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20 Lecture 20 — Series with Arbitrary Terms

20.1 Root and Ratio Tests for Series with Positive Terms

o0
Theorem 20.1 (Ratio Test). Let ) a, be a series with a, > 0, n > 1, and let there exist a limit

n=1

oo
. Then the series Y a, converges if r < 1 and diverges if r > 1.

n=1

= lim %nti
n—oo n

Proof. Let lim 2 =p < 1. We take ¢ € (r,1). Then there exists N € N such that 2 < ¢ = qnﬂ

n—o0
for all n > N. Thus, using Theorem 19.6 (iii) and the convergence of the geometric series for |q\ < 1

(see Example 19.2), we have that the series ay + ani1 + .. Z an converges and, hence, Z an
n=N n=1
also converges.

If lim 2L = ¢ > 1, then there exists N € N such that a’;—:l > 1 for all n > N. Consequently,

n—oo 9n
ap < an41 for all m > N. So, we obtain that 0 < ay < ay41 < ant2 < .... This implies that a,, 4 0,
o0
n — oo. Hence, the series ) a,, diverges, according to Theorem 19.1. O
n=1

oo
Example 20.1. The series ) %7: converges for all x > 0. Indeed,

n=1

n+1 |
r:limxi-&:lim v =0<1.
n—o00 (n+1)! xn n—oon + 1

Exercise 20.1. Prove that the following series converge:
e G b 2 ()2

a) Z (2n)! ) Z n2n -
n=1 n=1

Theorem 20.2 (Root Test). Let Z a, be a series with a, >0, n > 1, and let r := lim Y/a,. Then

n=1 n—oo
o0
the series Y an converges if r < 1 and diverges if r > 1.
n=1

Proof. Let lim {/a, = r < 1 and let ¢ be a number from (r,1). Then there exists N € N such that
n—oo

/a, < qforallm > N. So, a, < ¢" for all n > N. By Theorem 19.6 (i), the series > a, converges

n=N
o0
due to the convergence of the geometric series ) ¢" for |g| < 1.
n=1
If lim @/a, =r > 1, then there exists a subsequence ( "@/ank)kzl such that n/an, — r, k — oo,

n—oo
since the upper limit is also a subsequential limit (see Theorem 5.1). Hence, there exists K € N such

that ng/a,, > 1 for all £ > K. Consequently, a,, > 1 for all £ > K. This implies that a, # 0,

n — 00, since the sequence (an)n>1 has an subsequence which does not converge to 0. Ol
3 n 3 . n 3
Example 20.2. The series Z 5w converges, since r = lim {/g7 = lim @ = % <1
n—oo n—o0

Exerc1se 20.2. Prove that the following series converge:

B X gl ) © 2

(n+1
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20.2 Series with Arbitrary Terms
20.2.1 Absolute and Conditional Convergence
Definition 20.1. A series -
atazt...tant... =) an (37)
n=1

is said to be absolutely convergent, if the series
oo
la1| + laz| + ...+ lan| + ... =D |an] (38)
n=1

converges. If series (38) diverges but (37) converges, then series (37) is called conditionally conver-
gent.

[ee]
Theorem 20.3. If a series Y a, absolutely converges, then it converges and
n=1

o0
> an
n=1

o0
< Z|an|-
n=1

Proof. We note that terms of the series

> (an + |an)) (39)

n=1
satisfy the property 0 < a, + |an| < 2|ay|, n > 1. Thus, series (39) converges due to the convergence
o]
of the series > 7, 2|a,| and Theorem 19.6 (i). Summing series (39) with the series > (—|ay|), which

n=1

o0 o0
also converges, we have that the series > (an + |an| — |an|) = > ay converges, by Theorem 19.2. [
n=1 n=1

We set a;} := max{an,0} and a;, := —min{a,,0}, n > 1. Then a, = a;} —a;, and |a,| = a;} +a,,
for alln > 1.

o0 o o0
Theorem 20.4. A series > a, absolutely converges iff the series Y. af and Y. a; converge. More-
n=1 n=1 n=1

o0 o o o0 oo o0

_ + - _ + -
g an = E an—g a, , E lan| = 5 an—l—g a, -
n=1 n=1 n=1 n=1 n=1 n=1

Exercise 20.3. Prove Theorem 20.4. (Hint: Use the equalities 0 < a;} < |an| and 0 < a;, < |as|)

over,

o] o0 o0
Corollary 20.1. Let a series Y a, conditionally converge. Then the series > af and > a; diverge.
n=1 n=1 n=1

(o] o0
Proof. We assume that > a7 converges. Using Theorem 19.2, we obtain that the series Y a; —
n=1 n=1

o0 [e.°] o0 o]
S an =Y (af —ay) = Y a, also converges. But then, by Theorem 20.4, the series Y a,, absolutely
n=1 n=1 n=1 n=1
converges that contradicts the assumption of the corollary. O
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Exercise 20.4. Show that the following series absolutely converge:
oo

a) sinn. b) Z (= 1)"71"

n2 (2n)!
n=1

20.2.2 Dirichlet’s and Abel’s Tests

Theorem 20.5 (Dirichlet’s test). Let sequences (an)n>1 and (bp)n>1 satisfy the following properties:
1) (an)n>1 is a monotone sequence;
2) an — 0, n — oo;
n
>

