
University of Leipzig – WS18/19
10-PHY-BIPMA1 – Mathematics 1 / Vitalii Konarovskyi

17 Lecture 17 – Fundamental Theorem of Calculus and Application

of Riemann Integral

17.1 Fundamental Theorem of Calculus

We set faa f(x)dx := 0 and
∫ a

b
f(x)dx := −

∫ b

a
f(x)dx for a < b.

Theorem 17.1. Let f : [a, b] → R be integrable on [a, b]. Then the function ϕ(x) :=
∫ x

a
f(u)du,

x ∈ [a, b], is continuous on [a, b].

Proof. For every x′, x′′ ∈ [a, b] we have

|ϕ(x′)− ϕ(x′′)| =
∣

∣

∣

∣

∣

∫ x′

a

f(x)dx−
∫ x′′

a

f(x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ x′′

x′
f(x)dx

∣

∣

∣

∣

∣

≤
∫ x′′

x′
|f(x)|dx ≤ sup

x∈[a,b]
|f(x)||x′ − x′′|,

by Theorem 16.5 (iii) and corollaries 16.1, 16.2. Consequently, ϕ is uniformly continuous on [a, b].

Theorem 17.2. Let f : [a, b] → R be continuous on [a, b]. Then the function ϕ(x) :=
∫ x

a
f(u)du,

x ∈ [a, b], is differentiable on [a, b] and ϕ′(x) = f(x), x ∈ [a, b], that is, ϕ is an antiderivative of f on
[a, b].

Proof. Let x0 ∈ [a, b] and h 6= 0. By the mean value theorem (see Theorem 16.7), there exists θh
between x0 and x0 + h such that

ϕ(x0 + h)− ϕ(x0)

h
=

1

h

∫ x0+h

x0

f(x)dx = f(θh).

Since θh → x0, h→ 0, and f is continuous, we obtain

lim
h→0

ϕ(x0 + h)− ϕ(x0)

h
= lim

h→0
f(θh) = f(x0).

Theorem 17.3 (Fundamental Theorem of Calculus). We assume that f : [a, b] → R satisfies the
following properties:

1) f is integrable on [a, b];

2) f has an antiderivative F on [a, b].

Then
∫ b

a

f(x)dx = F (b)− F (a).

We will also denote F (x)
∣

∣

∣

b

a
:= F (b)− F (a).

Proof. We first prove the theorem in the case f ∈ C([a, b]). The function ϕ(x) :=
∫ x

a
f(u)du, x ∈ [a, b],

is an antiderivative of f on [a, b], by Theorem 17.2. Thus, using Remark 15.1, there exists C ∈ R

such that ϕ(x) = F (x) + C, x ∈ [a, b]. In particular, ϕ(a) = F (a) + C = 0. Thus, C = −F (a).
Consequently,

∫ b

a
f(x)dx = ϕ(b) = F (b) + C = F (b)− F (a).
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Next, we give the second proof of the theorem in the general case. Let λ = {x0, x1, . . . , xn} be a
partition of [a, b]. We first note that

F (b)−F (a) = (F (x1)−F (x0))+ (F (x2)−F (x1))+ . . .+(F (xn)−F (xn−1)) =
n
∑

k=1

(F (xk)−F (xk−1)).

We apply the Lagrange theorem (see Theorem 11.4) to the function F on [xk−1, xk] for each k =
1, . . . , n. So, there exists ξk ∈ [xk−1, xk], k = 1, . . . , n, such that

F (b)− F (a) =

n
∑

k=1

(F (xk)− F (xk−1)) =

n
∑

k=1

F ′(ξk)∆xk =

n
∑

k=1

f(ξk)∆xk.

Making |λ| → 0, we have

F (b)− F (a) =
n
∑

k=1

f(ξk)∆xk →
∫ b

a

f(x)dx,

since f is integrable on [a, b].

Exercise 17.1. Compute the following integrals:

a)
∫ 8
−1

3
√
xdx; b)

∫ π

0 sinxdx; c)
∫

√
3

1√
3

dx
1+x2 ; d)

∫ 2
0 |1− x|dx; e)

∫ 1
−1

dx
x2−2x cosα+1

for α ∈ (0, π).

