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19 Lecture 19 – Series

19.1 Definition and Elementary Properties of Series

Let (an)n≥1 be a sequence of the real numbers. For each n ∈ N we set

sn := a1 + a2 + . . .+ an.

Definition 19.1. The sequence (sn)n≥1 is called a series and is denoted by

a1 + a2 + . . .+ an + . . . =

∞
∑

n=1

an. (35)

Elements of the sequence (sn)n≥1 are called the partial sums of series (35). If the sequence (sn)n≥1

converges to a real number s, then series (35) is said to be convergent, and the number s is called
the sum of series (35) and is denoted by

s =

∞
∑

n=1

an.

If the sequence (sn)n≥1 has no a finite limit, then series (35) is said to be divergent.

Theorem 19.1. If a series
∞
∑

n=1
an converges, then an → 0, n → ∞.

Proof. Indeed, since an = sn − sn−1 for all n ≥ 2, we have an = sn − sn−1 → s− s = 0, n → ∞.

Exercise 19.1. Prove that the convergence of a series
∞
∑

n=1
an implies that an + an+1 + . . .+ a2n → 0,

n → ∞.

Example 19.1. The series
1 + 1 + . . .+ 1 + . . .

and
1− 1 + 1− 1 + . . .+ (−1)n+1 + . . .

diverge, since their terms an = 1, n ≥ 1, for the first series and an = (−1)n+1, n ≥ 1, for the second
one do not converge to 0.

Example 19.2 (Geometric series). For q ∈ R the series

1 + q + q2 + . . .+ qn + . . . =

∞
∑

n=1

qn−1 =

∞
∑

n=0

qn (36)

is called the geometric series. Its partial sums sn = 1+ q+ q2 + . . .+ qn−1 are equal to 1−qn

1−q
for all

n ≥ 1. Thus, series (36) converges and

∞
∑

n=0

qn =
1

1− q
,

for |q| < 1. If |q| ≥ 1, then the geometric series diverges.
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Example 19.3 (Harmonic series). The series

∞
∑

n=1

1

n
= 1 +

1

2
+

1

3
+ . . .+

1

n
+ . . .

diverges. In order to prove this, we assume that the series converges and its sum equal s. Then
s2n − sn → s− s = 0, n → ∞. But for each n ≥ 1

s2n − sn =
1

n+ 1
+

1

n+ 2
+ . . .+

1

n
≥ n

1

2n
=

1

2

that contradicts the convergence of (s2n − sn)n≥1 to 0.

Exercise 19.2. Show that 1
1·2 + 1

2·3 + 1
3·4 + . . .+ 1

n(n+1) + . . . = 1.

Theorem 19.2. Let series
∞
∑

n=1
an,

∞
∑

n=1
bn converge and c ∈ R. Then the series

∞
∑

n=1
can,

∞
∑

n=1
(an + bn)

also converge and
∞
∑

n=1
can = c

∞
∑

n=1
an,

∞
∑

n=1
(an + bn) =

∞
∑

n=1
an +

∞
∑

n=1
bn.

Proof. The proof of the statement immediately follows from Definition 19.1 and Theorem 3.8. Indeed,

∞
∑

n=1

can = lim
n→∞

n
∑

k=1

can = c lim
n→∞

n
∑

k=1

an = c

∞
∑

n=1

an

and
∞
∑

n=1

(an + bn) = lim
n→∞

n
∑

k=1

(ak + bk) = lim
n→∞

n
∑

k=1

ak + lim
n→∞

n
∑

k=1

bk =
∞
∑

n=1

an +
∞
∑

n=1

bn.

Theorem 19.3 (Cauchy criterion). A series
∞
∑

n=1
an converges iff

∀ε > 0 ∃N ∈ N ∀n ≥ N ∀p ∈ N : |an+1 + an+2 + . . .+ an+p| < ε.

Proof. We remark that
∞
∑

n=1
an converges if and only if the sequence of partial sums (sn)n≥1 converges.

Thus, using Theorem 5.3, we have that the convergence of (sn)n≥1 is equivalent to

∀ε > 0 ∃N ∈ N ∀n ≥ N ∀p ∈ N : |sn+p − sn| < ε.

Hence, the statement follows from the equality sn+p − sn = an+1 + an+2 + . . .+ an+p.

19.2 Series with Positive Terms

Theorem 19.4. Let terms of a series
∞
∑

n=1
an are non-negative, that is, an ≥ 0 for all n ≥ 1. The

series
∞
∑

n=1
an converges iff the sequence of its partial sums (sn)n≥1 is bounded.

84



University of Leipzig – WS18/19
10-PHY-BIPMA1 – Mathematics 1 / Vitalii Konarovskyi

Proof. We note that the sequence (sn)n≥1 increases. Hence, the statement follows from theorems 4.1
and 3.5.

