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22 Lecture 22 – Fundamental Theorem of Algebra and Definition

of Vector Space

22.1 Fundamental Theorem of Algebra

For more details see [3, Chapter 4].
Let n ∈ N and a0, a1, . . . , an be a complex numbers. We set

f(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0, z ∈ C.

The function f is called a polynomial function. The numbers a0, a1, . . . , an are coefficients of the
polynomial f . If an 6= 0, then the number n is called the degree of f and is denoted by deg f := n.

In this section, we are going to prove that the equation f(z) = 0 as at most n solutions. The next
theorem is called the fundamental theorem of algebra and we formulate it without prof. The prof will
be given at the course of complex analysis using Liouville’s theorem.

Theorem 22.1 (Fundamental theorem of algebra). For every n ∈ N and a0, a1, . . . , an ∈ C, an 6= 0,
the equation

anz
n + an−1z

n−1 + . . .+ a1z + a0 = 0

has at least one solution in C.

Theorem 22.2. Let f be a polynomial function of degree n ∈ N. Then

1) for any w ∈ C we have that f(w) = 0 iff there exists a polynomial g of degree n− 1 such that

f(z) = (z − w)g(z), z ∈ C;

2) there exist at most n distinct complex solutions of the polynomial equation f(z) = 0;

3) there exist w1, . . . , wn ∈ C (not necessary distinct) such that

f(z) = an(z − w1) . . . (z − wn), z ∈ C,

where an denotes the coefficient about zn.

Proof. To prove 1), we first recall that for each a, b ∈ R

an − bn = (a− b)(an−1 + an−2b+ . . .+ abn−2 + bn−1) = (a− b)
n
∑

k=1

an−kbk−1.

Let f(w) = 0. Then

f(z) = f(z)− f(w) = an(z
n − wn) + an−1(z

n−1 − wn−1) + . . .+ a1(z − w)

= an(z − w)
n
∑

k=1

zn−kwk−1 + an−1(z − w)
n−1
∑

k=1

zn−k−1wk−1 + . . .+ a1(z − w)

= (z − w)

(

an

n
∑

k=1

zn−kwk−1 + an−1

n−1
∑

k=1

zn−k−1wk−1 + . . .+ a1

)

= (z − w)g(z),
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where g(z) = an
∑

n

k=1
zn−kwk−1+ an−1

∑

n−1

k=1
zn−k−1wk−1+ . . .+ a1, z ∈ C, is a polynomial of degree

n− 1.
Now, we prove 3). Let w1 be a complex number such that f(w1) = 0, which exists according to

Theorem 22.1. Applying the part 1) of Theorem 22.2, we have that there exists a polynomial g1 such
that f(z) = (z−w1)g1(z), z ∈ C. Next, using Theorem 22.1 again, we obtain that there exists w2 such
that f(w2) = 0. By Theorem 22.2 1), there exists a polynomial g2 such that g1(z) = (z − w2)g2(z),
z ∈ C. Consequently, f(z) = (z − w1)(z − w2)g2(z), z ∈ C. Applying theorems 22.1 and 22.2 1) n

times, we get that
f(z) = (z − w1) . . . (z − wn)gn, z ∈ C, (47)

for some w1, w2, . . . , wn ∈ C and a polynomial gn of degree 0 which is a constant function. Since the
right hand side of (47) is a polynomial with the coefficient gn about zn, we can conclude that gn = an.

The part 2) of the theorem easily follows from 3).

Exercise 22.1. For a complex number α show that the coefficients of the polynomial

p(z) = (z − α)(z − α)

are real numbers.

Exercise 22.2. Let p(z) be a polynomial with real coefficients and let α be a complex number. Prove
that p(α) = 0 if and only if p(α) = 0.

Exercise 22.3. Prove that any polynomial p(z) with real coefficients can be decomposed into a
product of polynomials of the form az2 + bz + c, where a, b, c ∈ R.

22.2 Definition and some Examples of Vector Spaces

For more details see [3, Chapter 5].
Let F denote the set of real numbers R or complex numbers C. We will call F a field. We also

consider a set V , whose elements are called vectors and will be denoted by v,u,w . . . etc. We define
on V two operations:

• vector addition + : V × V → V , that maps two elements u,v of V to u+ v ∈ V ;

• scalar multiplication · : F× V → V , that maps a ∈ F and u ∈ V to a · u = au ∈ V .

Definition 22.1. A vector space over F is a set V together with operations of vector addition and
scalar multiplication which satisfy the following properties:

1) commutativity: u+ v = v + u for all u,v ∈ V ;

2) associativity: (u+ v) +w = u+ (v +w) and (ab)v = a(bv) for all a, b ∈ F and u,v,w ∈ V ;

3) additive identity: there exists a vector 0 ∈ V such that 0+ v = v for all v ∈ V ;

4) additive inverse: for every v ∈ V there exists a vector w ∈ V (denoted by −v) such that
v +w = 0;

5) multiplicative identity: 1 · v = v for all v ∈ V ;
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6) distributivity: a(u+ v) = au+ av and (a+ b)v = av + bv for all a, b ∈ F, u,v ∈ V .

