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17 Lecture 17 — Fundamental Theorem of Calculus and Application
of Riemann Integral

17.1 Fundamental Theorem of Calculus
We set fof(z)dz :=0and [ f(z)dw := — fff(a:)dm for a < b.

Theorem 17.1. Let f : [a,b] — R be integrable on [a,b]. Then the function @(x) = [” f(u)du,
x € [a,b], is continuous on [a,b].

Proof. For every o', 2" € [a,b] we have

/:, f(z)dz — /:” f(z)dz /;N f(x)dx

by Theorem 16.5 (iii) and corollaries 16.1, 16.2. Consequently, ¢ is uniformly continuous on [a,b]. [

1

5/ @l < s [f@ll -,

z€la,b]

lp(z") — p(z")| =

Theorem 17.2. Let f : [a,b] — R be continuous on [a,b]. Then the function p(z) := [* f(u)du,
x € [a,b], is differentiable on [a,b] and ¢'(x) = f(x), x € [a,b], that is, ¢ is an antiderivative of f on
[a,b].

Proof. Let xy € [a,b] and h # 0. By the mean value theorem (see Theorem 16.7), there exists 6,
between xg and xg + h such that

p(zo+h) —plxg) 1 [*Fh
h )

flx)dx = f(0h).

Since 0, — zg, h — 0, and f is continuous, we obtain

h) —

O

Theorem 17.3 (Fundamental Theorem of Calculus). We assume that f : [a,b] — R satisfies the
following properties:

1) f is integrable on [a,b];
2) f has an antiderivative F' on [a,b].

Then X
/ F@)dz = F(b) — F(a).

b
We will also denote F(x)

a

:= F(b) — F(a).

Proof. We first prove the theorem in the case f € C([a,b]). The function p(z) := [ f(u)du, € [a, b],
is an antiderivative of f on [a,b], by Theorem 17.2. Thus, using Remark 15.1, there exists C' € R
such that p(z) = F(z) + C, z € [a,b]. In particular, p(a) = F(a) + C = 0. Thus, C = —F(a).
Consequently, f; f(x)dz = o(b) = F(b) + C = F(b) — F(a).
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Next, we give the second proof of the theorem in the general case. Let A = {zg,z1,...,2,} be a
partition of [a,b]. We first note that

F(b) ~ F(a) = (F(1) — F(20)) + (F(22) — F(21)) ...+ (F(2n) ~ F(@q1)) = Z(F:ck F(ai-1)).

We apply the Lagrange theorem (see Theorem 11.4) to the function F' on [zj_1,xp] for each k =
1,...,n. So, there exists & € [vr—1, 2], K =1,...,n, such that

- Z(F(xk) — F(z_1)) ZF (&p)Azy = Zf &) Ay
k=1 k=1

Making |A| — 0, we have
F(b) — F(a) =Y _ f(&) Aa:k—>/ flx
k=1

since f is integrable on [a, b]. O
Exercise 17.1. Compute the following integrals:

a) ffl Vadr; b) [ sinzdr; c) fﬁﬂ d) f02|1—x|dx; e) f_ll# for a € (0, ).

- 1422 —2x cos a+1

Example 17.1 (Leibniz’s rule). Let a function f : R — R have an antiderivative on R and be
integrable on each finite interval. Let functions a, bR — R be differentiable on R. Then

d @
— flu)du = f(b(x))V' () - f(a(z))d'(x), = €R.
dx a(zx)
Indeed, let F' be an antiderivative of f on R. By the fundamental theorem of calculus,
b(x)
fw)du = F(b(x)) — F(a(z)), =z €R. (25)
a(z)
Moreover, the right hand side of (25) is differentiable and

% (F(b(x)) = F(a(x))) = F'(b(x))V(z) — F'(a(z))d'(x) = f(b(x))V(z) — f(a(z))d(z), = €R,

by the chain rule.

