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18 Lecture 18 – Improper Integrals

18.1 Integrals over Unbounded Intervals

18.1.1 Definition and Elementary Properties

In this section, we assume that a function f : [a,+∞) → R is integrable on [a, z] for all z > a and set

ϕ(z) :=

∫ z

a

f(x)dx, z ≥ a.

Definition 18.1. The finite limit

lim
z→+∞

ϕ(z) = lim
z→+∞

∫ z

a

f(x)dx (27)

is called the improper integral of f over [a,+∞) and is denoted by
∫ +∞

a

f(x)dx. (28)

In this case, we will say that improper integral (28) converges. If limit (27) does not exist or is
infinite, then improper integral (28) is said to be divergent.

Remark 18.1. If integral (28) converges, then for each b > a the improper integral
∫ +∞

b

f(x)dx (29)

also converges. If for some b > a improper integral (29) converges, then improper integral (28) also
converges. These both statements follow from the equality

∫ z

a

f(x)dx =

∫ b

a

f(x)dx+

∫ z

b

f(x)dx, a < b ≤ z,

and the definition of the improper integral.

Example 18.1. The improper integral
∫ +∞
0 e−xdx converges and equals 1. Indeed,

∫ +∞

0
e−xdx = lim

z→+∞

∫ z

0
e−xdx = lim

z→+∞

(

−e−x
∣

∣

∣

z

0

)

= lim
z→+∞

(1− e−z) = 1.

Example 18.2. The equality
∫ +∞
0

dx
1+x2 = π

2 is true, since

∫ +∞

0

dx

1 + x2
= lim

z→+∞

∫ z

0

dx

1 + x2
= lim

z→+∞

(

arctanx
∣

∣

∣

z

0

)

= lim
z→+∞

(arctan z − 0) =
π

2
.

Example 18.3. Let p > 0. The improper integral
∫ +∞
1

dx
xp converges for p > 1 and diverges for p ≤ 1.

Indeed, for each z ≥ 1

ϕ(z) =

∫ z

1

dx

xp
=

{

ln z − ln 1, p = 1,
z−p+1

−p+1 − 1
−p+1 , p 6= 1.

Thus,

ϕ(z) →
{

+∞, p ≤ 1,
1

p−1 , p > 1,
z → +∞.
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Example 18.4. The integral
∫ +∞
0 cosxdx diverges, since for the function ϕ(z) =

∫ z

0 cosxdx = sin z,
z ≥ 0, there is no limit as z → +∞.

Theorem 18.1 (Elementary properties of improper integrals). The following properties of improper
integrals are true.

1) Let integrals
∫ +∞
a

f(x)dx and
∫ +∞
a

g(x)dx converge. Then the integrals
∫ +∞
a

cf(x)dx, c ∈ R,
∫ +∞
a

(f(x) + g(x))dx converge and

∫ +∞

a

cf(x)dx = c

∫ +∞

a

f(x)dx,

∫ +∞

a

(f(x) + g(x))dx =

∫ +∞

a

f(x)dx+

∫ +∞

a

g(x)dx.

2) Let f have an antiderivative F on [a,+∞). If the limit

F (+∞) := lim
z→+∞

F (z) (30)

exists, then
∫ +∞
a

f(x)dx = F (+∞) − F (a). If limit (30) does not exists or is infinite, then the

integral
∫ +∞
a

f(x)dx diverges.

3) (Integration by parts) We assume that functions u, v are continuously differentiable on [a,+∞).
If the integral

∫ +∞
a

u(x)v′(x)dx =
∫ +∞
a

u(x)dv(x) converges and the limit u(+∞)v(+∞) :=

lim
z→+∞

u(z)v(z) exists, then the integral
∫ +∞
a

u′(x)v(x)dx =
∫ +∞
a

v(x)du(x) converges and

∫ +∞

a

v(x)du(x) = u(x)v(x)
∣

∣

∣

+∞

a
−
∫ +∞

a

u(x)dv(x).

Example 18.5. The integral
∫ +∞
0 xe−xdx converges and equals 1, since

∫ +∞

0
xe−xdx = −

∫ +∞

0
xde−x = −xe−x

∣

∣

∣

+∞

0
+

∫ +∞

0
e−xdx = 1,

according to examples 7.3 and 18.1.

18.1.2 Convergence of Improper Integrals of Non-Negative Functions

Theorem 18.2. The improper integral
∫ +∞
a

f(x)dx of a non-negative function f converges iff there
exists C ∈ R such that ϕ(z) =

∫ z

a
f(x)dx ≤ C for all z ≥ a.

Proof. Since f is non-negative function, the function ϕ non-decreases. Consequently, the upper bound-
edness of ϕ is equivalent to the existence of the limit lim

z→+∞
ϕ(z), by Theorem 7.9 (i).

