16 Lecture 16 - Riemann Integral

16.1 Area under the Graph of Function

We consider the following problem. Let $f:[a, b] \rightarrow \mathbb{R}$ be non-negative continuous function. We want to compute the area of the region under the graph of f, that is, the area of the set

$$
F:=\{(x, y): y \in[0, f(x)], x \in[a, b]\}
$$

For this, we divide the interval $[a, b]$ into smaller subintervals $\left[x_{k-1}, x_{k}\right], k=1, \ldots, n$, where $a=x_{0}<$ $x_{1}<\ldots<x_{n-1}<x_{n}=b$, and consider the following partition of F to the sets

$$
F_{k}:=\left\{(x, y): y \in[0, f(x)], x \in\left[x_{k-1}, x_{k}\right]\right\}
$$

$k=1, \ldots, n$. Since f is a continuous, its values vary little on $\left[x_{k-1}, x_{k}\right]$, if $\Delta x_{k}=x_{k}-x_{k-1}$ is small. Consequently, we should expect that the area of F_{k} should be close to the area of the rectangle with sides Δx_{k} and $f\left(\xi_{k}\right)$ which equals $f\left(\xi_{k}\right) \Delta x_{k}$, where ξ_{k} are points from the intervals $\left[x_{k-1}, x_{k}\right]$. Thus, one can expect that

$$
\begin{equation*}
\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k} \rightarrow S(F), \quad \text { as } \quad \max _{k}\left|\Delta x_{k}\right| \rightarrow 0 \tag{21}
\end{equation*}
$$

Limit of the type (21) really exists, and will be studied in the next sections.

16.2 Definition of the Integral

Definition 16.1.

- Let $[a, b]$ be an interval and $n \in \mathbb{N}$. A set of points $x_{0}, x_{1}, \ldots, x_{n}$ such that $a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b$ is called a partition of the interval $[a, b]$ and is denoted by λ.
- The number $|\lambda|=\max \left\{\Delta x_{k}: 1 \leq k \leq n\right\}$, where $\Delta x_{k}=x_{k}-x_{k-1}$, is called the mesh of a partition λ.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function, $\lambda=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of the interval $[a, b]$ and $\xi_{k} \in\left[x_{k-1}, x_{k}\right], k=1, \ldots, n$. The sum

$$
\begin{equation*}
\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k} \tag{22}
\end{equation*}
$$

is called the Riemann sum.
Definition 16.2. A function f is said to be integrable on $[a, b]$, if there exists a limit J of Riemann sums (22) as $|\lambda| \rightarrow 0$ and this limit does not depend on the choice of partitions λ and points ξ_{k}. More precisely, if for all $\varepsilon>0$ there exists $\delta>0$ such that for each partition $\lambda=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ with $|\lambda|<\delta$ and points $\xi_{k} \in\left[x_{k-1}, x_{k}\right], k=1, \ldots, n$,

$$
\left|J-\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k}\right|<\varepsilon
$$

The number J is called the Riemann integral of f over $[a, b]$ and is denoted by $\int_{a}^{b} f(x) d x$.
Shortly, we will write

$$
\int_{a}^{b} f(x) d x=\lim _{|\lambda| \rightarrow 0} \sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k}
$$

If $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$, then we will write $f \in R([a, b])$.
Exercise 16.1. Show that a constant function $f(x)=c, x \in[a, b]$, is integrable on $[a, b]$ and compute $\int_{a}^{b} c d x$.
Exercise 16.2. Show that the Dirichlet function $f(x)=1, x \in \mathbb{Q}$, and $f(x)=0, x \in \mathbb{R} \backslash \mathbb{Q}$, is not integrable on any interval $[a, b], a<b$.

Exercise 16.3. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$. Show that $f+g$ is also integrable on $[a, b]$.
Theorem 16.1. If a function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$, then f is bounded on $[a, b]$.
Exercise 16.4. Prove Theorem 16.1.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function on $[a, b]$.
Definition 16.3. - The upper Darboux sum of f with respect to a partition λ is the sum

$$
U(f, \lambda)=\sum_{k=1}^{n} M_{k} \Delta x_{k}
$$

where $M_{k}:=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x)$.

- The lower Darboux sum of f with respect to a partition λ is the sum

$$
L(f, \lambda)=\sum_{k=1}^{n} m_{k} \Delta x_{k}
$$

where $m_{k}:=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x)$.

Theorem 16.2 (Integrability criterion). A function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$ iff for every $\varepsilon>0$ there exists $\lambda=\lambda([a, b])$ such that

$$
U(f, \lambda)-L(f, \lambda)<\varepsilon
$$

Exercise 16.5. Let $f \in R([a, b])$. Show that
a) $|f| \in R([a, b])$;
b) $\sin f \in R([a, b])$;
c) $f^{2} \in R([a, b])$;
d) $\max \{0, f\} \in R([a, b])$.

Exercise 16.6. Let $f, g \in R([a, b])$. Show that $f g \in R([a, b])$.

16.3 Classes of Integrable Functions

16.3.1 Integrability of Monotone Functions

Theorem 16.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a monotone function on $[a, b]$. Then f is integrable on $[a, b]$.
Proof. We assume that f is increasing on $[a, b]$ and $f(a)<f(b)$. To prove the theorem, we are going to use the integrability criterion (see Theorem 16.2). For any $\varepsilon>0$ we take a partition λ of the interval $[a, b]$ such that $|\lambda|<\frac{\varepsilon}{f(b)-f(a)}$. For such a partition we have

$$
\begin{aligned}
U(f, \lambda)-L(f, \lambda) & =\sum_{k=1}^{n}\left(M_{k}-m_{k}\right) \Delta x_{k}=\sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right) \Delta x_{k} \\
& \leq|\lambda| \sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)=|\lambda|\left(f\left(x_{n}\right)-f\left(x_{0}\right)\right)=|\lambda|(f(b)-f(a))<\varepsilon
\end{aligned}
$$

Exercise 16.7. For any bounded function $f:[a, b] \rightarrow \mathbb{R}$ we set $g(x)=\sup _{u \in[a, x]} f(u)$ and $h(x)=\inf _{u \in[a, x]} f(u)$, $x \in[a, b]$. Show that $g, h \in R([a, b])$.