Exercise 17.2. Compute the following derivatives:
b b . 2 3
) 4 [Psina?des b) 4 [Psina’des c) 4 i VIT P d) 4[5

Exercise 17.3. Compute the following limits:

Ji7 cost2dt J5 (arctant)2dt ( yet? dt) ’
z—0 z z—+00 241 CU—H‘OO Jo e*dt
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17.2 Some Corollaries

Theorem 17.4 (Substitution rule). We assume that f : [a,b] — R is continuous on [a,b] and u :
[ar, B] = [a, b] is continuously differentiable on [a, B]. Then the following equality

u(B)

B B8
U o (H)dt = U du = x)dx
‘Af(w)@)tuéf(@)(ﬂ A e

(o
holds.

Proof. Since the function f is continuous on [u(«),u(f)], it has an antiderivative F' on [u(a), u(B)],
by Theorem 17.2. Using the fundamental theorem of calculus,

u(B)
/})ﬂmm—Fww»—Fww»

Moreover, the function F(u) is an antiderivative of f(u)u’ on [«, 8]. Thus, by the fundamental theorem
of calculus,

B
/1ﬂwmwwﬁ=FWWD—FWWM
This proves the theorem. O

Exercise 17.4. Using the substitution rule, compute the following integrals:

a) foﬁ:CSinachx; b) fol e?*~ldz; c) f_ll \/%Q d) (}HQ Ver —1dx; e) [if cg:m’

Theorem 17.5 (Integration by parts). Let u,v : [a,b] — R be continuously differentiable functions
on [a,b]. Then

/ab u(x)dv(z) = u(:v)v(a:)‘: - /ab v(x)du(x),

b b
/ w(z)v (x)dx = u(b)v(b) — u(a)v(a) — / o (z)v(z)d.

Proof. Since the function uv is an antiderivative of uwv’ + w'v on [a, b],

b
/XM@U@%HN@M@M$=M®M®—M@M@,

by the fundamental theorem of calculus. Using Theorem 16.5 (ii), we obtain the integration by parts
formula. 0

Exercise 17.5. Using the integration by parts formula, compute the following integrals:

a) (}Mace’”dx; b) [y xsinzdz; c) fOZW:CQ coszdr; d) fg\lnx\dx; e) fol arccos rdz.
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17.3 Application of the Integral
17.3.1 Area of the Region under the Graph of Function

Theorem 17.6. Let f : [a,b] — R be a continuous function on [a,b] and f(x) > 0, x € [a,b]. Then
the area of the region
F={(z,y): 0<y< f(z), a<z<b}

under the graph of f is equal to
b
S(F) = / Fa)da.
a

Proof. We first note that f is integrable on [a, b] because it is continuous (see Theorem 16.4). Thus,
the formula for the area follows from the discussion in Section 16.1 and definition of the integral

(see (23)). O

Example 17.2. The area of the region under the graph of the function f(z) = 22, 2 € [0, 1], is equal

1 31 1
2 e
d:—):—.

/Ox“" 300" 3

Example 17.3. Compute the area of the region G enclosed by the ellipse z—i + g—; =1,a>0,b>0.
In order to compute the area of G, it is enough to compute the area of

2
F:{(x,y): Ogygbwl—%, ngga}.
a
By Theorem 17.6,
¢ x? x = asint .,
S(G)4S(F)4/O b\/l—azdx‘ s esid ‘4@/0 cos? tdt

21 2t
- 4ab/2 ’Lc%dt — 2abt
0

Exercise 17.6. Compute the area of regions bounded by the graphs of the following functions:
a)2r=y?and 2y =2% b)y=2?andz+y=2; c)y=2% y=2and x = 0;

3
= mab.
0

j + absin 2t

d)y:aﬁ%andyzo,wherea>0.

17.3.2 Length of a Curve

Definition 17.1. Let ¢, : [a,b] — R be continuous functions on [a, b]. The set of points
Di={(z,y) eR*: w=9p(t), y=2(t), t € [a,]} (26)

is called a continuous (plane) curve.