Example 17.1 (Leibniz’s rule). Let a function f : R → R have an antiderivative on R and be
integrable on each finite interval. Let functions a, bR → R be differentiable on R. Then

d

dx

∫ b(x)

a(x)
f(u)du = f(b(x))b′(x)− f(a(x))a′(x), x ∈ R.

Indeed, let F be an antiderivative of f on R. By the fundamental theorem of calculus,

∫ b(x)

a(x)
f(u)du = F (b(x))− F (a(x)), x ∈ R. (25)

Moreover, the right hand side of (25) is differentiable and

d

dx
(F (b(x))− F (a(x))) = F ′(b(x))b′(x)− F ′(a(x))a′(x) = f(b(x))b′(x)− f(a(x))a′(x), x ∈ R,

by the chain rule.

Exercise 17.2. Compute the following derivatives:

a) d
dx

∫ b

a
sinx2dx; b) d

da

∫ b

a
sinx2dx; c) d

dx

∫ x2

0

√
1 + t2dt; d) d

dx

∫ x3

x2

dt
1+t4

.

Exercise 17.3. Compute the following limits:

a) lim
x→0

∫

x

0
cos t2dt

x
; b) lim

x→+∞

∫

x

0
(arctan t)2dt√

x2+1
; c) lim

x→+∞

(

∫

x

0
et

2

dt
)

2

∫

x

0
e2t

2
dt

.
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17.2 Some Corollaries

Theorem 17.4 (Substitution rule). We assume that f : [a, b] → R is continuous on [a, b] and u :
[α, β] → [a, b] is continuously differentiable on [α, β]. Then the following equality

∫ β

α

f(u(t))u′(t)dt =
∫ β

α

f(u(t))du(t) =

∫ u(β)

u(α)
f(x)dx

holds.

Proof. Since the function f is continuous on [u(α), u(β)], it has an antiderivative F on [u(α), u(β)],
by Theorem 17.2. Using the fundamental theorem of calculus,

∫ u(β)

u(α)
f(x)dx = F (u(β))− F (u(α)).

Moreover, the function F (u) is an antiderivative of f(u)u′ on [α, β]. Thus, by the fundamental theorem
of calculus,

∫ β

α

f(u(t))u′(t)dt = F (u(β))− F (u(α)).

This proves the theorem.

Exercise 17.4. Using the substitution rule, compute the following integrals:

a)
∫

√
π

0 x sinx2dx; b)
∫ 1
0 e

2x−1dx; c)
∫ 1
−1

xdx√
5−4x

; d)
∫ ln 2
0

√
ex − 1dx; e)

∫

π

6

0
dx

cosx .

Theorem 17.5 (Integration by parts). Let u, v : [a, b] → R be continuously differentiable functions
on [a, b]. Then

∫ b

a

u(x)dv(x) = u(x)v(x)
∣

∣

∣

b

a
−
∫ b

a

v(x)du(x),

i.e.
∫ b

a

u(x)v′(x)dx = u(b)v(b)− u(a)v(a)−
∫ b

a

u′(x)v(x)dx.

Proof. Since the function uv is an antiderivative of uv′ + u′v on [a, b],

∫ b

a

(u(x)v′(x) + u′(x)v(x))dx = u(b)v(b)− u(a)v(a),

by the fundamental theorem of calculus. Using Theorem 16.5 (ii), we obtain the integration by parts
formula.

Exercise 17.5. Using the integration by parts formula, compute the following integrals:
a)

∫ ln 2
0 xe−xdx; b)

∫ π

0 x sinxdx; c)
∫ 2π
0 x2 cosxdx; d)

∫ e
1

e

| lnx|dx; e)
∫ 1
0 arccosxdx.
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17.3 Application of the Integral

17.3.1 Area of the Region under the Graph of Function

Theorem 17.6. Let f : [a, b] → R be a continuous function on [a, b] and f(x) ≥ 0, x ∈ [a, b]. Then
the area of the region

F = {(x, y) : 0 ≤ y ≤ f(x), a ≤ x ≤ b}
under the graph of f is equal to

S(F ) =

∫ b

a

f(x)dx.

