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20 Lecture 20 – Series with Arbitrary Terms

20.1 Root and Ratio Tests for Series with Positive Terms

Theorem 20.1 (Ratio Test). Let
∞
∑

n=1
an be a series with an > 0, n ≥ 1, and let there exist a limit

r := lim
n→∞

an+1

an
. Then the series

∞
∑

n=1
an converges if r < 1 and diverges if r > 1.

Proof. Let lim
n→∞

an+1

an
= r < 1. We take q ∈ (r, 1). Then there exists N ∈ N such that an+1

an
< q = qn+1

qn

for all n ≥ N . Thus, using Theorem 19.6 (iii) and the convergence of the geometric series for |q| < 1

(see Example 19.2), we have that the series aN + aN+1 + . . . =
∞
∑

n=N

an converges and, hence,
∞
∑

n=1
an

also converges.
If lim

n→∞
an+1

an
= r > 1, then there exists N ∈ N such that an+1

an
> 1 for all n ≥ N . Consequently,

an < an+1 for all n ≥ N . So, we obtain that 0 < aN < aN+1 < aN+2 < . . .. This implies that an 6→ 0,

n → ∞. Hence, the series
∞
∑

n=1
an diverges, according to Theorem 19.1.

Example 20.1. The series
∞
∑

n=1

xn

n! converges for all x > 0. Indeed,

r = lim
n→∞

xn+1

(n+ 1)!
· n!
xn

= lim
n→∞

x

n+ 1
= 0 < 1.

Exercise 20.1. Prove that the following series converge:

a)
∞
∑

n=1

3n(n!)2

(2n)! ; b)
∞
∑

n=1

7n(n!)2

n2n .

Theorem 20.2 (Root Test). Let
∞
∑

n=1
an be a series with an ≥ 0, n ≥ 1, and let r := lim

n→∞
n
√
an. Then

the series
∞
∑

n=1
an converges if r < 1 and diverges if r > 1.

Proof. Let lim
n→∞

n
√
an = r < 1 and let q be a number from (r, 1). Then there exists N ∈ N such that

n
√
an < q for all n ≥ N . So, an < qn for all n ≥ N . By Theorem 19.6 (i), the series

∞
∑

n=N

an converges

due to the convergence of the geometric series
∞
∑

n=1
qn for |q| < 1.

If lim
n→∞

n
√
an = r > 1, then there exists a subsequence ( nk

√
ank

)k≥1 such that nk

√
ank

→ r, k → ∞,

since the upper limit is also a subsequential limit (see Theorem 5.1). Hence, there exists K ∈ N such
that nk

√
ank

> 1 for all k ≥ K. Consequently, ank
> 1 for all k ≥ K. This implies that an 6→ 0,

n → ∞, since the sequence (an)n≥1 has an subsequence which does not converge to 0.

Example 20.2. The series
∞
∑

n=1

n3

2n converges, since r = lim
n→∞

n

√

n3

2n = lim
n→∞

( n
√
n)3

2 = 1
2 < 1.

Exercise 20.2. Prove that the following series converge:

a)
∞
∑

n=1

3n

(lnn)n ; b)
∞
∑

n=1

nn
2
2n

(n+1)n2 .
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20.2 Series with Arbitrary Terms

20.2.1 Absolute and Conditional Convergence

Definition 20.1. A series

a1 + a2 + . . .+ an + . . . =
∞
∑

n=1

an (37)

is said to be absolutely convergent, if the series

|a1|+ |a2|+ . . .+ |an|+ . . . =
∞
∑

n=1

|an| (38)

converges. If series (38) diverges but (37) converges, then series (37) is called conditionally conver-
gent.

Theorem 20.3. If a series
∞
∑

n=1
an absolutely converges, then it converges and

∣

∣

∣

∣

∣

∞
∑

n=1

an

∣

∣

∣

∣

∣

≤
∞
∑

n=1

|an|.