Theorem 18.3. Let f : [a,+∞) → R and g : [a,+∞) → R satisfy 0 ≤ f(x) ≤ g(x) for all x ≥ a.
Then the convergence of the improper integral

∫ +∞
a

g(x)dx implies the convergence of
∫ +∞
a

f(x)dx.
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Proof. The statement follows from Theorem 18.2 and the estimate

ϕ(z) =

∫ z

a

f(x)dx ≤
∫ z

a

g(x)dx ≤ lim
z→+∞

∫ z

a

g(x)dx =

∫ +∞

a

g(x)dx =: C, z ≥ a.

Here the inequality for integrals follows from Theorem 16.6.

Example 18.6. The integral
∫ +∞
0

cos2 x
1+x2 dx converges because we can apply Theorem 18.3 with a = 0,

f(x) = cos2 x
1+x2 , x ≥ 0, and g(x) = 1

1+x2 , x ≥ 0. For the convergence of the integral
∫ +∞
0 g(x)dx =

∫ +∞
0

dx
1+x2 see Example 18.2.

Exercise 18.1. Show that the following improper integrals converge:
a)

∫ +∞
1 e−x2

dx; b)
∫ +∞
1 e−x lnxdx; c)

∫ +∞
1

lnx
1+x2dx.

Corollary 18.1. We assume that for some numbers 0 < C < +∞ and p > 0 f(x) ∼ C
xp , x → +∞,

i.e. lim
x→+∞

xpf(x) = C. Then the integral
∫ +∞
a

f(x)dx converges for p > 1 and diverges for p ≤ 1.

Proof. Let p > 1. By Theorem 7.1 (iii), there exists D ≥ a such that xpf(x) ≤ 2C for all x ≥ D.
Thus, f(x) ≤ 2C

xp , x ≥ D. Now applying Theorem 18.3 with a = D, g(x) = 2C
xp , x ≥ D, and

using Example 18.3, we obtain that
∫ +∞
D

f(x)dx converges. Hence,
∫ +∞
a

f(x)dx also converges, by
Remark 18.1.

Let p ≤ 1. Similarly, there exists D ≥ a such that f(x) ≥ C
2xp for all x ≥ D. Since the integral

∫ +∞
D

Cdx
2xp diverges (see Example 18.3), the integral

∫ +∞
D

f(x)dx also diverges.

18.1.3 Absolute and conditional convergence

Definition 18.2. An improper integral
∫ +∞

a

f(x)dx (31)

is said to be absolutely convergent, if the integral
∫ +∞

a

|f(x)|dx (32)

converges. If integral (31) converges but integral (32) diverges, then (31) is called conditionally
convergent.

Theorem 18.4. If an improper integral absolutely converges, then it converges.

Proof. Let integral (32) converge. We consider the following functions

f−(x) :=
|f(x)| − f(x)

2
, x ≥ a,

f+(x) :=
|f(x)|+ f(x)

2
, x ≥ a,

and note that 0 ≤ f−(x) ≤ |f(x)|, 0 ≤ f+(x) ≤ |f(x)| and f(x) = f+(x)− f−(x) for all x ≥ a.
By Theorem 18.3, the integrals

∫ +∞
a

f−(x)dx and
∫ +∞
a

f+(x)dx converge. Thus, using Theo-

rem 18.1 1), we have that the improper integral
∫ +∞
a

f(x)dx =
∫ +∞
a

(f+(x) − f−(x))dx also con-
verges.
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Example 18.7. The integral
∫ +∞
1

sinx
x

dx is conditionally convergent. Indeed, according to the inte-
gration by parts formula, we have

∫ +∞

1

sinx

x
dx = lim

z→+∞

∫ z

1

sinx

x
dx = − lim

z→+∞

∫ z

1

1

x
d cosx = − lim

z→+∞

[

cosx

x

∣

∣

∣

z

1
−
∫ z

1
cosxd

1

x

]

= − lim
z→+∞

[

cos z

z
− cos 1 +

∫ z

1

cosx

x2
dx

]

= cos 1−
∫ +∞

1

cosx

x2
dx.

The integral
∫ +∞
1

cosx
x2 dx absolutely converges because | cosx|

x2 ≤ 1
x2 , x ≥ 1, and the integral

∫ +∞
1

dx
x2

converges (see Example 18.3). Thus,
∫ +∞
1

cosx
x2 dx converges, by Theorem 18.4. This implies the

convergence of the integral
∫ +∞
1

sinx
x

dx.

Next, we show that
∫ +∞
1

| sinx|
x

dx diverges. We estimate

∫ nπ

π

| sinx|
x

dx =

n
∑

k=2

∫ kπ

(k−1)π

| sinx|
x

dx ≥
n
∑

k=2

1

kπ

∫ kπ

(k−1)π
| sinx|dx =

2

π

n
∑

k=2

1

k
.