A vector space over R will be called a real vector space and a vector space over C is similarly
called a complex vector space.

Example 22.1. The set V = F with the usual operations of addition and multiplication is trivially a
vector space over F.

Example 22.2. The set

F
n = {x = (x1, x2, . . . , xn) : xk ∈ F, k = 1, . . . , n}

with operations
x+ y = (x1 + y1, x2 + y2, . . . , xn + yn)

and
ax = (ax1, ax2, . . . , axn),

for all a ∈ F, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ F
n, is a vector space. It is easily to

see that the additive identity is 0 = (0, 0, . . . , 0) and the additive inverse of x = (x1, x2, . . . , xn) is
−x = (−x1,−x2, . . . ,−xn).

Example 22.3. Similarly, the set

F
∞ = {x = (x1, x2, . . .) : xk ∈ F, k ∈ N}

with operations
x+ y = (x1 + y1, x2 + y2, . . .)

and
ax = (ax1, ax2, . . .),

for all a ∈ F, x = (x1, x2, . . .), y = (y1, y2, . . .) ∈ F
∞, is also a vector space, where 0 = (0, 0, . . .) is

additive identity and −x = (−x1,−x2, . . .) is the additive inverse of x = (x1, x2, . . .).

Example 22.4. The set of all polynomials of degree at most n

F
n[z] = {p(z) = anz

n + . . .+ a1z + a0, z ∈ F : ak ∈ F, k = 1, . . . , n}

with the addition

(p+ q)(z) = (an + bn)z
n + . . .+ (a1 + b1)z + a0 + b0, z ∈ F,

and scalar multiplication

(ap)(z) = aanz
n + . . .+ aa1z + aa0, z ∈ F,

for all a ∈ F and p(z) = anz
n + . . .+ a1z + a0, q(z) = bnz

n + . . .+ b1z + b0, z ∈ F, from F
n[z] is also

a vector space.

Exercise 22.4. The vector space F[z] of all polynomials of any degree can be defined similarly as
F
n[z] and is also a vector space.
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Example 22.5. The set of (real-valued) continuous functions on an interval [a, b] with the usual
addition of functions and multiplication by a constant is a real vector space.

Exercise 22.5. The set of complex numbers C = {x + iy : x, y ∈ R} can be considered as a real
vector space with the usual addition of complex numbers and the multiplication by the real number.

Example 22.6. The set V = {0}, where 0 is any element, with addition 0 + 0 := 0 and scalar
multiplication a · 0 := 0 is a vector space. (Here 0 also plays a role of the additive identity).

Exercise 22.6. Show that the sets from the previous examples are vector spaces under corresponding
addition and scalar multiplication.

Exercise 22.7. For each of the following sets, either show that the set is a vector space over F or
explain why it is not a vector space.

a) The set R of real numbers under the usual operations of addition and multiplication, F = R.

b) The set R of real numbers under the usual operations of addition and multiplication, F = C.

c) The set {f ∈ C[0, 1] : f(0) = 2} under the usual operations of addition and multiplication of
functions, F = R.

d) The set {f ∈ C[0, 1] : f(0) = f(1) = 0} under the usual operations of addition and multiplication
of functions, F = R.

e) The set {(x, y, z) ∈ R
3 : x−2y+z = 0} under the usual operations of addition and multiplication

on R
3, F = R.

f) The set {(x, y, z) ∈ C
3 : 2x+z+i = 0} under the usual operations of addition and multiplication

on C
3, F = C.

22.3 Elementary Properties of Vector Spaces

In this section, we prove some important and simple properties of vector spaces. Let V denote a vector
space over F.

Proposition 22.1. Any vector space has a unique additive identity.

Proof. Let us assume that there exist two additive identities 0 and 0′. Then

0 = 0+ 0′ = 0′,

where the first identity holds since 0′ is an identity and the second equality holds since 0 is an
identity.

Proposition 22.2. Every v ∈ V has a unique inverse.

Proof. We assume that w and w′ are additive inverses of v so that v+w = 0 and v+w′ = 0. Then

w = w + 0 = w + (v +w′) = (w + v) +w′ = 0+w′ = w′.
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Since the additive inverse of v is unique, we will denote it by −v. We also define w−v := w+(−v).

Proposition 22.3. For every v ∈ V 0 · v = 0.

Proof. For v ∈ V we have that

0 · v = (0 + 0) · v = 0 · v + 0 · v.

Adding the additive inverse of 0v to both sides, we obtain

0 = 0v − 0v = (0v + 0v)− 0v = 0v.

Proposition 22.4. For every a ∈ F a · 0 = 0.

Exercise 22.8. Prove Proposition 22.4.

Proposition 22.5. For every v ∈ V (−1) · v = −v.

We recall that the vector −v denotes the additive inverse of v.

Proof. For v ∈ V , we have

v + (−1) · v = 1 · v + (−1) · v = (1 + (−1))v = 0 · v = 0,

by Proposition 22.3.
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