We first give a definition of the length of the continuous curve I'. Let A = {to,t1,...,tn} be a
partition of [a,b]. We consider the polygonal curve I'y with vertices (¢(tg), ¥ (tr)), k = 0,...,n. Its
length equals

Ty =YV (olte) = o(th-1))? + (@ (tx) — ¥(tx-1))>
k=1
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Definition 17.2. The curve I' is said to be a rectifiable curve, if there exists a finite limit

lim (Ty) =: |(T
|>\1|I—I>10(/\) (),

that is, if there exists a real number {(I") such that
Ve>0 30 >0 VA [\ <d: |I(Ty) —IT)] <e.
The limit {(T") is called the length of rectifiable curve I

Theorem 17.7. Let ¢, : [a,b] — R be continuously differentiable on [a,b]. Then T, defined by (26),
is a rectifiable curve and its length equals

D) = / V(¢! '(t))2dt.

Proof. Using the Lagrange theorem (see Theorem 11.4), we have

I(T'x) Z V(¢ + (¥ ()2 Aty = Z V(@' (6R))% + (V' (€))2 Aty + 7,

where &, nk € [te—1,tk], k=1,...,n, and

Ty = Z V(@' (E)2 + (' ()2 Aty — Z V(e ()2 + ()2 Aty

Since the function f(t) = /(¢/(t))2 + (¢¥/(t))?, t € [a,b], is continuous on [a,b], it is integrable on
[a,b], by Theorem 16.4. Thus,

lim ZJ (&) At = / V& POt

\)\|—>O

Moreover, using the inequality

WVu2+02 = Vu2+w| < |v—w|, wv,weR,

(see Exercise 12.5 b)), we have
[ral <710 (6r) — o' (m) Aty < (Mg, — my) Aty
k=1 k=1

where My := sup 4¢/(t) and my := inf ¢'(¢), k=1,...,n. Using theorems 16.2 and 16.4, we
t€[tk—1,tx] t€ty—1tx
obtain

n
Al <D (Mg, — mi) Aty — 0, [A] = 0.
k=1

(0]
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Remark 17.1. If a curve I is given by the graph of a continuously differentiable function f : [a, b] — R,
that is,

I'={(z,y): y=f(z), z¢€lab]}
then its length equals

b
() :/ 1+ (F(2)2da.

Example 17.4. We compute the length of the circle 2 4+ y? = r2, r > 0, that is, the length of the
curve
I'={(z,9): 2 +y*=r"} ={(z,y): z=rcost, y=rsint, t € [0,2m)}.

By Theorem 17.7,

27 2
Ur) = \/7’2 sin?t + r2 cos? tdt = / rdt = 27r.
0 0

Exercise3 17.7. Compute the length of continuous curves defined by the following functions:
a)y=ux2,z€[0,4; b)y=¢€",0<x<b c)z=a(t—-sint), y=a(l—cost), t € [0,2x], where
a > 0.

17.3.3 Volume of Solid of Revolution

Definition 17.3. Let f : [a,b] — R be a positive continuous function. A solid of revolution G is a
set of points in R? obtained by rotating of the region under the graph of f around the z-axis, that is,

G={(z,y,2): Y¥*+2° < f*(), z € [a,b]}.

Theorem 17.8. Let f : [a,b] — R be a positive continuous function. Then the volume of solid of
revolution G is equal to

b
V(G) = 7r/ (z)dz.

Idea of Proof. We consider a partition A = {xg, x1, ..., x,} of the interval [a, b] and split G into smaller
sets
Gk = {(xayaz) : y2 +22 < f2(l'>, YRS [xk—laxk]} ’ k= 17"')“"

Then the volume of G, is approximately equal the volume of the cylinder

{(z,y,2) : ¥*+2* < f2(&), x € (w1, i},

where &, € [xg_1, zx]. Thus,

V(G) =) V(Gy) ~ Y mf (&) Ay

k

n n

1 k=1

Passing to the limit as |A\| — 0, we obtain

b
V(G) :w/ f(x)dx.
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Example 17.5. The volume of the cone
G={(r,y,2): y*+22<2% xe€l0,1]}

equals

Rl

1
V(G) = Yr=71"| =<
()77/03333 =L,=3

since G can be obtained by rotating of the region under the graph of the function f(z) =z, z € [0, 1],
around the z-axis.

Exercise 17.8. Compute the volume of the paraboloid of revolution
G={(z,y,2): Y +22<=z, z€[0,1]}

(Hint: G can be obtained by rotating of the region under the graph of the function f(z) = /z, = € [0,1], around

the z-axis)
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