

20 Lecture 20 – Series with Arbitrary Terms

20.1 Root and Ratio Tests for Series with Positive Terms

Theorem 20.1 (Ratio Test). Let $\sum_{n=1}^{\infty} a_n$ be a series with $a_n > 0$, $n \ge 1$, and let there exist a limit $r := \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if r < 1 and diverges if r > 1.

Proof. Let $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r < 1$. We take $q \in (r, 1)$. Then there exists $N \in \mathbb{N}$ such that $\frac{a_{n+1}}{a_n} < q = \frac{q^{n+1}}{q^n}$ for all $n \ge N$. Thus, using Theorem 19.6 (iii) and the convergence of the geometric series for |q| < 1 (see Example 19.2), we have that the series $a_N + a_{N+1} + \ldots = \sum_{n=N}^{\infty} a_n$ converges and, hence, $\sum_{n=1}^{\infty} a_n$ also converges.

also converges. If $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r > 1$, then there exists $N \in \mathbb{N}$ such that $\frac{a_{n+1}}{a_n} > 1$ for all $n \ge N$. Consequently, $a_n < a_{n+1}$ for all $n \ge N$. So, we obtain that $0 < a_N < a_{N+1} < a_{N+2} < \dots$ This implies that $a_n \ne 0$, $n \to \infty$. Hence, the series $\sum_{n=1}^{\infty} a_n$ diverges, according to Theorem 19.1.

Example 20.1. The series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ converges for all x > 0. Indeed,

$$r = \lim_{n \to \infty} \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} = \lim_{n \to \infty} \frac{x}{n+1} = 0 < 1.$$

Exercise 20.1. Prove that the following series converge:

a) $\sum_{n=1}^{\infty} \frac{3^n (n!)^2}{(2n)!}$; b) $\sum_{n=1}^{\infty} \frac{7^n (n!)^2}{n^{2n}}$.

Theorem 20.2 (Root Test). Let $\sum_{n=1}^{\infty} a_n$ be a series with $a_n \ge 0$, $n \ge 1$, and let $r := \lim_{n \to \infty} \sqrt[n]{a_n}$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if r < 1 and diverges if r > 1.

Proof. Let $\overline{\lim_{n\to\infty}} \sqrt[n]{a_n} = r < 1$ and let q be a number from (r, 1). Then there exists $N \in \mathbb{N}$ such that $\sqrt[n]{a_n} < q$ for all $n \ge N$. So, $a_n < q^n$ for all $n \ge N$. By Theorem 19.6 (i), the series $\sum_{n=N}^{\infty} a_n$ converges due to the convergence of the geometric series $\sum_{n=1}^{\infty} q^n$ for |q| < 1.

If $\overline{\lim_{n\to\infty}} \sqrt[n]{a_n} = r > 1$, then there exists a subsequence $(\sqrt[n_k]{a_{n_k}})_{k\geq 1}$ such that $\sqrt[n_k]{a_{n_k}} \to r, k \to \infty$, since the upper limit is also a subsequential limit (see Theorem 5.1). Hence, there exists $K \in \mathbb{N}$ such that $\sqrt[n_k]{a_{n_k}} > 1$ for all $k \ge K$. Consequently, $a_{n_k} > 1$ for all $k \ge K$. This implies that $a_n \neq 0$, $n \to \infty$, since the sequence $(a_n)_{n\geq 1}$ has an subsequence which does not converge to 0.

Example 20.2. The series
$$\sum_{n=1}^{\infty} \frac{n^3}{2^n}$$
 converges, since $r = \lim_{n \to \infty} \sqrt[n]{\frac{n^3}{2^n}} = \lim_{n \to \infty} \frac{(\sqrt[n]{n})^3}{2} = \frac{1}{2} < 1.$

Exercise 20.2. Prove that the following series converge:

a) $\sum_{n=1}^{\infty} \frac{3^n}{(\ln n)^n}$; b) $\sum_{n=1}^{\infty} \frac{n^2 2^n}{(n+1)^{n^2}}$.

20.2 Series with Arbitrary Terms

20.2.1 Absolute and Conditional Convergence

Definition 20.1. A series

$$a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$$
 (37)

is said to be **absolutely convergent**, if the series

$$|a_1| + |a_2| + \ldots + |a_n| + \ldots = \sum_{n=1}^{\infty} |a_n|$$
 (38)

converges. If series (38) diverges but (37) converges, then series (37) is called **conditionally convergent**.

