19 Lecture 19 - Series

19.1 Definition and Elementary Properties of Series

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of the real numbers. For each $n \in \mathbb{N}$ we set

$$
s_{n}:=a_{1}+a_{2}+\ldots+a_{n}
$$

Definition 19.1. The sequence $\left(s_{n}\right)_{n \geq 1}$ is called a series and is denoted by

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{n}+\ldots=\sum_{n=1}^{\infty} a_{n} \tag{35}
\end{equation*}
$$

Elements of the sequence $\left(s_{n}\right)_{n \geq 1}$ are called the partial sums of series (35). If the sequence $\left(s_{n}\right)_{n \geq 1}$ converges to a real number s, then series (35) is said to be convergent, and the number s is called the sum of series (35) and is denoted by

$$
s=\sum_{n=1}^{\infty} a_{n} .
$$

If the sequence $\left(s_{n}\right)_{n \geq 1}$ has no a finite limit, then series (35) is said to be divergent.
Theorem 19.1. If a series $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0, n \rightarrow \infty$.
Proof. Indeed, since $a_{n}=s_{n}-s_{n-1}$ for all $n \geq 2$, we have $a_{n}=s_{n}-s_{n-1} \rightarrow s-s=0, n \rightarrow \infty$.
Exercise 19.1. Prove that the convergence of a series $\sum_{n=1}^{\infty} a_{n}$ implies that $a_{n}+a_{n+1}+\ldots+a_{2 n} \rightarrow 0$, $n \rightarrow \infty$.

Example 19.1. The series

$$
1+1+\ldots+1+\ldots
$$

and

$$
1-1+1-1+\ldots+(-1)^{n+1}+\ldots
$$

diverge, since their terms $a_{n}=1, n \geq 1$, for the first series and $a_{n}=(-1)^{n+1}, n \geq 1$, for the second one do not converge to 0 .

Example 19.2 (Geometric series). For $q \in \mathbb{R}$ the series

$$
\begin{equation*}
1+q+q^{2}+\ldots+q^{n}+\ldots=\sum_{n=1}^{\infty} q^{n-1}=\sum_{n=0}^{\infty} q^{n} \tag{36}
\end{equation*}
$$

is called the geometric series. Its partial sums $s_{n}=1+q+q^{2}+\ldots+q^{n-1}$ are equal to $\frac{1-q^{n}}{1-q}$ for all $n \geq 1$. Thus, series (36) converges and

$$
\sum_{n=0}^{\infty} q^{n}=\frac{1}{1-q}
$$

for $|q|<1$. If $|q| \geq 1$, then the geometric series diverges.

Example 19.3 (Harmonic series). The series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots
$$

diverges. In order to prove this, we assume that the series converges and its sum equal s. Then $s_{2 n}-s_{n} \rightarrow s-s=0, n \rightarrow \infty$. But for each $n \geq 1$

$$
s_{2 n}-s_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n} \geq n \frac{1}{2 n}=\frac{1}{2}
$$

that contradicts the convergence of $\left(s_{2 n}-s_{n}\right)_{n \geq 1}$ to 0 .
Exercise 19.2. Show that $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}+\ldots=1$.
Theorem 19.2. Let series $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ converge and $c \in \mathbb{R}$. Then the series $\sum_{n=1}^{\infty} c a_{n}, \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ also converge and $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.

Proof. The proof of the statement immediately follows from Definition 19.1 and Theorem 3.8. Indeed,

$$
\sum_{n=1}^{\infty} c a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} c a_{n}=c \lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{n}=c \sum_{n=1}^{\infty} a_{n}
$$

and

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}+\lim _{n \rightarrow \infty} \sum_{k=1}^{n} b_{k}=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n} .
$$

Theorem 19.3 (Cauchy criterion). A series $\sum_{n=1}^{\infty} a_{n}$ converges iff

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad \forall p \in \mathbb{N}: \quad\left|a_{n+1}+a_{n+2}+\ldots+a_{n+p}\right|<\varepsilon .
$$

Proof. We remark that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the sequence of partial sums $\left(s_{n}\right)_{n \geq 1}$ converges. Thus, using Theorem 5.3, we have that the convergence of $\left(s_{n}\right)_{n \geq 1}$ is equivalent to

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad \forall p \in \mathbb{N}: \quad\left|s_{n+p}-s_{n}\right|<\varepsilon
$$

Hence, the statement follows from the equality $s_{n+p}-s_{n}=a_{n+1}+a_{n+2}+\ldots+a_{n+p}$.

19.2 Series with Positive Terms

Theorem 19.4. Let terms of a series $\sum_{n=1}^{\infty} a_{n}$ are non-negative, that is, $a_{n} \geq 0$ for all $n \geq 1$. The series $\sum_{n=1}^{\infty} a_{n}$ converges iff the sequence of its partial sums $\left(s_{n}\right)_{n \geq 1}$ is bounded.

Proof. We note that the sequence $\left(s_{n}\right)_{n \geq 1}$ increases. Hence, the statement follows from theorems 4.1 and 3.5.

