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16 Lecture 16 – Riemann Integral

16.1 Area under the Graph of Function

We consider the following problem. Let f : [a, b] → R be non-negative continuous function. We want
to compute the area of the region under the graph of f , that is, the area of the set

F := {(x, y) : y ∈ [0, f(x)], x ∈ [a, b]}.

For this, we divide the interval [a, b] into smaller subintervals [xk−1, xk], k = 1, . . . , n, where a = x0 <

x1 < . . . < xn−1 < xn = b, and consider the following partition of F to the sets

Fk := {(x, y) : y ∈ [0, f(x)], x ∈ [xk−1, xk]},

k = 1, . . . , n. Since f is a continuous, its values vary little on [xk−1, xk], if ∆xk = xk − xk−1 is small.
Consequently, we should expect that the area of Fk should be close to the area of the rectangle with
sides ∆xk and f(ξk) which equals f(ξk)∆xk, where ξk are points from the intervals [xk−1, xk]. Thus,
one can expect that

n
∑

k=1

f(ξk)∆xk → S(F ), as max
k

|∆xk| → 0. (21)

Limit of the type (21) really exists, and will be studied in the next sections.

16.2 Definition of the Integral

Definition 16.1. • Let [a, b] be an interval and n ∈ N. A set of points x0, x1, . . . , xn such that
a = x0 < x1 < . . . < xn−1 < xn = b is called a partition of the interval [a, b] and is denoted
by λ.
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• The number |λ| = max{∆xk : 1 ≤ k ≤ n}, where ∆xk = xk − xk−1, is called the mesh of a
partition λ.

Let f : [a, b] → R be a function, λ = {x0, x1, . . . , xn} be a partition of the interval [a, b] and
ξk ∈ [xk−1, xk], k = 1, . . . , n. The sum

n
∑

k=1

f(ξk)∆xk (22)

is called the Riemann sum.

Definition 16.2. A function f is said to be integrable on [a, b], if there exists a limit J of Riemann
sums (22) as |λ| → 0 and this limit does not depend on the choice of partitions λ and points ξk. More
precisely, if for all ε > 0 there exists δ > 0 such that for each partition λ = {x0, x1, . . . , xn} with
|λ| < δ and points ξk ∈ [xk−1, xk], k = 1, . . . , n,

∣

∣

∣

∣

∣

J −

n
∑

k=1

f(ξk)∆xk

∣

∣

∣

∣

∣

< ε.

The number J is called the Riemann integral of f over [a, b] and is denoted by
∫ b

a
f(x)dx.

Shortly, we will write
∫ b

a

f(x)dx = lim
|λ|→0

n
∑

k=1

f(ξk)∆xk.

If f : [a, b] → R is integrable on [a, b], then we will write f ∈ R([a, b]).

Exercise 16.1. Show that a constant function f(x) = c, x ∈ [a, b], is integrable on [a, b] and compute
∫ b

a
cdx.

Exercise 16.2. Show that the Dirichlet function f(x) = 1, x ∈ Q, and f(x) = 0, x ∈ R \ Q, is not
integrable on any interval [a, b], a < b.

Exercise 16.3. Let f, g : [a, b] → R be integrable on [a, b]. Show that f + g is also integrable on [a, b].

Theorem 16.1. If a function f : [a, b] → R is integrable on [a, b], then f is bounded on [a, b].

Exercise 16.4. Prove Theorem 16.1.

Let f : [a, b] → R be a bounded function on [a, b].

Definition 16.3. • The upper Darboux sum of f with respect to a partition λ is the sum

U(f, λ) =

n
∑

k=1

Mk∆xk,

where Mk := sup
x∈[xk−1,xk]

f(x).

• The lower Darboux sum of f with respect to a partition λ is the sum

L(f, λ) =

n
∑

k=1

mk∆xk,

where mk := inf
x∈[xk−1,xk]

f(x).
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Theorem 16.2 (Integrability criterion). A function f : [a, b] → R is integrable on [a, b] iff for every
ε > 0 there exists λ = λ([a, b]) such that

U(f, λ)− L(f, λ) < ε.

Exercise 16.5. Let f ∈ R([a, b]). Show that
a) |f | ∈ R([a, b]); b) sin f ∈ R([a, b]); c) f2 ∈ R([a, b]); d) max{0, f} ∈ R([a, b]).

Exercise 16.6. Let f, g ∈ R([a, b]). Show that fg ∈ R([a, b]).

16.3 Classes of Integrable Functions

16.3.1 Integrability of Monotone Functions

Theorem 16.3. Let f : [a, b] → R be a monotone function on [a, b]. Then f is integrable on [a, b].

Proof. We assume that f is increasing on [a, b] and f(a) < f(b). To prove the theorem, we are going to
use the integrability criterion (see Theorem 16.2). For any ε > 0 we take a partition λ of the interval
[a, b] such that |λ| < ε

f(b)−f(a) . For such a partition we have

U(f, λ)− L(f, λ) =
n
∑

k=1

(Mk −mk)∆xk =
n
∑

k=1

(f(xk)− f(xk−1))∆xk

≤ |λ|
n
∑

k=1

(f(xk)− f(xk−1)) = |λ|(f(xn)− f(x0)) = |λ|(f(b)− f(a)) < ε.