Theorem 19.5 (Integral criterion for convergence). Let f : [1,+∞) → R be a non-negative decreasing

function and f(n) = an for all n ≥ 1. Then the convergence of the series
∞
∑

n=1
an =

∞
∑

n=1
f(n) is

equivalent to the convergence of the improper integral
∫ +∞
1 f(x)dx.

Proof. Using the monotonicity of the function f and Corollary 16.1, we can estimate for each n ≥ 2

an = f(n) ≤
∫ n

n−1
f(x)dx ≤ f(n− 1) = an−1.

So, if the improper integral
∫ +∞
1 f(x)dx converges, then for every n ≥ 1

sn =
n
∑

k=1

ak = a1 +
n
∑

k=2

ak = a1 +
n
∑

k=2

∫ k

k−1
f(x)dx = a1 +

∫ n

1
f(x)dx ≤ a1 +

∫ +∞

1
f(x)dx.

Hence, the sequence (sn)n≥1 is bounded and, consequently, the series
∞
∑

n=1
an converges, by Theo-

rem 19.4.

Next, if the series
∞
∑

n=1
an converges, then for each z > 1

ϕ(z) =

∫ z

1
f(x)dx ≤

∫ n

1
f(x)dx =

n
∑

k=2

∫ k

k−1
f(x)dx ≤

n
∑

k=2

ak−1 =
n−1
∑

k=1

ak ≤
∞
∑

k=1

ak =: C,

where n := ⌊z⌋+ 1. Thus, the integral
∫ +∞
1 f(x)dx converges, by Theorem 18.2.

Example 19.4. The series
∞
∑

n=1

1
np , p > 0, converges for p > 1 and diverges for p ≤ 1. This follows

from Theorem 19.5 and the fact that the integral
∫ +∞
1

dx
xp converges for p > 1 and diverges for p ≤ 1

(see Example 18.3).

Exercise 19.3. Show that the series
∞
∑

n=2

1
n(lnn)p converges for p > 1 and diverges for p ≤ 1.

Theorem 19.6 (Comparison criterion). Let
∞
∑

n=1
an and

∞
∑

n=1
bn be series.

(i) If 0 ≤ an ≤ bn, n ≥ 1, then the convergence of
∞
∑

n=1
bn implies the convergence of

∞
∑

n=1
an.

(ii) Let an > 0, bn > 0, n ≥ 1, and there exists a limit

lim
n→∞

an

bn
= C, 0 ≤ C ≤ +∞.

If C < +∞, then the convergence of
∞
∑

n=1
bn implies the convergence of

∞
∑

n=1
an. If C > 0, then

the divergence of
∞
∑

n=1
bn implies the divergence of

∞
∑

n=1
an. Consequently, the convergences of both

series are equivalent in the case 0 < C < +∞.
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(iii) If an > 0, bn > 0 and an+1

an
≤ bn+1

bn
for all n ≥ 1, then the convergence of

∞
∑

n=1
bn implies the

convergence of
∞
∑

n=1
an.

Proof. We prove only (i). We estimate for each n ≥ 1

0 ≤ sn =
n
∑

k=1

ak ≤
n
∑

k=1

bk ≤ lim
n→∞

n
∑

k=1

bk =
+∞
∑

k=1

bk.

Thus, the sequence (sn)n≥1 is bounded that implies the convergence of the series
∞
∑

n=1
an, according to

Theorem 19.4.

Exercise 19.4. Prove Theorem 19.6 (ii), (iii). (Hint: To prove (iii), note that
a
n+1

b
n+1

≤
an

bn
≤ . . .

a1

b1
)

Remark 19.1. We will write, an ∼ bn, n → ∞, if an
bn

→ 1, n → ∞. So, Theorem 19.6 (ii) implies

that the convergence of
∞
∑

n=1
an is equivalent to the convergence of

∞
∑

n=1
bn, if an ∼ bn, n → ∞.

Example 19.5. The series
∞
∑

n=1
n sin 1

n3 converges, since n sin 1
n3 ∼ n

n3 = 1
n2 , n → ∞, and the series

∞
∑

n=1

1
n2 converges (see Example 19.4).

Exercise 19.5. Prove the convergence of the following series:

a)
∞
∑

n=1

n+1
n3 ; b)

∞
∑

n=1

n
√
n

n2 ; c)
∞
∑

n=1

(

1− cos 1
n

)

; d)
∞
∑

n=1

(

n
n+1

)n(n+1)
; e)

∞
∑

n=1

(√
n2 + 1− n

)2
; f)

∞
∑

n=1

n2

3n ;

g)
∞
∑

n=1

nn−2

enn! ; h)
∞
∑

n=2

(

ln n
n−1 − 1

n

)

.
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