Theorem 20.3. If a series $\sum_{n=1}^{\infty} a_n$ absolutely converges, then it converges and

$$\left|\sum_{n=1}^{\infty} a_n\right| \le \sum_{n=1}^{\infty} |a_n|.$$

Proof. We note that terms of the series

$$\sum_{n=1}^{\infty} (a_n + |a_n|) \tag{39}$$

satisfy the property $0 \le a_n + |a_n| \le 2|a_n|$, $n \ge 1$. Thus, series (39) converges due to the convergence of the series $\sum_{n=1}^{\infty} 2|a_n|$ and Theorem 19.6 (i). Summing series (39) with the series $\sum_{n=1}^{\infty} (-|a_n|)$, which also converges, we have that the series $\sum_{n=1}^{\infty} (a_n + |a_n| - |a_n|) = \sum_{n=1}^{\infty} a_n$ converges, by Theorem 19.2. \Box

We set $a_n^+ := \max\{a_n, 0\}$ and $a_n^- := -\min\{a_n, 0\}$, $n \ge 1$. Then $a_n = a_n^+ - a_n^-$ and $|a_n| = a_n^+ + a_n^-$ for all $n \ge 1$.

Theorem 20.4. A series $\sum_{n=1}^{\infty} a_n$ absolutely converges iff the series $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ converge. Moreover, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-, \quad \sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^-.$

Exercise 20.3. Prove Theorem 20.4. (*Hint:* Use the equalities $0 \le a_n^+ \le |a_n|$ and $0 \le a_n^- \le |a_n|$)

Corollary 20.1. Let a series $\sum_{n=1}^{\infty} a_n$ conditionally converge. Then the series $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ diverge. *Proof.* We assume that $\sum_{n=1}^{\infty} a_n^+$ converges. Using Theorem 19.2, we obtain that the series $\sum_{n=1}^{\infty} a_n^+$ –

 $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n^+ - a_n) = \sum_{n=1}^{\infty} a_n^- \text{ also converges. But then, by Theorem 20.4, the series } \sum_{n=1}^{\infty} a_n \text{ absolutely converges that contradicts the assumption of the corollary.} \square$

Exercise 20.4. Show that the following series absolutely converge: a) $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$; b) $\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}$.

20.2.2 Dirichlet's and Abel's Tests

Theorem 20.5 (Dirichlet's test). Let sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ satisfy the following properties:

- 1) $(a_n)_{n\geq 1}$ is a monotone sequence;
- 2) $a_n \to 0, n \to \infty;$

3) there exists C > 0 such that $\left|\sum_{k=1}^{n} b_{n}\right| \leq C$ for all $n \geq 1$.

Then the series $\sum_{n=1}^{\infty} a_n b_n$ converges.

Proof. For proof of the theorem see Theorem 3.42 [2].

Example 20.3. The series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

conditionally converges. Indeed, taking $a_n := \frac{1}{n}$ and $b_n := (-1)^{n+1}$, $n \ge 1$, we can see that the sequences $(a_n)_{n\ge 1}$ and $(b_n)_{n\ge 1}$ satisfy the conditions of Dirichlet's test (condition 3) is satisfied with C = 1). Thus, the series $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges. But the series $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges (see Example 19.3).

Example 20.4. The series $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ converges. To prove this, we take $a_n := \frac{1}{n}$, $b_n := \sin n$, $n \ge 1$. The sequence $(a_n)_{n\ge 1}$ is monotone and converges to 0. Next, we compute for $n \ge 1$

$$\sum_{k=1}^{n} \sin k = \frac{1}{\sin \frac{1}{2}} \sum_{k=1}^{n} \sin k \cdot \sin \frac{1}{2} = \frac{1}{2 \sin \frac{1}{2}} \sum_{k=1}^{n} \left(\cos \left(k - \frac{1}{2} \right) - \cos \left(k + \frac{1}{2} \right) \right)$$
$$= \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(n + \frac{1}{2} \right) \right).$$

Hence,

$$\left|\sum_{k=1}^{n} \sin k\right| = \left|\frac{1}{2\sin\frac{1}{2}} \left(\cos\frac{1}{2} - \cos\left(n + \frac{1}{2}\right)\right)\right| \le \frac{1}{\sin\frac{1}{2}}, \quad n \ge 1,$$

and, consequently, condition 3) of Dirichlet's test is satisfied. Hence, the series $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ converges.

