_{1} \in U_{1} \cap U_{2}$ and, consequently, $\mathbf{u}_{1}=-\mathbf{u}_{2}=\mathbf{0}$, according to Condition (2). USsing Proposition 23.1, we obtain that V is the direct sum of U_{1} and U_{2}.

Exercise 23.6. Prove or give a counterexample to the following claim:

1) Let V be a vector space over \mathbb{F} and suppose that W_{1}, W_{2} and W_{3} are vector subspaces of V such that $W_{1}+W_{3}=W_{2}+W_{3}$. Then $W_{1}=W_{2}$.
2) Let V be a vector space over \mathbb{F} and suppose that W_{1}, W_{2} and W_{3} are vector subspaces of V such that $W_{1} \oplus W_{3}=W_{2} \oplus W_{3}$. Then $W_{1}=W_{2}$.
Exercise 23.7. Let $\mathbb{F}[z]$ denote the vector space of all polynomials with coefficients in \mathbb{F} and let

$$
U=\left\{a z^{2}+b z^{5}: a, b \in \mathbb{F}\right\}
$$

Find a subspace W of $\mathbb{F}[z]$ such that $F[z]=U \oplus W$.

23.3 Linear Span

In order to give a definition of one of the main notion of the linear algebra: basis of a vector space, we need to introduce a notion of a linear span of vectors.

Definition 23.4. A vector $\mathbf{v} \in V$ is a linear combination of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, if there exists scalars $a_{1}, a_{2}, \ldots, a_{n}$ from \mathbb{F} such that

$$
\mathbf{v}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{n} \mathbf{v}_{n}
$$

Definition 23.5. The set

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}:=\left\{a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{n} \mathbf{v}_{n}: a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{F}\right\}
$$

is called a linear span of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.
The following lemma follows from the definitions of a vector spaces and linear span.
Proposition 23.3. Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$. Then
(i) the vector \mathbf{v}_{i} belongs to $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$;
(ii) $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a subspace of V;
(iii) If U is a subspace of V such that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in U$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} \subset U$.

Proposition 23.3 implies that $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is the smallest vector space of V which contains the set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

Definition 23.6. If $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}=V$, then we say that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ span V and we call V finite-dimensional. If a vector space is not finite dimensional, then we call it infinitedimensional.

Example 23.4. The vectors $\mathbf{e}_{1}=(1,0,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}_{n}=(0, \ldots, 0,1)$ span \mathbb{F}^{n}. According to the previous definition the space \mathbb{F}^{n} is finite-dimensional.
Example 23.5. Let $\mathbf{p}_{k}(z)=z^{k}$, for $k=0, \ldots, n$. Then the set $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}$ span $\mathbb{F}_{n}[z]$. It is easy to see that the space $\mathbb{F}[z]$ of all polynomials is infinite-dimensional.
Exercise 23.8. Consider the complex vector space $V=\mathbb{C}^{3}$ and the list $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ of vectors in V, where $\mathbf{v}_{1}=(i, 0,0), \mathbf{v}_{2}=(i, 1,0)$ and $\mathbf{v}_{3}=(i, i,-1)$.
a) Prove that $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=V$.

