17 Lecture 17 – Fundamental Theorem of Calculus and Application of Riemann Integral

UNIVERSITÄT LEIPZIG

17.1 Fundamental Theorem of Calculus

We set $f_a^a f(x) dx := 0$ and $\int_b^a f(x) dx := -\int_a^b f(x) dx$ for a < b.

Theorem 17.1. Let $f : [a,b] \to \mathbb{R}$ be integrable on [a,b]. Then the function $\varphi(x) := \int_a^x f(u) du$, $x \in [a,b]$, is continuous on [a,b].

Proof. For every $x', x'' \in [a, b]$ we have

$$|\varphi(x') - \varphi(x'')| = \left| \int_{a}^{x'} f(x)dx - \int_{a}^{x''} f(x)dx \right| = \left| \int_{x'}^{x''} f(x)dx \right| \le \int_{x'}^{x''} |f(x)|dx \le \sup_{x \in [a,b]} |f(x)||x' - x''|,$$

by Theorem 16.5 (iii) and corollaries 16.1, 16.2. Consequently, φ is uniformly continuous on [a, b].

Theorem 17.2. Let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b]. Then the function $\varphi(x) := \int_a^x f(u)du$, $x \in [a,b]$, is differentiable on [a,b] and $\varphi'(x) = f(x)$, $x \in [a,b]$, that is, φ is an antiderivative of f on [a,b].

Proof. Let $x_0 \in [a, b]$ and $h \neq 0$. By the mean value theorem (see Theorem 16.7), there exists θ_h between x_0 and $x_0 + h$ such that

$$\frac{\varphi(x_0+h)-\varphi(x_0)}{h} = \frac{1}{h} \int_{x_0}^{x_0+h} f(x)dx = f(\theta_h).$$

Since $\theta_h \to x_0$, $h \to 0$, and f is continuous, we obtain

$$\lim_{h \to 0} \frac{\varphi(x_0 + h) - \varphi(x_0)}{h} = \lim_{h \to 0} f(\theta_h) = f(x_0).$$

Theorem 17.3 (Fundamental Theorem of Calculus). We assume that $f : [a, b] \to \mathbb{R}$ satisfies the following properties:

- 1) f is integrable on [a, b];
- 2) f has an antiderivative F on [a, b].

Then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

We will also denote $F(x)\Big|_a^b := F(b) - F(a).$

Proof. We first prove the theorem in the case $f \in C([a, b])$. The function $\varphi(x) := \int_a^x f(u)du, x \in [a, b]$, is an antiderivative of f on [a, b], by Theorem 17.2. Thus, using Remark 15.1, there exists $C \in \mathbb{R}$ such that $\varphi(x) = F(x) + C, x \in [a, b]$. In particular, $\varphi(a) = F(a) + C = 0$. Thus, C = -F(a). Consequently, $\int_a^b f(x)dx = \varphi(b) = F(b) + C = F(b) - F(a)$.

Next, we give the second proof of the theorem in the general case. Let $\lambda = \{x_0, x_1, \dots, x_n\}$ be a partition of [a, b]. We first note that

$$F(b) - F(a) = (F(x_1) - F(x_0)) + (F(x_2) - F(x_1)) + \ldots + (F(x_n) - F(x_{n-1})) = \sum_{k=1}^n (F(x_k) - F(x_{k-1})).$$

We apply the Lagrange theorem (see Theorem 11.4) to the function F on $[x_{k-1}, x_k]$ for each $k = 1, \ldots, n$. So, there exists $\xi_k \in [x_{k-1}, x_k]$, $k = 1, \ldots, n$, such that

$$F(b) - F(a) = \sum_{k=1}^{n} (F(x_k) - F(x_{k-1})) = \sum_{k=1}^{n} F'(\xi_k) \Delta x_k = \sum_{k=1}^{n} f(\xi_k) \Delta x_k.$$

Making $|\lambda| \to 0$, we have

$$F(b) - F(a) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k \to \int_a^b f(x) dx,$$

since f is integrable on [a, b].

Exercise 17.1. Compute the following integrals: a) $\int_{-1}^{8} \sqrt[3]{x} dx$; b) $\int_{0}^{\pi} \sin x dx$; c) $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dx}{1+x^2}$; d) $\int_{0}^{2} |1-x| dx$; e) $\int_{-1}^{1} \frac{dx}{x^2 - 2x \cos \alpha + 1}$ for $\alpha \in (0, \pi)$.

