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19 Lecture 19 — Series

19.1 Definition and Elementary Properties of Series

Let (an)n>1 be a sequence of the real numbers. For each n € N we set
Spi=a1+as+ ...+ ap,.

Definition 19.1. The sequence (sy)n>1 is called a series and is denoted by
oo
al—i—ag—l—...—i—an—i—...:Zan. (35)
n=1

Elements of the sequence (s,,),>1 are called the partial sums of series (35). If the sequence (sy,)n>1
converges to a real number s, then series (35) is said to be convergent, and the number s is called
the sum of series (35) and is denoted by

[eS)
s = E Qp.
n=1

If the sequence (sy)n>1 has no a finite limit, then series (35) is said to be divergent.
o
Theorem 19.1. If a series > a, converges, then a, — 0, n — co.
n=1
Proof. Indeed, since a,, = s,, — s,—1 for all n > 2, we have a,, = s, — sp,_-1 > s—s=0,n—0c0. [
oo
Exercise 19.1. Prove that the convergence of a series . a, implies that a,, + an41+ ...+ agy, — 0,

n=1
n — Q.

Example 19.1. The series
1+14+...+1+...

and
1—141—1+.. .+ (=) 4. ..

diverge, since their terms a, = 1, n > 1, for the first series and a,, = (—1)”“, n > 1, for the second
one do not converge to 0.

Example 19.2 (Geometric series). For ¢ € R the series

o0 o0
1+q+q2+...+q"—|—...:Zq”71:Zq" (36)
n=1 n=0

is called the geometric series. Its partial sums s, = 14+q+¢® +... +¢" ! are equal to % for all
n > 1. Thus, series (36) converges and

oo . 1

E q = 1—g’

n=0 q
for |g| < 1. If |g| > 1, then the geometric series diverges.

83



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

Example 19.3 (Harmonic series). The series

<1 1 1 1
P e e e
—=n 2 3 n

diverges. In order to prove this, we assume that the series converges and its sum equal s. Then
Son — Sp —> 8§ —8s=0,n— oco. But for eachn >1

1 n 1 I 1 S 1 1
Sop — Sp = —— et —=2>2n—=-
Ul nt2 n- 2n 2
that contradicts the convergence of (s2, — Sp)n>1 to 0.
Exercise 19.2. Show that %—i—%—f—sﬁ—i—...—i—m—i—...:l.
[e.e] [e.e] [e.e] o0
Theorem 19.2. Let series Y an, ., by converge and ¢ € R. Then the series Y capn, Y (an + by)
- n:})o n:1oo ~ ~ n=1 n=1
also converge and Y cap =c Y an, Y, (an+by) = > an+ > by.
n=1 n=1 n=1 n=1 n=1

Proof. The proof of the statement immediately follows from Definition 19.1 and Theorem 3.8. Indeed,

o0 n n o0
E can = lim g cay = ¢ lim g anp = ¢ g an,
n—oo n—oo
n=1 k=1 k=1 n=1
and

n=1 k=1
]
o
Theorem 19.3 (Cauchy criterion). A series Y. a, converges iff
n=1
Ve>0 INeN Vn>N VpeN: |ant1+ anso+ ...+ angp| <e.
o0
Proof. We remark that ) a, converges if and only if the sequence of partial sums (s, ),>1 converges.
n=1
Thus, using Theorem 5.3, we have that the convergence of (s,)n>1 is equivalent to
Ve>0 INeN Vn>N VpeN: [sp4p—sp| <e.
Hence, the statement follows from the equality s, — s, = Gpy1 + any2 + ... + Gpgp. O

19.2 Series with Positive Terms

oo
Theorem 19.4. Let terms of a series Y an are non-negative, that is, a, > 0 for alln > 1. The
n=1

o0
series y . ap converges iff the sequence of its partial sums (Sy)n>1 is bounded.
n=1

84



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

Proof. We note that the sequence (sy)n>1 increases. Hence, the statement follows from theorems 4.1
and 3.5. O

Theorem 19.5 (Integral criterion for convergence). Let f : [1,+00) — R be a non-negative decreasing

o] o]
function and f(n) = a, for all n > 1. Then the convergence of the series Y. an, = >, f(n) is
n=1

n=1
equivalent to the convergence of the improper integral f1+o° f(z)dx.

Proof. Using the monotonicity of the function f and Corollary 16.1, we can estimate for each n > 2
n
an = f(n) < / f@)de < f(n—1) = an_1.
n—1

So, if the improper integral ffroo f(x)dx converges, then for every n > 1

+o00

n n n k n
sn:Zak:al—l—Zak:al—i-Z/ f(x)dac:a1+/ f(x)dx < a; + f(x)dx.
k=1 k=2 k=27 k=1 1 1

(o)
Hence, the sequence (sp)n>1 is bounded and, consequently, the series Y a, converges, by Theo-
=1
rem 19.4. - !
Next, if the series Y a, converges, then for each z > 1
n=1
z n n k n n—1 00
o(z) = / f(z)dx < / f(z)dz = Z/ f(z)dx < Zak,l = Zak < Zak =:C,
1 1 k=2 k-1 k=2 k=1 k=1
where n := |z| + 1. Thus, the integral f1+°° f(x)dx converges, by Theorem 18.2. O

&)
Example 19.4. The series ) n—lp, p > 0, converges for p > 1 and diverges for p < 1. This follows
n=1

from Theorem 19.5 and the fact that the integral f1+°° ;l—fj converges for p > 1 and diverges for p <1
(see Example 18.3).

o0

Exercise 19.3. Show that the series o L
n=2

nmm)p Converges for p > 1 and diverges for p < 1.

o0 o0
Theorem 19.6 (Comparison criterion). Let Y a, and > by be series.
n=1 n=1

o oo
(i) If 0 < a, < b,, n > 1, then the convergence of > by, implies the convergence of > ap.
n=1 n=1
(ii) Let an >0, b, >0, n > 1, and there exists a limit
lim ™ =, 0<C < +oo.

n—oo by,

oo (o)
If C < +o0, then the convergence of Y b, implies the convergence of > an. If C > 0, then

n=1 n=1
oo oo
the divergence of Y by, implies the divergence of . a,. Consequently, the convergences of both

n=1 n=1
series are equivalent in the case 0 < C < +o00.
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(iii) If an > 0, by, > 0 and azzl b”“ for all n > 1, then the convergence of Z by, implies the

o n=1

[eS)
convergence of > ay.
n=1

Proof. We prove only (i). We estimate for each n > 1
n n n +oo
TN SR ST ) S 3t
k=1 k=1 k=1 k=1

o0
Thus, the sequence (sy,),>1 is bounded that implies the convergence of the series ) a,, according to
n=1

Theorem 19.4. 0

Exercise 19.4. Prove Theorem 19.6 (ii), (iii). (Hint: To prove (iii), note that 3+ < §= < ... §%)

o
Remark 19.1. We will write, a, ~ bp, n — oo, if $» — 1, n — co. So, Theorem 19.6 (ii) implies

o0 oo
that the convergence of > a, is equivalent to the convergence of > by, if a, ~ b,, n — co.

n=1 n=1
. 1 1 1
Example 19.5. The series > nsin o5 converges, since nsin =z ~ 75 = -5, n — 0o, and the series
n=1

o0
> - converges (see Example 19.4).

Exercise 19.5. Prove the convergence of the following series:

a) S il ) z e f (1—cosl); d) Z (n+1) ml)s e) Z <ﬁ—n>2; £) i =

n=1 n=1
g)

).

3

w!

n—2

' h)ng(lnf—

el

S
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