16.3.2 Integrability of Continuous Functions

Theorem 16.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$. Then f is integrable on $[a, b]$.
Proof. We will use the integrability criterion again, to prove the theorem. By the Cantor theorem (see Theorem 9.4), f is uniformly continuous on $[a, b]$. Thus, for a number $\frac{\varepsilon}{b-a}>0$ there exists $\delta>0$ such that for each $x^{\prime}, x^{\prime \prime} \in[a, b],\left|x^{\prime}-x^{\prime \prime}\right|<\delta$ it follows $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\frac{\varepsilon}{b-a}$. Next, we choose a partition λ of $[a, b]$ with $|\lambda|<\delta$. Thus, by the 2nd Weierstrass theorem (see Theorem 9.2), for each $k=1, \ldots, n$

$$
M_{k}-m_{k}=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x)-\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=f\left(x^{*}\right)-f\left(x_{*}\right)<\frac{\varepsilon}{b-a}
$$

where x^{*} and x_{*} are points where f takes its maximum and minimum value on $\left[x_{k-1}, x_{k}\right]$, respectively. Consequently,

$$
U(f, \lambda)-L(f, \lambda)=\sum_{k=1}^{n}\left(M_{k}-m_{k}\right) \Delta x_{k}<\frac{\varepsilon}{b-a} \sum_{k=1}^{n} \Delta x_{k}=\varepsilon
$$

16.4 Properties of Riemann Integral

Theorem 16.5 (Linearity and addidivity). (i) Let $f \in R([a, b])$ and $c \in \mathbb{R}$. Then $c f \in R([a, b])$ and

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

(ii) Let $f, g \in R([a, b])$. Then $f+g \in R([a, b])$ and

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

(iii) Let $f \in R([a, b])$ and $c \in(a, b)$. Then $f \in R([a, c])$ and $f \in R([c, b])$. Moreover,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Exercise 16.8. Prove (i) and (ii) of Theorem 16.5.
Exercise 16.9. Let $c \in(a, b)$. Show that $f \in R([a, b])$, if $f \in R([a, c])$ and $f \in R([c, b])$.
Theorem 16.6. Let $f, g \in R([a, b])$ and $f(x) \leq g(x), x \in[a, b]$. Then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
Proof. The statement immediately follows from the definition of the integral.
Exercise 16.10. Prove Theorem 16.6.
Corollary 16.1. Let $f \in R([a, b])$ and $m:=\inf _{x \in[a, b]} f(x), M:=\sup _{x \in[a, b]} f(x)$. Then

$$
\begin{equation*}
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \tag{23}
\end{equation*}
$$

Proof. We first note that m and M exists, since f is bounded (see Theorem 16.1). Inequality (23) follows from the inequality $m \leq f(x) \leq M, x \in[a, b]$, and Theorem 16.6.

Corollary 16.2. Let $f \in R([a, b])$. Then $|f| \in R([a, b])$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Exercise 16.11. Prove Corollary 16.2.
Theorem 16.7 (Mean value theorem for integrals). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. Then there exists $\theta \in[a, b]$ such that $\int_{a}^{b} f(x) d x=f(\theta)(b-a)$.

Proof. By Corollary 16.1,

$$
m \leq L:=\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq M
$$

Since f is continuous, we can apply the 2 nd Weierstrass theorem (see Theorem 9.2) to f. Thus, there exist $x_{*}, x^{*} \in[a, b]$ such that $m=f\left(x_{*}\right)$ and $M=f\left(x^{*}\right)$. Consequently, $f\left(x_{*}\right) \leq L \leq f\left(x^{*}\right)$. By the intermediate value theorem (see Theorem 9.3), there exists θ between x^{*} and x_{*} such that $f(\theta)=L$.

Exercise 16.12. Let $f:[a, b] \rightarrow \mathbb{R}$ be a non-negative continuous function on $[a, b]$ such that $f\left(x_{0}\right)>0$ for some $x_{0} \in[a, b]$. Show that $\int_{a}^{b} f(x) d x>0$.

Exercise 16.13. Let $f \in C([a, b]), g \in R([a, b])$ and $g(x) \geq 0, x \in[a, b]$. Show that there exists $\theta \in[a, b]$ such that $\int_{a}^{b} f(x) g(x) d x=f(\theta) \int_{a}^{b} g(x) d x$.

Exercise 16.14. For functions $f, g \in R([a, b])$ compute the limit

$$
\lim _{|\lambda| \rightarrow 0} \sum_{k=1}^{n} f\left(\xi_{k}\right) \int_{x_{k-1}}^{x_{k}} g(x) d x
$$

Exercise 16.15. For a function $f \in R([0,1])$ prove the equality

$$
\lim _{n \rightarrow \infty} \int_{\frac{1}{n}}^{1} f(x) d x=\int_{0}^{1} f(x) d x
$$

Exercise 16.16 (Cauchy inequality). For $f, g \in R([a, b])$ prove the following inequality

$$
\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq \int_{a}^{b} f^{2}(x) d x \int_{a}^{b} g^{2}(x) d x
$$

