

18 Lecture 18 – Improper Integrals

18.1 Integrals over Unbounded Intervals

18.1.1 Definition and Elementary Properties

In this section, we assume that a function $f:[a,+\infty)\to\mathbb{R}$ is integrable on [a,z] for all z>a and set

$$\varphi(z) := \int_a^z f(x) dx, \quad z \ge a.$$

Definition 18.1. The finite limit

$$\lim_{z \to +\infty} \varphi(z) = \lim_{z \to +\infty} \int_{a}^{z} f(x) dx$$
(27)

is called the **improper integral of** f over $[a, +\infty)$ and is denoted by

$$\int_{a}^{+\infty} f(x)dx.$$
(28)

In this case, we will say that improper integral (28) converges. If limit (27) does not exist or is infinite, then improper integral (28) is said to be **divergent**.

Remark 18.1. If integral (28) converges, then for each b > a the improper integral

$$\int_{b}^{+\infty} f(x)dx \tag{29}$$

also converges. If for some b > a improper integral (29) converges, then improper integral (28) also converges. These both statements follow from the equality

$$\int_{a}^{z} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{z} f(x)dx, \quad a < b \le z,$$

and the definition of the improper integral.

Example 18.1. The improper integral $\int_0^{+\infty} e^{-x} dx$ converges and equals 1. Indeed,

$$\int_{0}^{+\infty} e^{-x} dx = \lim_{z \to +\infty} \int_{0}^{z} e^{-x} dx = \lim_{z \to +\infty} \left(-e^{-x} \Big|_{0}^{z} \right) = \lim_{z \to +\infty} (1 - e^{-z}) = 1.$$

Example 18.2. The equality $\int_0^{+\infty} \frac{dx}{1+x^2} = \frac{\pi}{2}$ is true, since

$$\int_{0}^{+\infty} \frac{dx}{1+x^2} = \lim_{z \to +\infty} \int_{0}^{z} \frac{dx}{1+x^2} = \lim_{z \to +\infty} \left(\arctan x \Big|_{0}^{z} \right) = \lim_{z \to +\infty} (\arctan z - 0) = \frac{\pi}{2}.$$

Example 18.3. Let p > 0. The improper integral $\int_1^{+\infty} \frac{dx}{x^p}$ converges for p > 1 and diverges for $p \le 1$. Indeed, for each $z \ge 1$

$$\varphi(z) = \int_{1}^{z} \frac{dx}{x^{p}} = \begin{cases} \ln z - \ln 1, & p = 1, \\ \frac{z^{-p+1}}{-p+1} - \frac{1}{-p+1}, & p \neq 1. \end{cases}$$

Thus,

$$\varphi(z) \to \begin{cases} +\infty, & p \le 1, \\ \frac{1}{p-1}, & p > 1, \end{cases} \quad z \to +\infty.$$

Example 18.4. The integral $\int_0^{+\infty} \cos x dx$ diverges, since for the function $\varphi(z) = \int_0^z \cos x dx = \sin z$, $z \ge 0$, there is no limit as $z \to +\infty$.

Theorem 18.1 (Elementary properties of improper integrals). The following properties of improper integrals are true.

1) Let integrals $\int_{a}^{+\infty} f(x)dx$ and $\int_{a}^{+\infty} g(x)dx$ converge. Then the integrals $\int_{a}^{+\infty} cf(x)dx$, $c \in \mathbb{R}$, $\int_{a}^{+\infty} (f(x) + g(x))dx$ converge and

$$\int_{a}^{+\infty} cf(x)dx = c \int_{a}^{+\infty} f(x)dx,$$
$$\int_{a}^{+\infty} (f(x) + g(x))dx = \int_{a}^{+\infty} f(x)dx + \int_{a}^{+\infty} g(x)dx.$$

2) Let f have an antiderivative F on $[a, +\infty)$. If the limit

$$F(+\infty) := \lim_{z \to +\infty} F(z) \tag{30}$$

exists, then $\int_a^{+\infty} f(x)dx = F(+\infty) - F(a)$. If limit (30) does not exists or is infinite, then the integral $\int_a^{+\infty} f(x)dx$ diverges.