Proof. We note that terms of the series

∞
∑

n=1

(an + |an|) (39)

satisfy the property 0 ≤ an + |an| ≤ 2|an|, n ≥ 1. Thus, series (39) converges due to the convergence

of the series
∑∞

n=1 2|an| and Theorem 19.6 (i). Summing series (39) with the series
∞
∑

n=1
(−|an|), which

also converges, we have that the series
∞
∑

n=1
(an + |an| − |an|) =

∞
∑

n=1
an converges, by Theorem 19.2.

We set a+n := max{an, 0} and a−n := −min{an, 0}, n ≥ 1. Then an = a+n − a−n and |an| = a+n + a−n
for all n ≥ 1.

Theorem 20.4. A series
∞
∑

n=1
an absolutely converges iff the series

∞
∑

n=1
a+n and

∞
∑

n=1
a−n converge. More-

over,
∞
∑

n=1

an =
∞
∑

n=1

a+n −
∞
∑

n=1

a−n ,
∞
∑

n=1

|an| =
∞
∑

n=1

a+n +
∞
∑

n=1

a−n .

Exercise 20.3. Prove Theorem 20.4. (Hint: Use the equalities 0 ≤ a
+
n ≤ |an| and 0 ≤ a

−

n ≤ |an|)

Corollary 20.1. Let a series
∞
∑

n=1
an conditionally converge. Then the series

∞
∑

n=1
a+n and

∞
∑

n=1
a−n diverge.

Proof. We assume that
∞
∑

n=1
a+n converges. Using Theorem 19.2, we obtain that the series

∞
∑

n=1
a+n −

∞
∑

n=1
an =

∞
∑

n=1
(a+n −an) =

∞
∑

n=1
a−n also converges. But then, by Theorem 20.4, the series

∞
∑

n=1
an absolutely

converges that contradicts the assumption of the corollary.
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Exercise 20.4. Show that the following series absolutely converge:

a)
∞
∑

n=1

sinn
n2 ; b)

∞
∑

n=1

(−1)nn!
(2n)! .

20.2.2 Dirichlet’s and Abel’s Tests

Theorem 20.5 (Dirichlet’s test). Let sequences (an)n≥1 and (bn)n≥1 satisfy the following properties:

1) (an)n≥1 is a monotone sequence;

2) an → 0, n → ∞;

3) there exists C > 0 such that

∣

∣

∣

∣

n
∑

k=1

bn

∣

∣

∣

∣

≤ C for all n ≥ 1.

Then the series
∞
∑

n=1
anbn converges.

Proof. For proof of the theorem see Theorem 3.42 [2].

Example 20.3. The series

1− 1

2
+

1

3
− 1

4
+ . . . =

∞
∑

n=1

(−1)n+1

n

conditionally converges. Indeed, taking an := 1
n

and bn := (−1)n+1, n ≥ 1, we can see that the
sequences (an)n≥1 and (bn)n≥1 satisfy the conditions of Dirichlet’s test (condition 3) is satisfied with

C = 1). Thus, the series
∞
∑

n=1
anbn =

∞
∑

n=1

(−1)n+1

n
converges. But the series

∞
∑

n=1

∣

∣

∣

(−1)n+1

n

∣

∣

∣
=

∞
∑

n=1

1
n

diverges (see Example 19.3).

Example 20.4. The series
∞
∑

n=1

sinn
n

converges. To prove this, we take an := 1
n
, bn := sinn, n ≥ 1.

The sequence (an)n≥1 is monotone and converges to 0. Next, we compute for n ≥ 1

n
∑

k=1

sin k =
1

sin 1
2

n
∑

k=1

sin k · sin 1

2
=

1

2 sin 1
2

n
∑

k=1

(

cos

(

k − 1

2

)

− cos

(

k +
1

2

))

=
1

2 sin 1
2

(

cos
1

2
− cos

(

n+
1

2

))

.

Hence,
∣

∣

∣

∣

∣

n
∑

k=1

sin k

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2 sin 1
2

(

cos
1

2
− cos

(

n+
1

2

))

∣

∣

∣

∣

∣

≤ 1

sin 1
2

, n ≥ 1,

and, consequently, condition 3) of Dirichlet’s test is satisfied. Hence, the series
∞
∑

n=1

sinn
n

converges.