3) there exists C > 0 such that bn| < C forallm > 1.

k=1
oo
Then the series > anby, converges.
n=1
Proof. For proof of the theorem see Theorem 3.42 [2]. O
Example 20.3. The series
1 1 1 n+1
1 -4 -_ = _
2 t3 1t Z
conditionally converges. Indeed, taking a, := ﬁ and b, := (=1)""! n > 1, we can see that the

sequences (ap)n>1 and (by, )n>1 satisfy the conditions of D1r1chlet S test (condltlon 3) is satisfied with
n o0
C = 1). Thus, the series Z anbn, Z (Cal i il 3 %

converges. But the series Z )(17
n=1 n=1

diverges (see Example 19.3).

)nl

S .

Example 20.4. The series 21 =% converges. To prove this, we take a, := %,
n—=

The sequence (an)n>1 is monotone and converges to 0. Next, we compute for n > 1

Z 1Zs1n/~c s1nf 12( (k—)—cos(kz—i—))

— Ska f 2sin 5 — 2

1 1
= ——|cos= —cos|n+ .

2sin = 2

1 +1

cos— —cos [ n+ —

2sm1 2 2

1
2
and, consequently, condition 3) of Dirichlet’s test is satisfied. Hence, the series ) % converges.
n=1

b, :=sinn, n > 1.

| =

Hence,

Zsmk

o0 .
Exercise 20.5. Show that the series »_ w diverges. (Hint: Use the equality |sina| > sin®q = 1=¢g22¢
n=1

o0 o0
and then show that the series > 5= diverges and ) <2 converges).
n=1 n=
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Exercise 20.6. Prove the convergence of the following sequences:

o0 n(n+1) o . (o]
a e 1 : b s1n3n; c cosn
) nzzzl( ) Vi ) nX::I vin ) nzz:l "

Corollary 20.2 (Leibniz’s test). Let a sequence (an)n>1 satisfy the following properties:
1) 0<anr1 <an forn >1;
2) an — 0, n — oo.

Then the series

o0
a1 —ag+a3—a4+...= Z(—l)n+1an
n=1
converges.
Proof. The corollary follows from Dirichlet’s test taking b, := (—1)"*!, n > 1. O

oo

Example 20.5. The series Y (—1)" In L converges due to Leibniz’s test, since the sequence (a,)n>1 =
n=1

(ln nTH)n>1 decreases to 0. Indeed, a, = ln”TJrl = In (1 + %) > In (1 + ﬁ) = apy1 > 0 because

1+ % >1+ %_H and In is an increasing function.
Theorem 20.6 (Abel’s test). Let sequences (an)n>1 and (by)n>1 satisfy the following properties:
1) (an)n>1 is monotone;

2) (ap)n>1 is bounded;

o]
3) the series »_ by, converges.
n=1

oo
Then the series Y anby, converges.
n=1

Proof. In order to prove Abel’s test, we are going to use Dirichlet’s test. Since the sequence (ap)n>1
is monotone and bounded, it has a limit a € R, by Theorem 4.1. Applying Dirichlet’s test to the
o0

sequences (a, — a)p>1 and (by)n>1, we get that the series | (an, — a)b, convergence. Thus, the series
n=1

[e.°] o] o0 o0
S (an—a)bpta > by, = > apby, is convergent due to the convergence of > b, and Theorem 19.2. [J
n=1

n=1 n=1 n=1

[ee]
Exercise 20.7. Prove the convergence of the series > (—1)””“%

n=1

20.2.3 Permutation of Terms of a Series

Definition 20.2. A bijection ¢ : N — N is called a permutation.
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In this section, we will study series obtained from permutation of their terms, i.e.

o0
Up(1) T Qg2) + -+ o) + ... = Z Qg (n)- (40)
n=1
. =
According to Example 20.3, the series ) ~——— converges. Moreover, one can show that
n=1

1 1 1 2 (—1)nH

But it turns out that a rearrangement of the series gives other finite sum, e.g.

UL IS S S
3 2 5Ty g T g

So, we see that there exist series whose sums depend on order of their terms.

o0

Theorem 20.7. Let > a, be an absolutely convergent series. Then for every permutation o the
n=1

permuted series (40) converges to the same sum, i.e.

Z ag(n) = Z Qp,.
n=1 n=1

Proof. For proof of the theorem see Theorem 3.55 [2]. O

[e.°]

Theorem 20.8 (Riemann rearrangement theorem). Let ) a, be conditionally convergent and s €
n=1

R U{—o00,+00}. Then there exists a permutation o such that

Z ag(n) = S.
n=1

Proof. For proof of the theorem in more general setting see Theorem 3.54 [2]. ]
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