3) (Integration by parts) We assume that functions u, v are continuously differentiable on $[a, +\infty)$. If the integral $\int_a^{+\infty} u(x)v'(x)dx = \int_a^{+\infty} u(x)dv(x)$ converges and the limit $u(+\infty)v(+\infty) := \lim_{z \to +\infty} u(z)v(z)$ exists, then the integral $\int_a^{+\infty} u'(x)v(x)dx = \int_a^{+\infty} v(x)du(x)$ converges and

$$\int_{a}^{+\infty} v(x)du(x) = u(x)v(x)\Big|_{a}^{+\infty} - \int_{a}^{+\infty} u(x)dv(x).$$

Example 18.5. The integral $\int_0^{+\infty} x e^{-x} dx$ converges and equals 1, since

$$\int_0^{+\infty} x e^{-x} dx = -\int_0^{+\infty} x de^{-x} = -x e^{-x} \Big|_0^{+\infty} + \int_0^{+\infty} e^{-x} dx = 1,$$

according to examples 7.3 and 18.1.

18.1.2 Convergence of Improper Integrals of Non-Negative Functions

Theorem 18.2. The improper integral $\int_{a}^{+\infty} f(x)dx$ of a non-negative function f converges iff there exists $C \in \mathbb{R}$ such that $\varphi(z) = \int_{a}^{z} f(x)dx \leq C$ for all $z \geq a$.

Proof. Since f is non-negative function, the function φ non-decreases. Consequently, the upper boundedness of φ is equivalent to the existence of the limit $\lim_{z \to +\infty} \varphi(z)$, by Theorem 7.9 (i).

Theorem 18.3. Let $f : [a, +\infty) \to \mathbb{R}$ and $g : [a, +\infty) \to \mathbb{R}$ satisfy $0 \le f(x) \le g(x)$ for all $x \ge a$. Then the convergence of the improper integral $\int_a^{+\infty} g(x) dx$ implies the convergence of $\int_a^{+\infty} f(x) dx$.

Proof. The statement follows from Theorem 18.2 and the estimate

$$\varphi(z) = \int_a^z f(x) dx \le \int_a^z g(x) dx \le \lim_{z \to +\infty} \int_a^z g(x) dx = \int_a^{+\infty} g(x) dx =: C, \quad z \ge a.$$

Here the inequality for integrals follows from Theorem 16.6.

Example 18.6. The integral $\int_0^{+\infty} \frac{\cos^2 x}{1+x^2} dx$ converges because we can apply Theorem 18.3 with a = 0, $f(x) = \frac{\cos^2 x}{1+x^2}$, $x \ge 0$, and $g(x) = \frac{1}{1+x^2}$, $x \ge 0$. For the convergence of the integral $\int_0^{+\infty} g(x) dx = \int_0^{+\infty} dx$ $\int_0^{+\infty} \frac{dx}{1+x^2}$ see Example 18.2.

Exercise 18.1. Show that the following improper integrals converge: a) $\int_{1}^{+\infty} e^{-x^2} dx$; b) $\int_{1}^{+\infty} e^{-x} \ln x dx$; c) $\int_{1}^{+\infty} \frac{\ln x}{1+x^2} dx$.

Corollary 18.1. We assume that for some numbers $0 < C < +\infty$ and p > 0 $f(x) \sim \frac{C}{x^p}$, $x \to +\infty$, *i.e.* $\lim_{x \to +\infty} x^p f(x) = C$. Then the integral $\int_a^{+\infty} f(x) dx$ converges for p > 1 and diverges for $p \leq 1$.

Proof. Let p > 1. By Theorem 7.1 (iii), there exists $D \ge a$ such that $x^p f(x) \le 2C$ for all $x \ge D$. Thus, $f(x) \le \frac{2C}{x^p}$, $x \ge D$. Now applying Theorem 18.3 with a = D, $g(x) = \frac{2C}{x^p}$, $x \ge D$, and using Example 18.3, we obtain that $\int_D^{+\infty} f(x) dx$ converges. Hence, $\int_a^{+\infty} f(x) dx$ also converges, by Remark 18.1.

Let $p \leq 1$. Similarly, there exists $D \geq a$ such that $f(x) \geq \frac{C}{2x^p}$ for all $x \geq D$. Since the integral $\int_D^{+\infty} \frac{Cdx}{2x^p}$ diverges (see Example 18.3), the integral $\int_D^{+\infty} f(x)dx$ also diverges.

