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16 Lecture 16 — Riemann Integral

16.1 Area under the Graph of Function

We consider the following problem. Let f : [a,b] — R be non-negative continuous function. We want
to compute the area of the region under the graph of f, that is, the area of the set

Fi={(z,y): ye0,f(@), = € [a.8]}.

f(k)

For this, we divide the interval [a, b] into smaller subintervals [xy_1,2%], & = 1,...,n, where a = xg <
Ty <...<xp—1 <z, =0>, and consider the following partition of F' to the sets

Fio:={(z,y) : y €0, f(2)], © € [zr—1, 2]},

k=1,...,n. Since f is a continuous, its values vary little on [xp_1,xg], if Axp =z — 2_1 is small.
Consequently, we should expect that the area of Fj should be close to the area of the rectangle with
sides Axy and f(&) which equals f(&;)Axy, where & are points from the intervals [zj_1,x]. Thus,
one can expect that

> f(G)Az, — S(F), as  max|Azg| — 0. (21)
k=1 k
Limit of the type (21) really exists, and will be studied in the next sections.

16.2 Definition of the Integral

Definition 16.1. e Let [a,b] be an interval and n € N. A set of points zg,z1, ..., 2, such that
a=1x9p < <...<xp_1 <z, =>Iis called a partition of the interval [a,b] and is denoted
by A.
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e The number |A| = max{Axz; : 1 <k < n}, where Az = x — 251, is called the mesh of a
partition .

Let f : [a,b] R be a function, A\ = {xzg,x1,...,2,} be a partition of the interval [a,b] and
&k € [xp—1, 2], k=1,...,n. The sum
> F(&) Ay (22)
k=1

is called the Riemann sum.

Definition 16.2. A function f is said to be integrable on [a,b], if there exists a limit J of Riemann
sums (22) as |A| = 0 and this limit does not depend on the choice of partitions A and points . More
precisely, if for all € > 0 there exists § > 0 such that for each partition A = {xzg,z1,...,2,} with
[A| < ¢ and points & € [xp_1,2%], k=1,...,n,

n

T =Y f(&) Ay

k=1

<eE.

The number J is called the Riemann integral of f over [a,b] and is denoted by f; f(z)dx.

Shortly, we will write
b n
x)dxr = lim Axy.
| #@ i, 3 f(6an

If f:[a,b] — R is integrable on [a, b], then we will write f € R([a,b]).

Exercise 16.1. Show that a constant function f(x) = ¢, x € [a, b], is integrable on [a, b] and compute
b
[ cda.

Exercise 16.2. Show that the Dirichlet function f(z) =1, z € Q, and f(x) =0, z € R\ Q, is not
integrable on any interval [a,b], a < b.

Exercise 16.3. Let f, g : [a,b] — R be integrable on [a, b]. Show that f+ g is also integrable on [a, b].
Theorem 16.1. If a function f : [a,b] — R is integrable on [a,b], then f is bounded on [a,].
Exercise 16.4. Prove Theorem 16.1.
Let f : [a,b] — R be a bounded function on [a, b].
Definition 16.3. e The upper Darboux sum of f with respect to a partition A is the sum
n
U(f,N) =) MiAs,
k=1

where My :=  sup  f(z).

T€[TK—_1,TK]

e The lower Darboux sum of f with respect to a partition A is the sum
n
L(f,2) =Y mpAwy,
k=1

where my :=  inf  f(x).
x€[xp_1,2k]
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Theorem 16.2 (Integrability criterion). A function f : [a,b] — R is integrable on [a,b] iff for every
e > 0 there exists A = A([a, b]) such that

U(f,\) —L(f,\) <e

Exercise 16.5. Let f € R([a,b]). Show that
a) |f| € R([a,b]); b) sinf € R([a,b]); c) f* € R([a,b]); d) max{0, f} € R([a,b]).

Exercise 16.6. Let f,g € R([a,b]). Show that fg € R([a,b]).

16.3 Classes of Integrable Functions
16.3.1 Integrability of Monotone Functions

Theorem 16.3. Let f : [a,b] — R be a monotone function on [a,b]. Then f is integrable on |a,b].

Proof. We assume that f is increasing on [a, b] and f(a) < f(b). To prove the theorem, we are going to
use the integrability criterion (see Theorem 16.2). For any € > 0 we take a partition A of the interval
[a,b] such that |A| < Fo7—F@) For such a partition we have

U(f,A) =Y (My, — mp) Az = (f(zx) — fzp-1)) Auy
k=1 k=1
< (A Z flar—1)) = [A(f(zn) — f(z0)) = [A(f(b) — fla)) <e.