Example 17.1 (Leibniz's rule). Let a function $f : \mathbb{R} \to \mathbb{R}$ have an antiderivative on \mathbb{R} and be integrable on each finite interval. Let functions $a, b\mathbb{R} \to \mathbb{R}$ be differentiable on \mathbb{R} . Then

$$\frac{d}{dx}\int_{a(x)}^{b(x)}f(u)du = f(b(x))b'(x) - f(a(x))a'(x), \quad x \in \mathbb{R}.$$

Indeed, let F be an antiderivative of f on \mathbb{R} . By the fundamental theorem of calculus,

$$\int_{a(x)}^{b(x)} f(u)du = F(b(x)) - F(a(x)), \quad x \in \mathbb{R}.$$
 (25)

Moreover, the right hand side of (25) is differentiable and

$$\frac{d}{dx}\left(F(b(x)) - F(a(x))\right) = F'(b(x))b'(x) - F'(a(x))a'(x) = f(b(x))b'(x) - f(a(x))a'(x), \quad x \in \mathbb{R},$$

by the chain rule.

Exercise 17.2. Compute the following derivatives: a) $\frac{d}{dx} \int_a^b \sin x^2 dx$; b) $\frac{d}{da} \int_a^b \sin x^2 dx$; c) $\frac{d}{dx} \int_0^{x^2} \sqrt{1+t^2} dt$; d) $\frac{d}{dx} \int_{x^2}^{x^3} \frac{dt}{1+t^4}$.

Exercise 17.3. Compute the following limits:

a)
$$\lim_{x \to 0} \frac{\int_0^x \cos t^2 dt}{x}$$
; b) $\lim_{x \to +\infty} \frac{\int_0^x (\arctan t)^2 dt}{\sqrt{x^2 + 1}}$; c) $\lim_{x \to +\infty} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt}$

		L
		L
		L
		L

17.2 Some Corollaries

Theorem 17.4 (Substitution rule). We assume that $f : [a, b] \to \mathbb{R}$ is continuous on [a, b] and $u : [\alpha, \beta] \to [a, b]$ is continuously differentiable on $[\alpha, \beta]$. Then the following equality

$$\int_{\alpha}^{\beta} f(u(t))u'(t)dt = \int_{\alpha}^{\beta} f(u(t))du(t) = \int_{u(\alpha)}^{u(\beta)} f(x)dx$$

holds.

Proof. Since the function f is continuous on $[u(\alpha), u(\beta)]$, it has an antiderivative F on $[u(\alpha), u(\beta)]$, by Theorem 17.2. Using the fundamental theorem of calculus,

$$\int_{u(\alpha)}^{u(\beta)} f(x)dx = F(u(\beta)) - F(u(\alpha)).$$

Moreover, the function F(u) is an antiderivative of f(u)u' on $[\alpha, \beta]$. Thus, by the fundamental theorem of calculus,

$$\int_{\alpha}^{\beta} f(u(t))u'(t)dt = F(u(\beta)) - F(u(\alpha)).$$

This proves the theorem.

Exercise 17.4. Using the substitution rule, compute the following integrals: a) $\int_0^{\sqrt{\pi}} x \sin x^2 dx$; b) $\int_0^1 e^{2x-1} dx$; c) $\int_{-1}^1 \frac{x dx}{\sqrt{5-4x}}$; d) $\int_0^{\ln 2} \sqrt{e^x - 1} dx$; e) $\int_0^{\frac{\pi}{6}} \frac{dx}{\cos x}$.

Theorem 17.5 (Integration by parts). Let $u, v : [a, b] \to \mathbb{R}$ be continuously differentiable functions on [a, b]. Then

$$\int_{a}^{b} u(x)dv(x) = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)du(x),$$

i.e.

$$\int_{a}^{b} u(x)v'(x)dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x)dx.$$

Proof. Since the function uv is an antiderivative of uv' + u'v on [a, b],

$$\int_{a}^{b} (u(x)v'(x) + u'(x)v(x))dx = u(b)v(b) - u(a)v(a),$$

by the fundamental theorem of calculus. Using Theorem 16.5 (ii), we obtain the integration by parts formula. $\hfill \Box$

Exercise 17.5. Using the integration by parts formula, compute the following integrals: a) $\int_0^{\ln 2} x e^{-x} dx$; b) $\int_0^{\pi} x \sin x dx$; c) $\int_0^{2\pi} x^2 \cos x dx$; d) $\int_{\frac{1}{e}}^{e} |\ln x| dx$; e) $\int_0^1 \arccos x dx$.