18.1.3 Absolute and conditional convergence

Definition 18.2. An improper integral

$$\int_{a}^{+\infty} f(x)dx \tag{31}$$

is said to be **absolutely convergent**, if the integral

$$\int_{a}^{+\infty} |f(x)| dx \tag{32}$$

converges. If integral (31) converges but integral (32) diverges, then (31) is called **conditionally** convergent.

Theorem 18.4. If an improper integral absolutely converges, then it converges.

Proof. Let integral (32) converge. We consider the following functions

$$f_{-}(x) := \frac{|f(x)| - f(x)}{2}, \quad x \ge a,$$

$$f_{+}(x) := \frac{|f(x)| + f(x)}{2}, \quad x \ge a,$$

and note that $0 \le f_-(x) \le |f(x)|$, $0 \le f_+(x) \le |f(x)|$ and $f(x) = f_+(x) - f_-(x)$ for all $x \ge a$. By Theorem 18.3, the integrals $\int_a^{+\infty} f_-(x)dx$ and $\int_a^{+\infty} f_+(x)dx$ converge. Thus, using Theorem 18.1 1), we have that the improper integral $\int_a^{+\infty} f(x)dx = \int_a^{+\infty} (f_+(x) - f_-(x))dx$ also con-verges.

Example 18.7. The integral $\int_{1}^{+\infty} \frac{\sin x}{x} dx$ is conditionally convergent. Indeed, according to the integration by parts formula, we have

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx = \lim_{z \to +\infty} \int_{1}^{z} \frac{\sin x}{x} dx = -\lim_{z \to +\infty} \int_{1}^{z} \frac{1}{x} d\cos x = -\lim_{z \to +\infty} \left[\frac{\cos x}{x} \Big|_{1}^{z} - \int_{1}^{z} \cos x d\frac{1}{x} \right]$$
$$= -\lim_{z \to +\infty} \left[\frac{\cos z}{z} - \cos 1 + \int_{1}^{z} \frac{\cos x}{x^{2}} dx \right] = \cos 1 - \int_{1}^{+\infty} \frac{\cos x}{x^{2}} dx.$$

The integral $\int_{1}^{+\infty} \frac{\cos x}{x^2} dx$ absolutely converges because $\frac{|\cos x|}{x^2} \leq \frac{1}{x^2}$, $x \geq 1$, and the integral $\int_{1}^{+\infty} \frac{dx}{x^2}$ converges (see Example 18.3). Thus, $\int_{1}^{+\infty} \frac{\cos x}{x^2} dx$ converges, by Theorem 18.4. This implies the convergence of the integral $\int_{1}^{+\infty} \frac{\sin x}{x} dx$. Next, we show that $\int_{1}^{+\infty} \frac{|\sin x|}{x} dx$ diverges. We estimate

$$\int_{\pi}^{n\pi} \frac{|\sin x|}{x} dx = \sum_{k=2}^{n} \int_{(k-1)\pi}^{k\pi} \frac{|\sin x|}{x} dx \ge \sum_{k=2}^{n} \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin x| dx = \frac{2}{\pi} \sum_{k=2}^{n} \frac{1}{k}.$$

In the next lecture, we will show that $\sum_{k=2}^{n} \frac{1}{k} \to +\infty$, $n \to \infty$. Thus, $\int_{\pi}^{+\infty} \frac{|\sin x|}{x} dx$ diverges and, consequently, $\int_{1}^{+\infty} \frac{|\sin x|}{x} dx$ also diverges.

Theorem 18.5 (Dirichlet's test). Let functions f and g satisfy the following properties:

- 1) there exists $C \in \mathbb{R}$ such that $\left| \int_{a}^{z} f(x) dx \right| \leq C$ for all $z \geq a$;
- 2) the function g is monotone on $[a, +\infty)$;
- 3) $q(x) \to 0, x \to +\infty$.

Then the integral $\int_{a}^{+\infty} f(x)g(x)dx$ converges.

Example 18.8. The integral $\int_{1}^{+\infty} \frac{\sin x}{x} dx$ converges, since the functions $f(x) = \sin x$, $x \ge 1$, and $g(x) = \frac{1}{x}$, $x \ge 1$, satisfy conditions 1)-3) of Theorem 18.5 with C = 2.

Example 18.9. The integral $\int_{1}^{+\infty} \sin x^3 dx$ converges, since the functions $f(x) = x^2 \sin x^3$, $x \ge 1$, and $g(x) = \frac{1}{x^2}$, $x \ge 1$, satisfy conditions 1)-3) of Theorem 18.5 with $C = \frac{2}{3}$.