Exercise 16.7. For any bounded function f : [a,b] — Rweset g(x) = sup f(u)and h(x) = inf f(u),

u€la,] u€la,x]

€ [a,b]. Show that g,h € R([a,b]).

16.3.2 Integrability of Continuous Functions
Theorem 16.4. Let f : [a,b] — R be continuous on [a,b]. Then f is integrable on |a,b).

Proof. We will use the integrability criterion again, to prove the theorem. By the Cantor theorem (see
Theorem 9.4), f is uniformly continuous on [a, b]. Thus, for a number ;= > 0 there exists § > 0 such
that for each o', 2" € [a,b], |2’ —2”| < 0 it follows |f(2') — f(2")| < ;= . Next, we choose a partition A
of [a,b] with [A| < ¢. Thus, by the 2nd Weierstrass theorem (see Theorem 9.2), for each k =1,...,n

My—mp= s fe)— inf f(2) = fa") - fle) < g

w€ley—1,ax] €ler—1,z] a

where 2* and z, are points where f takes its maximum and minimum value on [x_1, x|, respectively.

Consequently,
n

U(f,0) = L(FA) = D (M = mi)Azy < == 3" Azy = <.

k=1 k=1
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16.4 Properties of Riemann Integral

Theorem 16.5 (Linearity and addidivity). (i) Let f € R([a,b]) and ¢ € R. Then cf € R([a,b])
and

/abcf(sc)dx = c/abf(x)dx.

(ii) Let f,g € R([a,b]). Then f+ g € R([a,b]) and
b b b
/(f($)+g(flf))d$—/ f(:c)dx+/ g(z)dzx.

(iii) Let f € R([a,b]) and ¢ € (a,b). Then f € R([a,c]) and f € R([c,b]). Moreover,

/ab f(z)dx = /acf(m)d:c + /Cb f(z)dz.

Exercise 16.8. Prove (i) and (¢7) of Theorem 16.5.

Exercise 16.9. Let ¢ € (a,b). Show that f € R([a,b]), if f € R([a,c]) and f € R([c,b]).

Theorem 16.6. Let f,g € R([a,b]) and f(z) < g(x), x € [a,b]. Then f; f(z)dx < f;g(x)dx.

Proof. The statement immediately follows from the definition of the integral. O
Exercise 16.10. Prove Theorem 16.6.

Corollary 16.1. Let f € R([a,b]) and m := inf f(z), M := sup f(x). Then
:EE[a,b] (te[mb]

b
m(b—a) < / f(x)de < M(b— a). (23)

Proof. We first note that m and M exists, since f is bounded (see Theorem 16.1). Inequality (23)
follows from the inequality m < f(z) < M, x € [a,b], and Theorem 16.6. O

Corollary 16.2. Let f € R([a,b]). Then |f| € R([a,b]) and

/ab f(x)dx

Exercise 16.11. Prove Corollary 16.2.

< [y

Theorem 16.7 (Mean value theorem for integrals). Let f : [a,b] — R be a continuous function on
[a,b]. Then there ezists 6 € [a,b] such that ff f(x)dz = f(0)(b—a).

Proof. By Corollary 16.1,

bia/bf(m)d:rSM.

Since f is continuous, we can apply the 2nd Weierstrass theorem (see Theorem 9.2) to f. Thus,
there exist z.,z* € [a,b] such that m = f(x,) and M = f(z*). Consequently, f(xz.) < L < f(z¥).

By the intermediate value theorem (see Theorem 9.3), there exists § between z* and x, such that

£(6) = L. 0

m<L:=
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Exercise 16.12. Let f : [a,b] — R be a non-negative continuous function on [a, b] such that f(zp) > 0
for some zy € [a,b]. Show that f; f(z)dz > 0.

Exercise 16.13. Let f € C([a,b]), g € R([a b]) and g(x) > 0, € [a,b]. Show that there exists
6 € [a,b] such that fab f(x)g(x)dx = f g(z)dx

Exercise 16.14. For functions f,g € R([a,b]) compute the limit

i, Zfsk / g(x)da

-1

Exercise 16.15. For a function f € R([0, 1]) prove the equality

nh_{rolo /11 f(z)dx = /01 f(x)dx

Exercise 16.16 (Cauchy inequality). For f, g € R([a,b]) prove the following inequality

(/f g(xdw) /f2 dx/ *(z)dz.
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