17.3 Application of the Integral

17.3.1 Area of the Region under the Graph of Function

Theorem 17.6. Let $f : [a,b] \to \mathbb{R}$ be a continuous function on [a,b] and $f(x) \ge 0$, $x \in [a,b]$. Then the area of the region

$$F = \{(x, y): 0 \le y \le f(x), a \le x \le b\}$$

under the graph of f is equal to

$$S(F) = \int_{a}^{b} f(x) dx.$$

Proof. We first note that f is integrable on [a, b] because it is continuous (see Theorem 16.4). Thus, the formula for the area follows from the discussion in Section 16.1 and definition of the integral (see (23)).

Example 17.2. The area of the region under the graph of the function $f(x) = x^2$, $x \in [0, 1]$, is equal

$$\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}.$$

Example 17.3. Compute the area of the region G enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > 0, b > 0. In order to compute the area of G, it is enough to compute the area of

$$F = \left\{ (x, y) : \ 0 \le y \le b \sqrt{1 - \frac{x^2}{a^2}}, \ 0 \le x \le a \right\}.$$

By Theorem 17.6,

$$S(G) = 4S(F) = 4 \int_0^a b \sqrt{1 - \frac{x^2}{a^2}} dx = \begin{vmatrix} x = a \sin t \\ dx = a \cos t dt \end{vmatrix} = 4ab \int_0^{\frac{\pi}{2}} \cos^2 t dt$$
$$= 4ab \int_0^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} dt = 2abt \Big|_0^{\frac{\pi}{2}} + ab \sin 2t \Big|_0^{\frac{\pi}{2}} = \pi ab.$$

Exercise 17.6. Compute the area of regions bounded by the graphs of the following functions: a) $2x = y^2$ and $2y = x^2$; b) $y = x^2$ and x + y = 2; c) $y = 2^x$, y = 2 and x = 0; d) $y = \frac{a^3}{a^2 + x^2}$ and y = 0, where a > 0.

17.3.2 Length of a Curve

Definition 17.1. Let $\varphi, \psi : [a, b] \to \mathbb{R}$ be continuous functions on [a, b]. The set of points

$$\Gamma := \{ (x, y) \in \mathbb{R}^2 : x = \varphi(t), y = \psi(t), t \in [a, b] \}$$

$$(26)$$

is called a **continuous (plane) curve**.

We first give a definition of the length of the continuous curve Γ . Let $\lambda = \{t_0, t_1, \ldots, t_n\}$ be a partition of [a, b]. We consider the polygonal curve Γ_{λ} with vertices $(\varphi(t_k), \psi(t_k)), k = 0, \ldots, n$. Its length equals

$$l(\Gamma_{\lambda}) = \sum_{k=1}^{n} \sqrt{(\varphi(t_k) - \varphi(t_{k-1}))^2 + (\psi(t_k) - \psi(t_{k-1}))^2}.$$

Definition 17.2. The curve Γ is said to be a **rectifiable curve**, if there exists a finite limit

$$\lim_{|\lambda|\to 0} l(\Gamma_{\lambda}) =: l(\Gamma)$$

that is, if there exists a real number $l(\Gamma)$ such that

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \lambda \ |\lambda| < \delta : \ |l(\Gamma_{\lambda}) - l(\Gamma)| < \varepsilon$$

The limit $l(\Gamma)$ is called the **length of rectifiable curve** Γ .

Theorem 17.7. Let $\varphi, \psi : [a, b] \to \mathbb{R}$ be continuously differentiable on [a, b]. Then Γ , defined by (26), is a rectifiable curve and its length equals

$$l(\Gamma) = \int_a^b \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt.$$

Proof. Using the Lagrange theorem (see Theorem 11.4), we have

$$l(\Gamma_{\lambda}) = \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\eta_k))^2} \Delta t_k = \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2} \Delta t_k + r_{\lambda}$$

where $\xi_k, \eta_k \in [t_{k-1}, t_k], k = 1, ..., n$, and

$$r_{\lambda} := \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\eta_k))^2} \Delta t_k - \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2} \Delta t_k$$

Since the function $f(t) = \sqrt{(\varphi'(t))^2 + (\psi'(t))^2}$, $t \in [a, b]$, is continuous on [a, b], it is integrable on [a, b], by Theorem 16.4. Thus,

$$\lim_{|\lambda|\to 0} \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2} \Delta t_k = \int_a^b \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt.$$