Theorem 19.5 (Integral criterion for convergence). Let $f:[1,+\infty) \rightarrow \mathbb{R}$ be a non-negative decreasing function and $f(n)=a_{n}$ for all $n \geq 1$. Then the convergence of the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} f(n)$ is equivalent to the convergence of the improper integral $\int_{1}^{+\infty} f(x) d x$.
Proof. Using the monotonicity of the function f and Corollary 16.1, we can estimate for each $n \geq 2$

$$
a_{n}=f(n) \leq \int_{n-1}^{n} f(x) d x \leq f(n-1)=a_{n-1}
$$

So, if the improper integral $\int_{1}^{+\infty} f(x) d x$ converges, then for every $n \geq 1$

$$
s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+\sum_{k=2}^{n} a_{k}=a_{1}+\sum_{k=2}^{n} \int_{k-1}^{k} f(x) d x=a_{1}+\int_{1}^{n} f(x) d x \leq a_{1}+\int_{1}^{+\infty} f(x) d x
$$

Hence, the sequence $\left(s_{n}\right)_{n \geq 1}$ is bounded and, consequently, the series $\sum_{n=1}^{\infty} a_{n}$ converges, by Theorem 19.4.

Next, if the series $\sum_{n=1}^{\infty} a_{n}$ converges, then for each $z>1$

$$
\varphi(z)=\int_{1}^{z} f(x) d x \leq \int_{1}^{n} f(x) d x=\sum_{k=2}^{n} \int_{k-1}^{k} f(x) d x \leq \sum_{k=2}^{n} a_{k-1}=\sum_{k=1}^{n-1} a_{k} \leq \sum_{k=1}^{\infty} a_{k}=: C
$$

where $n:=\lfloor z\rfloor+1$. Thus, the integral $\int_{1}^{+\infty} f(x) d x$ converges, by Theorem 18.2.
Example 19.4. The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}, p>0$, converges for $p>1$ and diverges for $p \leq 1$. This follows from Theorem 19.5 and the fact that the integral $\int_{1}^{+\infty} \frac{d x}{x^{p}}$ converges for $p>1$ and diverges for $p \leq 1$ (see Example 18.3).

Exercise 19.3. Show that the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ converges for $p>1$ and diverges for $p \leq 1$.
Theorem 19.6 (Comparison criterion). Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series.
(i) If $0 \leq a_{n} \leq b_{n}, n \geq 1$, then the convergence of $\sum_{n=1}^{\infty} b_{n}$ implies the convergence of $\sum_{n=1}^{\infty} a_{n}$.
(ii) Let $a_{n}>0, b_{n}>0, n \geq 1$, and there exists a limit

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=C, \quad 0 \leq C \leq+\infty
$$

If $C<+\infty$, then the convergence of $\sum_{n=1}^{\infty} b_{n}$ implies the convergence of $\sum_{n=1}^{\infty} a_{n}$. If $C>0$, then the divergence of $\sum_{n=1}^{\infty} b_{n}$ implies the divergence of $\sum_{n=1}^{\infty} a_{n}$. Consequently, the convergences of both series are equivalent in the case $0<C<+\infty$.
(iii) If $a_{n}>0, b_{n}>0$ and $\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}$ for all $n \geq 1$, then the convergence of $\sum_{n=1}^{\infty} b_{n}$ implies the convergence of $\sum_{n=1}^{\infty} a_{n}$.

Proof. We prove only (i). We estimate for each $n \geq 1$

$$
0 \leq s_{n}=\sum_{k=1}^{n} a_{k} \leq \sum_{k=1}^{n} b_{k} \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n} b_{k}=\sum_{k=1}^{+\infty} b_{k}
$$

Thus, the sequence $\left(s_{n}\right)_{n \geq 1}$ is bounded that implies the convergence of the series $\sum_{n=1}^{\infty} a_{n}$, according to Theorem 19.4.

Exercise 19.4. Prove Theorem 19.6 (ii), (iii). (Hint: To prove (iii), note that $\frac{a_{n+1}}{b_{n+1}} \leq \frac{a_{n}}{b_{n}} \leq \ldots \frac{a_{1}}{b_{1}}$)
Remark 19.1. We will write, $a_{n} \sim b_{n}, n \rightarrow \infty$, if $\frac{a_{n}}{b_{n}} \rightarrow 1, n \rightarrow \infty$. So, Theorem 19.6 (ii) implies that the convergence of $\sum_{n=1}^{\infty} a_{n}$ is equivalent to the convergence of $\sum_{n=1}^{\infty} b_{n}$, if $a_{n} \sim b_{n}, n \rightarrow \infty$.

Example 19.5. The series $\sum_{n=1}^{\infty} n \sin \frac{1}{n^{3}}$ converges, $\operatorname{since} n \sin \frac{1}{n^{3}} \sim \frac{n}{n^{3}}=\frac{1}{n^{2}}, n \rightarrow \infty$, and the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (see Example 19.4).

Exercise 19.5. Prove the convergence of the following series:
a) $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}}$;
b) $\sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{n^{2}}$; c) $\sum_{n=1}^{\infty}\left(1-\cos \frac{1}{n}\right)$;
d) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n(n+1)}$;
e) $\sum_{n=1}^{\infty}\left(\sqrt{n^{2}+1}-n\right)^{2}$;
f) $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$;
g) $\sum_{n=1}^{\infty} \frac{n^{n-2}}{e^{n} n!}$;
h) $\sum_{n=2}^{\infty}\left(\ln \frac{n}{n-1}-\frac{1}{n}\right)$.