Theorem 18.6 (Abel's test). Let functions f and g satisfy the following properties:

- 1) the integral $\int_{a}^{+\infty} f(x) dx$ converges;
- 2) the function g is monotone on $[a, +\infty)$;
- 3) the function g is bounded on $[a, +\infty)$.

Then the integral $\int_{a}^{+\infty} f(x)g(x)dx$ converges.

Exercise 18.2. Prove the convergence of the following integrals: a) $\int_{1}^{+\infty} \frac{\cos x}{\sqrt{x}} dx$; b) $\int_{1}^{+\infty} \cos x^2 dx$; c) $\int_{0}^{+\infty} \sin x^2 dx$; d) $\int_{1}^{+\infty} \frac{\sin 2x \cdot \sin x}{x} dx$.

Remark 18.2. The definition and properties of the improper integral $\int_{-\infty}^{a} f(x)dx$ are similar to ones of $\int_{a}^{+\infty} f(x)dx$. The integral $\int_{-\infty}^{+\infty} f(x)dx$ is defined as $\int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$ for any $a \in \mathbb{R}$.

18.2 Improper Integrals of Unbounded Functions

In this section, we will consider a function $f[a, b) \to \mathbb{R}$ such that for all $c \in (a, b)$ it is integrable on [a, c] and unbounded on (c, b). The case of a function $f(a, b] \to \mathbb{R}$, which is unbounded near a can be considered similarly. We set

$$\varphi(z) = \int_{a}^{z} f(x) dx, \quad z \in (a, b).$$

Definition 18.3. The finite limit

$$\lim_{z \to b-} \varphi(z) dz = \lim_{z \to b-} \int_{a}^{z} f(x) dx$$
(33)

is called the **improper integral** of f over [a, b) and is denoted by

$$\int_{a}^{b} f(x)dx.$$
(34)

In this case, we will say that the improper integral (34) converges. If limit (33) does not exist or is infinite, then the improper integral (34) is said to be **divergent**.

Exercise 18.3. The improper integral $\int_0^1 \frac{dx}{\sqrt{1-x}}$ converges, since

$$\int_0^z \frac{dx}{\sqrt{1-x}} = -\int_0^z \frac{d(1-x)}{\sqrt{1-x}} = -\int_0^z (1-x)^{-\frac{1}{2}} d(1-x) = -2(1-x)^{\frac{1}{2}} \Big|_0^z = -2(1-z)^{\frac{1}{2}} + 2 \to 2, \quad z \to 1-.$$

Example 18.10. The improper integral $\int_0^1 \ln x dx$ converges, since

$$\int_{z}^{1} \ln x dx = (x \ln x - x) \Big|_{z}^{1} = -1 - z \ln z + z \to -1, \quad z \to 0+,$$

by Exeample 13.1 b). For the computation of an antiderivative of $\ln x$ see Example 15.7.

Exercise 18.4. Prove that the improper integral $\int_a^b \frac{dx}{(b-x)^p}$, p > 0, converges for p < 1 and diverges for $p \ge 1$.

The following properties of improper integrals of unbounded functions can be proved similarly as properties of improper integrals over unbounded intervals.

- 1. Let $f(x) \ge 0$, $x \in [a, b)$. The improper integral $\int_a^b f(x) dx$ converges iff there exists $C \in \mathbb{R}$ such that $\int_a^z f(x) dx \le C$ for all $z \in [a, b)$.
- 2. Let $0 \le f(x) \le g(x)$, $x \in [a, b)$. If the improper integral $\int_a^b g(x) dx$ converges, then $\int_a^b f(x) dx$ also converges.
- 3. If for some p > 0 and $0 < C < +\infty$ $f(x) \sim \frac{C}{(b-x)^p}$, $x \to b-$, that is, $\lim_{x \to b-} (b-x)^p f(x) = C$, then the integral $\int_a^b f(x) dx$ converges for p < 1 and diverges for $p \ge 1$.
- 4. If a function f has an antiderivative F on [a, b) and there exists a limit $F(b-) := \lim_{x \to b-} F(x)$, then $\int_a^b f(x) dx = F(b-) - F(a)$.

Exercise 18.5. Prove the convergence of the integral $\int_0^1 \frac{dx}{\sqrt[3]{1-x^2}}$.