In the next lecture, we will show that
∑n

k=2
1
k
→ +∞, n → ∞. Thus,

∫ +∞
π

| sinx|
x

dx diverges and,

consequently,
∫ +∞
1

| sinx|
x

dx also diverges.

Theorem 18.5 (Dirichlet’s test). Let functions f and g satisfy the following properties:

1) there exists C ∈ R such that
∣

∣

∫ z

a
f(x)dx

∣

∣ ≤ C for all z ≥ a;

2) the function g is monotone on [a,+∞);

3) g(x) → 0, x → +∞.

Then the integral
∫ +∞
a

f(x)g(x)dx converges.

Example 18.8. The integral
∫ +∞
1

sinx
x

dx converges, since the functions f(x) = sinx, x ≥ 1, and
g(x) = 1

x
, x ≥ 1, satisfy conditions 1)-3) of Theorem 18.5 with C = 2.

Example 18.9. The integral
∫ +∞
1 sinx3dx converges, since the functions f(x) = x2 sinx3, x ≥ 1, and

g(x) = 1
x2 , x ≥ 1, satisfy conditions 1)-3) of Theorem 18.5 with C = 2

3 .

Theorem 18.6 (Abel’s test). Let functions f and g satisfy the following properties:

1) the integral
∫ +∞
a

f(x)dx converges;

2) the function g is monotone on [a,+∞);

3) the function g is bounded on [a,+∞).

Then the integral
∫ +∞
a

f(x)g(x)dx converges.

Exercise 18.2. Prove the convergence of the following integrals:
a)

∫ +∞
1

cosx√
x
dx; b)

∫ +∞
1 cosx2dx; c)

∫ +∞
0 sinx2dx; d)

∫ +∞
1

sin 2x·sinx
x

dx.

Remark 18.2. The definition and properties of the improper integral
∫ a

−∞ f(x)dx are similar to ones

of
∫ +∞
a

f(x)dx. The integral
∫ +∞
−∞ f(x)dx is defined as

∫ a

−∞ f(x)dx+
∫ +∞
a

f(x)dx for any a ∈ R.

81



University of Leipzig – WS18/19
10-PHY-BIPMA1 – Mathematics 1 / Vitalii Konarovskyi

18.2 Improper Integrals of Unbounded Functions

In this section, we will consider a function f [a, b) → R such that for all c ∈ (a, b) it is integrable on
[a, c] and unbounded on (c, b). The case of a function f(a, b] → R, which is unbounded near a can be
considered similarly. We set

ϕ(z) =

∫ z

a

f(x)dx, z ∈ (a, b).

Definition 18.3. The finite limit

lim
z→b−

ϕ(z)dz = lim
z→b−

∫ z

a

f(x)dx (33)

is called the improper integral of f over [a, b) and is denoted by

∫ b

a

f(x)dx. (34)

In this case, we will say that the improper integral (34) converges. If limit (33) does not exist or is
infinite, then the improper integral (34) is said to be divergent.

Exercise 18.3. The improper integral
∫ 1
0

dx√
1−x

converges, since

∫ z

0

dx√
1− x

= −
∫ z

0

d(1− x)√
1− x

= −
∫ z

0
(1−x)−

1

2d(1−x) = −2(1−x)
1

2

∣

∣

∣

z

0
= −2(1−z)

1

2+2 → 2, z → 1−.

Example 18.10. The improper integral
∫ 1
0 lnxdx converges, since

∫ 1

z

lnxdx = (x lnx− x)
∣

∣

∣

1

z
= −1− z ln z + z → −1, z → 0+,

by Exeample 13.1 b). For the computation of an antiderivative of lnx see Example 15.7.

Exercise 18.4. Prove that the improper integral
∫ b

a
dx

(b−x)p , p > 0, converges for p < 1 and diverges
for p ≥ 1.

The following properties of improper integrals of unbounded functions can be proved similarly as
properties of improper integrals over unbounded intervals.

1. Let f(x) ≥ 0, x ∈ [a, b). The improper integral
∫ b

a
f(x)dx converges iff there exists C ∈ R such

that
∫ z

a
f(x)dx ≤ C for all z ∈ [a, b).

2. Let 0 ≤ f(x) ≤ g(x), x ∈ [a, b). If the improper integral
∫ b

a
g(x)dx converges, then

∫ b

a
f(x)dx

also converges.

3. If for some p > 0 and 0 < C < +∞ f(x) ∼ C
(b−x)p , x → b−, that is, lim

x→b−
(b− x)pf(x) = C, then

the integral
∫ b

a
f(x)dx converges for p < 1 and diverges for p ≥ 1.

4. If a function f has an antiderivative F on [a, b) and there exists a limit F (b−) := lim
x→b−

F (x),

then
∫ b

a
f(x)dx = F (b−)− F (a).

Exercise 18.5. Prove the convergence of the integral
∫ 1
0

dx
3
√
1−x2

.
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