Proof. We first note that f is integrable on [a, b] because it is continuous (see Theorem 16.4). Thus,
the formula for the area follows from the discussion in Section 16.1 and definition of the integral
(see (23)).

Example 17.2. The area of the region under the graph of the function f(x) = x2, x ∈ [0, 1], is equal

∫ 1

0
x2dx =

x3

3

∣

∣

∣

1

0
=

1

3
.

Example 17.3. Compute the area of the region G enclosed by the ellipse x2

a2
+ y2

b2
= 1, a > 0, b > 0.

In order to compute the area of G, it is enough to compute the area of

F =

{

(x, y) : 0 ≤ y ≤ b

√

1− x2

a2
, 0 ≤ x ≤ a

}

.

By Theorem 17.6,

S(G) = 4S(F ) = 4

∫ a

0
b

√

1− x2

a2
dx =

∣

∣

∣

∣

x = a sin t
dx = a cos tdt

∣

∣

∣

∣

= 4ab

∫ π

2

0
cos2 tdt

= 4ab

∫ π

2

0

1 + cos 2t

2
dt = 2abt

∣

∣

∣

π

2

0
+ ab sin 2t

∣

∣

∣

π

2

0
= πab.

Exercise 17.6. Compute the area of regions bounded by the graphs of the following functions:
a) 2x = y2 and 2y = x2; b) y = x2 and x+ y = 2; c) y = 2x, y = 2 and x = 0;

d) y = a3

a2+x2 and y = 0, where a > 0.

17.3.2 Length of a Curve

Definition 17.1. Let ϕ, ψ : [a, b] → R be continuous functions on [a, b]. The set of points

Γ := {(x, y) ∈ R
2 : x = ϕ(t), y = ψ(t), t ∈ [a, b]} (26)

is called a continuous (plane) curve.

We first give a definition of the length of the continuous curve Γ. Let λ = {t0, t1, . . . , tn} be a
partition of [a, b]. We consider the polygonal curve Γλ with vertices (ϕ(tk), ψ(tk)), k = 0, . . . , n. Its
length equals

l(Γλ) =
n
∑

k=1

√

(ϕ(tk)− ϕ(tk−1))2 + (ψ(tk)− ψ(tk−1))2.
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Definition 17.2. The curve Γ is said to be a rectifiable curve, if there exists a finite limit

lim
|λ|→0

l(Γλ) =: l(Γ),

that is, if there exists a real number l(Γ) such that

∀ε > 0 ∃δ > 0 ∀λ |λ| < δ : |l(Γλ)− l(Γ)| < ε.

The limit l(Γ) is called the length of rectifiable curve Γ.

Theorem 17.7. Let ϕ, ψ : [a, b] → R be continuously differentiable on [a, b]. Then Γ, defined by (26),
is a rectifiable curve and its length equals

l(Γ) =

∫ b

a

√

(ϕ′(t))2 + (ψ′(t))2dt.

Proof. Using the Lagrange theorem (see Theorem 11.4), we have

l(Γλ) =
n
∑

k=1

√

(ϕ′(ξk))2 + (ψ′(ηk))2∆tk =
n
∑

k=1

√

(ϕ′(ξk))2 + (ψ′(ξk))2∆tk + rλ,

where ξk, ηk ∈ [tk−1, tk], k = 1, . . . , n, and

rλ :=

n
∑

k=1

√

(ϕ′(ξk))2 + (ψ′(ηk))2∆tk −
n
∑

k=1

√

(ϕ′(ξk))2 + (ψ′(ξk))2∆tk.

Since the function f(t) =
√

(ϕ′(t))2 + (ψ′(t))2, t ∈ [a, b], is continuous on [a, b], it is integrable on
[a, b], by Theorem 16.4. Thus,

lim
|λ|→0

n
∑

k=1

√

(ϕ′(ξk))2 + (ψ′(ξk))2∆tk =

∫ b

a

√

(ϕ′(t))2 + (ψ′(t))2dt.

