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2 Lecture 2 – Completeness of the Set of Real Numbers and some

Inequalities

2.1 Real Numbers

2.1.1 Definition of Real Numbers

Very often the set of rational numbers needs an extension. For example, the length of a diagonal of a
square with side 1 can not be given as a rational number.

Exercise 2.1. Prove that there does not exist a rational number x solving the equation x2 = 2.

Definition 2.1. A real number is an infinite sequence of numerical digits with the comma between
them, that is,

a = α0, α1α2 . . . αn . . . ,

where α0 ∈ Z and αn ∈ {0, 1, . . . , 9} for all n ∈ N.

The set of all real numbers is denoted by R.

Definition 2.2. Numbers from R \Q is called irrational.

Remark 2.1. We will identify of two real numbers of the form

a = α0, α1 . . . αn99999 . . .

and
a = α0, α1 . . . (αn + 1)00000 . . . ,

where αn < 9. Further, we will avoid numbers, where 9 is in the period.

The order relations “<,≤, >,≥” between real numbers can be introduced by the natural way as
well as the notions of positive and negative real numbers.

Definition 2.3. The absolute value of a real number a is defined as follows

|a| =
{

a, if a ≥ 0,

−a, if a < 0.

2.1.2 Supremum and Infimum of Subsets of Real Numbers

Let A be a non-empty subset of R.

Definition 2.4. • If A contains a larger element a0, then we call a0 the maximum of A and
write a0 = maxA.

• If A contains a smallest element, then we call the smallest element the minimum of A and write
it as minS.

Example 2.1. a) max{1, 2, 3, 4, 5} = 5, min{1, 2, 3, 4, 5} = 1;

b) Let A =
{

1
n
: n ∈ N

}
. Then maxA = 1 but minA does not exist.
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Definition 2.5. • If a real number M satisfies a ≤ M for all a ∈ A, then M is called an upper
bound of A and the set A is said to be bounded above.

• If a real number m satisfies m ≤ a for all a ∈ A, then m is called a lower bound of A and the
set A is said to be bounded below.

• The set A is said to be bounded if it is bounded above and bounded below.

Example 2.2. 1. The set A =
{

1
n
: n ∈ N

}
is bounded.

2. The set N is bounded below but not above.

3. The set R is neither bounded below nor above.

Exercise 2.2. Prove that the following sets are bounded:

a)
{

n

n+1 : n ∈ N

}

;

b)
{

(−1)nn+1
n−(−1)n : n ∈ N

}

.

Definition 2.6. • If A is bounded above and A has a least upper bound, then we will call it the
supremum of A and denote it by supA.

• If A is bounded below and A has a greatest lower bound, then we will call it the infimum of A
and denote it by inf A.

Exercise 2.3. If minA exists, then minA = inf A. Similarly, if maxA exists, then maxA = supA.
Check these statements.

Theorem 2.1. (i) The number a∗ is the supremum of a subset A of R iff

• a∗ is an upper bound of A;

• ∀a < a∗ ∃x ∈ A x > a.

(ii) The number a∗ is the supremum of a subset A of R iff

• a∗ is an lower bound of A;

• ∀a > a∗ ∃x ∈ A x < a.

Exercise 2.4. For each a < b prove that inf[a, b] = inf(a, b] = a and sup[a, b] = sup[a, b) = b.

Theorem 2.2. (i) For every non-empty subset A of R that is bounded above supA exists and is a
real number.

(ii) For every non-empty subset A of R that is bounded below inf A exists and is a real number.

The latter theorem states the completeness of the set of real numbers, which is not true e.g. for
rational numbers. Indeed, the set A = {r ∈ Q : 0 ≤ r and r2 ≤ 2} is a set of rational numbers and it is
bounded above by some rational numbers but A has no least upper bound that is a rational number.
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Theorem 2.3. For each positive real number a = α0, α1α2 . . . αn . . ., we have

a = sup{an : n ∈ N},

where an = α0, α1α2 . . . αn.

Exercise 2.5. Prove Theorem 2.3.