Exercise 16.7. For any bounded function f : [a, b] → R we set g(x) = sup
u∈[a,x]

f(u) and h(x) = inf
u∈[a,x]

f(u),

x ∈ [a, b]. Show that g, h ∈ R([a, b]).

16.3.2 Integrability of Continuous Functions

Theorem 16.4. Let f : [a, b] → R be continuous on [a, b]. Then f is integrable on [a, b].

Proof. We will use the integrability criterion again, to prove the theorem. By the Cantor theorem (see
Theorem 9.4), f is uniformly continuous on [a, b]. Thus, for a number ε

b−a
> 0 there exists δ > 0 such

that for each x′, x′′ ∈ [a, b], |x′−x′′| < δ it follows |f(x′)−f(x′′)| < ε
b−a

. Next, we choose a partition λ

of [a, b] with |λ| < δ. Thus, by the 2nd Weierstrass theorem (see Theorem 9.2), for each k = 1, . . . , n

Mk −mk = sup
x∈[xk−1,xk]

f(x)− inf
x∈[xk−1,xk]

f(x) = f(x∗)− f(x∗) <
ε

b− a
,

where x∗ and x∗ are points where f takes its maximum and minimum value on [xk−1, xk], respectively.
Consequently,

U(f, λ)− L(f, λ) =
n
∑

k=1

(Mk −mk)∆xk <
ε

b− a

n
∑

k=1

∆xk = ε.
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16.4 Properties of Riemann Integral

Theorem 16.5 (Linearity and addidivity). (i) Let f ∈ R([a, b]) and c ∈ R. Then cf ∈ R([a, b])
and

∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx.

(ii) Let f, g ∈ R([a, b]). Then f + g ∈ R([a, b]) and

∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

(iii) Let f ∈ R([a, b]) and c ∈ (a, b). Then f ∈ R([a, c]) and f ∈ R([c, b]). Moreover,

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Exercise 16.8. Prove (i) and (ii) of Theorem 16.5.

Exercise 16.9. Let c ∈ (a, b). Show that f ∈ R([a, b]), if f ∈ R([a, c]) and f ∈ R([c, b]).

Theorem 16.6. Let f, g ∈ R([a, b]) and f(x) ≤ g(x), x ∈ [a, b]. Then
∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx.

Proof. The statement immediately follows from the definition of the integral.

Exercise 16.10. Prove Theorem 16.6.

Corollary 16.1. Let f ∈ R([a, b]) and m := inf
x∈[a,b]

f(x), M := sup
x∈[a,b]

f(x). Then

m(b− a) ≤

∫ b

a

f(x)dx ≤ M(b− a). (23)

Proof. We first note that m and M exists, since f is bounded (see Theorem 16.1). Inequality (23)
follows from the inequality m ≤ f(x) ≤ M , x ∈ [a, b], and Theorem 16.6.

Corollary 16.2. Let f ∈ R([a, b]). Then |f | ∈ R([a, b]) and

∣

∣

∣

∣

∫ b

a

f(x)dx

∣

∣

∣

∣

≤

∫ b

a

|f(x)|dx.

Exercise 16.11. Prove Corollary 16.2.

Theorem 16.7 (Mean value theorem for integrals). Let f : [a, b] → R be a continuous function on

[a, b]. Then there exists θ ∈ [a, b] such that
∫ b

a
f(x)dx = f(θ)(b− a).

Proof. By Corollary 16.1,

m ≤ L :=
1

b− a

∫ b

a

f(x)dx ≤ M.

Since f is continuous, we can apply the 2nd Weierstrass theorem (see Theorem 9.2) to f . Thus,
there exist x∗, x

∗ ∈ [a, b] such that m = f(x∗) and M = f(x∗). Consequently, f(x∗) ≤ L ≤ f(x∗).
By the intermediate value theorem (see Theorem 9.3), there exists θ between x∗ and x∗ such that
f(θ) = L.
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Exercise 16.12. Let f : [a, b] → R be a non-negative continuous function on [a, b] such that f(x0) > 0

for some x0 ∈ [a, b]. Show that
∫ b

a
f(x)dx > 0.

Exercise 16.13. Let f ∈ C([a, b]), g ∈ R([a, b]) and g(x) ≥ 0, x ∈ [a, b]. Show that there exists

θ ∈ [a, b] such that
∫ b

a
f(x)g(x)dx = f(θ)

∫ b

a
g(x)dx.

Exercise 16.14. For functions f, g ∈ R([a, b]) compute the limit

lim
|λ|→0

n
∑

k=1

f(ξk)

∫ xk

xk−1

g(x)dx.

Exercise 16.15. For a function f ∈ R([0, 1]) prove the equality

lim
n→∞

∫ 1

1

n

f(x)dx =

∫ 1

0
f(x)dx.

Exercise 16.16 (Cauchy inequality). For f, g ∈ R([a, b]) prove the following inequality

(
∫ b

a

f(x)g(x)dx

)2

≤

∫ b

a

f2(x)dx

∫ b

a

g2(x)dx.
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