Moreover, using the inequality

|
√

u2 + v2 −
√

u2 + w2| ≤ |v − w|, u, v, w ∈ R,

(see Exercise 12.5 b)), we have

|rλ| ≤
n
∑

k=1

|ψ′(ξk)− ψ′(ηk)|∆tk ≤
n
∑

k=1

(Mk −mk)∆tk,

where Mk := sup
t∈[tk−1,tk]

ψ′(t) and mk := inf
t∈[tk−1,tk]

ψ′(t), k = 1, . . . , n. Using theorems 16.2 and 16.4, we

obtain

|rλ| ≤
n
∑

k=1

(Mk −mk)∆tk → 0, |λ| → 0.
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Remark 17.1. If a curve Γ is given by the graph of a continuously differentiable function f : [a, b] → R,
that is,

Γ = {(x, y) : y = f(x), x ∈ [a, b]},
then its length equals

l(Γ) =

∫ b

a

√

1 + (f ′(x))2dx.

Example 17.4. We compute the length of the circle x2 + y2 = r2, r > 0, that is, the length of the
curve

Γ =
{

(x, y) : x2 + y2 = r2
}

= {(x, y) : x = r cos t, y = r sin t, t ∈ [0, 2π)} .
By Theorem 17.7,

l(Γ) =

∫ 2π

0

√

r2 sin2 t+ r2 cos2 tdt =

∫ 2π

0
rdt = 2πr.

Exercise 17.7. Compute the length of continuous curves defined by the following functions:
a) y = x

3

2 , x ∈ [0, 4]; b) y = ex, 0 ≤ x ≤ b; c) x = a(t − sin t), y = a(1 − cos t), t ∈ [0, 2π], where
a > 0.

17.3.3 Volume of Solid of Revolution

Definition 17.3. Let f : [a, b] → R be a positive continuous function. A solid of revolution G is a
set of points in R

3 obtained by rotating of the region under the graph of f around the x-axis, that is,

G =
{

(x, y, z) : y2 + z2 ≤ f2(x), x ∈ [a, b]
}

.

Theorem 17.8. Let f : [a, b] → R be a positive continuous function. Then the volume of solid of
revolution G is equal to

V (G) = π

∫ b

a

f2(x)dx.

Idea of Proof. We consider a partition λ = {x0, x1, . . . , xn} of the interval [a, b] and split G into smaller
sets

Gk =
{

(x, y, z) : y2 + z2 ≤ f2(x), x ∈ [xk−1, xk]
}

, k = 1, . . . , n.

Then the volume of Gk is approximately equal the volume of the cylinder

{

(x, y, z) : y2 + z2 ≤ f2(ξk), x ∈ [xk−1, xk]
}

,

where ξk ∈ [xk−1, xk]. Thus,

V (G) =

n
∑

k=1

V (Gk) ≈
n
∑

k=1

πf2(ξk)∆xk.

Passing to the limit as |λ| → 0, we obtain

V (G) = π

∫ b

a

f2(x)dx.

76



University of Leipzig – WS18/19
10-PHY-BIPMA1 – Mathematics 1 / Vitalii Konarovskyi

Example 17.5. The volume of the cone

G = {(x, y, z) : y2 + z2 ≤ x2, x ∈ [0, 1]}.

equals

V (G) = π

∫ 1

0
x2dx = π

x3

3

∣

∣

∣

1

0
=
π

3
,

since G can be obtained by rotating of the region under the graph of the function f(x) = x, x ∈ [0, 1],
around the x-axis.

Exercise 17.8. Compute the volume of the paraboloid of revolution

G = {(x, y, z) : y2 + z2 ≤ x, x ∈ [0, 1]}.

(Hint: G can be obtained by rotating of the region under the graph of the function f(x) =
√
x, x ∈ [0, 1], around

the x-axis)
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