Exercise 20.5. Show that the series $\sum_{n=1}^{\infty} \frac{|\sin n|}{n}$ diverges. (*Hint:* Use the equality $|\sin a| \ge \sin^2 a = \frac{1-\cos 2a}{2}$ and then show that the series $\sum_{n=1}^{\infty} \frac{1}{2n}$ diverges and $\sum_{n=1}^{\infty} \frac{\cos 2n}{2n}$ converges).

Exercise 20.6. Prove the convergence of the following sequences: a) $\sum_{n=1}^{\infty} (-1)^{\frac{n(n+1)}{2}} \frac{1}{\sqrt{n}}$; b) $\sum_{n=1}^{\infty} \frac{\sin 3n}{\sqrt{n}}$; c) $\sum_{n=1}^{\infty} \frac{\cos n}{n}$.

Corollary 20.2 (Leibniz's test). Let a sequence $(a_n)_{n\geq 1}$ satisfy the following properties:

- 1) $0 \le a_{n+1} \le a_n$ for $n \ge 1$;
- 2) $a_n \to 0, n \to \infty$.

Then the series

$$a_1 - a_2 + a_3 - a_4 + \ldots = \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges.

Proof. The corollary follows from Dirichlet's test taking $b_n := (-1)^{n+1}, n \ge 1$.

Example 20.5. The series $\sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n}$ converges due to Leibniz's test, since the sequence $(a_n)_{n\geq 1} = (\ln \frac{n+1}{n})_{n\geq 1}$ decreases to 0. Indeed, $a_n = \ln \frac{n+1}{n} = \ln (1+\frac{1}{n}) > \ln (1+\frac{1}{n+1}) = a_{n+1} > 0$ because $1 + \frac{1}{n} > 1 + \frac{1}{n+1}$ and ln is an increasing function.

Theorem 20.6 (Abel's test). Let sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ satisfy the following properties:

- 1) $(a_n)_{n>1}$ is monotone;
- 2) $(a_n)_{n>1}$ is bounded;
- 3) the series $\sum_{n=1}^{\infty} b_n$ converges.

Then the series $\sum_{n=1}^{\infty} a_n b_n$ converges.

Proof. In order to prove Abel's test, we are going to use Dirichlet's test. Since the sequence $(a_n)_{n\geq 1}$ is monotone and bounded, it has a limit $a \in \mathbb{R}$, by Theorem 4.1. Applying Dirichlet's test to the sequences $(a_n - a)_{n\geq 1}$ and $(b_n)_{n\geq 1}$, we get that the series $\sum_{n=1}^{\infty} (a_n - a)b_n$ convergence. Thus, the series $\sum_{n=1}^{\infty} (a_n - a)b_n + a\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n b_n$ is convergent due to the convergence of $\sum_{n=1}^{\infty} b_n$ and Theorem 19.2. \Box

Exercise 20.7. Prove the convergence of the series $\sum_{n=1}^{\infty} (-1)^n \frac{\arctan n}{\sqrt{n}}$.

20.2.3 Permutation of Terms of a Series

Definition 20.2. A bijection $\sigma : \mathbb{N} \to \mathbb{N}$ is called a **permutation**.

In this section, we will study series obtained from permutation of their terms, i.e.

$$a_{\sigma(1)} + a_{\sigma(2)} + \ldots + a_{\sigma(n)} + \ldots = \sum_{n=1}^{\infty} a_{\sigma(n)}.$$
 (40)

According to Example 20.3, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges. Moreover, one can show that

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2.$$

But it turns out that a rearrangement of the series gives other finite sum, e.g.

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots = \frac{3}{2}\ln 2.$$

So, we see that there exist series whose sums depend on order of their terms.

Theorem 20.7. Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series. Then for every permutation σ the permuted series (40) converges to the same sum, *i.e.*

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = \sum_{n=1}^{\infty} a_n$$

Proof. For proof of the theorem see Theorem 3.55 [2].

Theorem 20.8 (Riemann rearrangement theorem). Let $\sum_{n=1}^{\infty} a_n$ be conditionally convergent and $s \in \mathbb{R} \cup \{-\infty, +\infty\}$. Then there exists a permutation σ such that

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = s.$$

Proof. For proof of the theorem in more general setting see Theorem 3.54 [2].

References

- K.A. Ross. *Elementary Analysis: The Theory of Calculus*. Undergraduate Texts in Mathematics. Springer New York, 2013.
- [2] Walter Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976. International Series in Pure and Applied Mathematics.