Now, we are ready to introduce operation or real numbers. Let a, b be a positive real numbers and
an and bn, n ∈ N, be defined as in Theorem 2.3.

Definition 2.7. We set by the definition a+ b := sup{an + bn : n ∈ N}; a · b := sup{an · bn : n ∈ N};
a

b
:= sup

{
an

bn
: n ∈ N

}

; for a > b, a− b := sup{an − bn : n ∈ N}.

We note that all numbers an and bn, n ≥ N, in the definition are rational and for them all arithmetic
operations are defined. All known properties of arithmetic operations on integer numbers are also valid
for real numbers but now they have to be proved.

Exercise 2.6. Show that

a) a · b = b · a and a+ b = b+ a;

b) a+ (b+ c) = (a+ b) + c =: a+ b+ c

c) a · (b · c) = (a · b) · c =: a · b · c.

2.1.3 n-th Root of a Positive Real Number

Theorem 2.4. Let a be a positive real number and n ∈ N. Then there exist a unique positive real
number x satisfying xn = a, where xn := x · . . . · x

︸ ︷︷ ︸

n times

.

Remark 2.2. The number x can be constructed as the supremum of the set {y > 0 : yn < a}, which
is a non-empty bounded above set.

Definition 2.8. Let a > 0 and n ∈ N. The unique positive solution of the equation xn = a, which
exists according to Theorem 2.4, is called the n-th root of the positive real number a. We use the
notation for x: a

1

n = n

√
a.

Definition 2.9. Let a > 0 and r ∈ Q, r > 0. We define

ar := (am)
1

n ,

where r = m

n
, m,n ∈ N.

Definition 2.10. Let a > 1 and b > 0. We define

ab := sup{abn : n ∈ N},

where b := β0, β1β2 . . . βn . . . and bn := β0, β1β2 . . . βn.

Exercise 2.7. Give a definition of ab in the case 0 < a < 1 and b > 0.
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2.2 Some important inequalities

We recall that the absolute value of a real number a is given by

|a| =
{

a, if a ≥ 0,

−a, if a < 0.

We note that −|a| ≤ a ≤ |a| and also |a| < c ⇔ −c < a < c. Moreover, |a| = | − a|.

Theorem 2.5. For all a, b ∈ R the inequalities

1) |a+ b| ≤ |a|+ |b| 2) ||a| − |b|| ≤ |a− b|

holds. For every a1, . . . an ∈ R one has

|a1 + . . .+ an| ≤ |a1|+ . . .+ |an|.

Proof. Since −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|, we obtain −(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|. This implies
inequality 1). Now, applying 1), we obtain |a| = |a − b+ b| ≤ |a − b| + |b|. Hence, |a| − |b| ≤ |a − b|.
Since |a− b| = |b− a| ≥ |b| − |a|, we obtain 2). The latter inequality trivially follows from 1).

Inequality 1) from Theorem 2.5 is called the triangular inequality.

Theorem 2.6 (Bernoulli’s inequality). For each real number x > −1 and n ∈ N the inequality

(1 + x)n ≥ 1 + nx

holds. Moreover, (1 + x)n = 1 + nx iff x = 0 or n = 1.

Proof. If n = 1 or x = 0, then the equality holds. We assume that x 6= 0 and use mathematical
induction to prove (1 + x)n > 1 + nx for all n ≥ 2. So, for n = 2 one has

(1 + x)2 = 1 + 2x+ x2 > 1 + 2x.

Next, we assume that the strict inequality holds for some n ≥ 2. Then

(1 + x)n+1 = (1 + x)(1 + x)n > (1 + x)(1 + nx) = 1 + (n+ 1)x+ nx2 > 1 + (n+ 1)x.

Exercise 2.8. Show that
a) 2n ≥ n+ 1, n ∈ N; b) 3n ≥ 2n+ 1, n ∈ N; c) 2n > (

√
2− 1)2n2, n ∈ N.

Exercise 2.9. Let x1, . . . , xn be a positive real numbers. Prove that

(1 + x1) · . . . · (1 + xn) ≥ 1 + x1 + . . .+ xn.
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