Exercise 20.5. Show that the series
∞
∑

n=1

| sinn|
n

diverges. (Hint: Use the equality | sin a| ≥ sin2
a = 1−cos 2a

2

and then show that the series
∞∑

n=1

1
2n

diverges and
∞∑

n=1

cos 2n
2n

converges).
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Exercise 20.6. Prove the convergence of the following sequences:

a)
∞
∑

n=1
(−1)

n(n+1)
2

1√
n
; b)

∞
∑

n=1

sin 3n√
n
; c)

∞
∑

n=1

cosn
n

.

Corollary 20.2 (Leibniz’s test). Let a sequence (an)n≥1 satisfy the following properties:

1) 0 ≤ an+1 ≤ an for n ≥ 1;

2) an → 0, n → ∞.

Then the series

a1 − a2 + a3 − a4 + . . . =
∞
∑

n=1

(−1)n+1an

converges.

Proof. The corollary follows from Dirichlet’s test taking bn := (−1)n+1, n ≥ 1.

Example 20.5. The series
∞
∑

n=1
(−1)n ln n+1

n
converges due to Leibniz’s test, since the sequence (an)n≥1 =

(

ln n+1
n

)

n≥1
decreases to 0. Indeed, an = ln n+1

n
= ln

(

1 + 1
n

)

> ln
(

1 + 1
n+1

)

= an+1 > 0 because

1 + 1
n
> 1 + 1

n+1 and ln is an increasing function.

Theorem 20.6 (Abel’s test). Let sequences (an)n≥1 and (bn)n≥1 satisfy the following properties:

1) (an)n≥1 is monotone;

2) (an)n≥1 is bounded;

3) the series
∞
∑

n=1
bn converges.

Then the series
∞
∑

n=1
anbn converges.

Proof. In order to prove Abel’s test, we are going to use Dirichlet’s test. Since the sequence (an)n≥1

is monotone and bounded, it has a limit a ∈ R, by Theorem 4.1. Applying Dirichlet’s test to the

sequences (an − a)n≥1 and (bn)n≥1, we get that the series
∞
∑

n=1
(an − a)bn convergence. Thus, the series

∞
∑

n=1
(an−a)bn+a

∞
∑

n=1
bn =

∞
∑

n=1
anbn is convergent due to the convergence of

∞
∑

n=1
bn and Theorem 19.2.

Exercise 20.7. Prove the convergence of the series
∞
∑

n=1
(−1)n arctann√

n
.

20.2.3 Permutation of Terms of a Series

Definition 20.2. A bijection σ : N → N is called a permutation.
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In this section, we will study series obtained from permutation of their terms, i.e.

aσ(1) + aσ(2) + . . .+ aσ(n) + . . . =
∞
∑

n=1

aσ(n). (40)

According to Example 20.3, the series
∞
∑

n=1

(−1)n+1

n
converges. Moreover, one can show that

1− 1

2
+

1

3
− 1

4
+ . . . =

∞
∑

n=1

(−1)n+1

n
= ln 2.

But it turns out that a rearrangement of the series gives other finite sum, e.g.

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ . . . =

3

2
ln 2.

So, we see that there exist series whose sums depend on order of their terms.

Theorem 20.7. Let
∞
∑

n=1
an be an absolutely convergent series. Then for every permutation σ the

permuted series (40) converges to the same sum, i.e.

∞
∑

n=1

aσ(n) =
∞
∑

n=1

an.

Proof. For proof of the theorem see Theorem 3.55 [2].

Theorem 20.8 (Riemann rearrangement theorem). Let
∞
∑

n=1
an be conditionally convergent and s ∈

R ∪ {−∞,+∞}. Then there exists a permutation σ such that

∞
∑

n=1

aσ(n) = s.

Proof. For proof of the theorem in more general setting see Theorem 3.54 [2].
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