Moreover, using the inequality

$$|\sqrt{u^2 + v^2} - \sqrt{u^2 + w^2}| \le |v - w|, \quad u, v, w \in \mathbb{R},$$

(see Exercise 12.5 b)), we have

$$|r_{\lambda}| \leq \sum_{k=1}^{n} |\psi'(\xi_k) - \psi'(\eta_k)| \Delta t_k \leq \sum_{k=1}^{n} (M_k - m_k) \Delta t_k,$$

where $M_k := \sup_{t \in [t_{k-1}, t_k]} \psi'(t)$ and $m_k := \inf_{t \in [t_{k-1}, t_k]} \psi'(t)$, k = 1, ..., n. Using theorems 16.2 and 16.4, we obtain

$$|r_{\lambda}| \leq \sum_{k=1}^{n} (M_k - m_k) \Delta t_k \to 0, \quad |\lambda| \to 0.$$

Remark 17.1. If a curve Γ is given by the graph of a continuously differentiable function $f : [a, b] \to \mathbb{R}$, that is,

$$\Gamma = \{ (x, y) : y = f(x), x \in [a, b] \},\$$

then its length equals

$$l(\Gamma) = \int_a^b \sqrt{1 + (f'(x))^2} dx.$$

Example 17.4. We compute the length of the circle $x^2 + y^2 = r^2$, r > 0, that is, the length of the curve

$$\Gamma = \left\{ (x, y) : x^2 + y^2 = r^2 \right\} = \left\{ (x, y) : x = r \cos t, \ y = r \sin t, \ t \in [0, 2\pi) \right\}.$$

By Theorem 17.7,

$$l(\Gamma) = \int_0^{2\pi} \sqrt{r^2 \sin^2 t + r^2 \cos^2 t} dt = \int_0^{2\pi} r dt = 2\pi r$$

Exercise 17.7. Compute the length of continuous curves defined by the following functions: a) $y = x^{\frac{3}{2}}$, $x \in [0,4]$; b) $y = e^x$, $0 \le x \le b$; c) $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $t \in [0, 2\pi]$, where a > 0.

17.3.3 Volume of Solid of Revolution

Definition 17.3. Let $f : [a, b] \to \mathbb{R}$ be a positive continuous function. A solid of revolution G is a set of points in \mathbb{R}^3 obtained by rotating of the region under the graph of f around the x-axis, that is,

 $G = \left\{ (x, y, z) : y^2 + z^2 \le f^2(x), x \in [a, b] \right\}.$

Theorem 17.8. Let $f : [a,b] \to \mathbb{R}$ be a positive continuous function. Then the volume of solid of revolution G is equal to

$$V(G) = \pi \int_{a}^{b} f^{2}(x) dx$$

Idea of Proof. We consider a partition $\lambda = \{x_0, x_1, \dots, x_n\}$ of the interval [a, b] and split G into smaller sets

$$G_k = \{(x, y, z): y^2 + z^2 \le f^2(x), x \in [x_{k-1}, x_k]\}, k = 1, \dots, n.$$

Then the volume of G_k is approximately equal the volume of the cylinder

$$\{(x, y, z): y^2 + z^2 \le f^2(\xi_k), x \in [x_{k-1}, x_k]\},\$$

where $\xi_k \in [x_{k-1}, x_k]$. Thus,

$$V(G) = \sum_{k=1}^{n} V(G_k) \approx \sum_{k=1}^{n} \pi f^2(\xi_k) \Delta x_k.$$

Passing to the limit as $|\lambda| \to 0$, we obtain

$$V(G) = \pi \int_{a}^{b} f^{2}(x) dx.$$

г		
н		
н		
н		

Example 17.5. The volume of the cone

$$G = \{(x, y, z): y^2 + z^2 \le x^2, \quad x \in [0, 1]\}.$$

equals

$$V(G) = \pi \int_0^1 x^2 dx = \pi \frac{x^3}{3} \Big|_0^1 = \frac{\pi}{3},$$

since G can be obtained by rotating of the region under the graph of the function $f(x) = x, x \in [0, 1]$, around the x-axis.

Exercise 17.8. Compute the volume of the paraboloid of revolution

$$G = \{ (x, y, z) : y^2 + z^2 \le x, \quad x \in [0, 1] \}.$$

(*Hint:* G can be obtained by rotating of the region under the graph of the function $f(x) = \sqrt{x}, x \in [0, 1]$, around the x-axis)