14 Lecture 14 - Local Extrema of Function

14.1 Taylor's Formula with Lagrangian Remainder Term

Theorem 14.1. Let $n \in \mathbb{N} \cup\{0\}$ and $f:(a, b) \rightarrow \mathbb{R}$. We assume that there exists $f^{(n+1)}(x)$ for all $x \in(a, b)$. Then for each $x, x_{0} \in(a, b)$ there exists a point ξ between x and x_{0} such that

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} . \tag{16}
\end{equation*}
$$

The term $\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$ is called the Lagrangian remainder term.
Proof. If $x=x_{0}$, then formula (16) holds. We assume that $x_{0}<x$ and consider a new function

$$
g(z):=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}(z)}{k!}(x-z)^{k}-\frac{L}{(n+1)!}(x-z)^{n+1}, \quad z \in\left[x_{0}, x\right]
$$

where the number L is chosen such that $g\left(x_{0}\right)=0$. We note that the function g is continuous on $\left[x_{0}, x\right]$ and has a derivative

$$
g^{\prime}(z)=-\frac{f^{(n+1)}(z)}{n!}(x-z)^{n}+\frac{L}{n!}(x-z)^{n}
$$

Moreover, $g(x)=0$. By Rolle's theorem (see Theorem 11.3), there exists $\xi \in\left(x_{0}, x\right)$ such that $g^{\prime}(\xi)=0$, that is,

$$
g^{\prime}(\xi)=-\frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^{n}+\frac{L}{n!}(x-\xi)^{n}=0
$$

Consequently, we have $L=f^{(n+1)}(\xi)$.
The case $x<x_{0}$ is similar.
Remark 14.1. Formula (16) is a generalisation of the Lagrange theorem, which can be obtained taking $n=0$.

Example 14.1. Let $f(x)=e^{x}, x \in \mathbb{R}$, and $x_{0}=0$. Then for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$ there exists ξ between 0 and x such that

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\frac{e^{\xi}}{(n+1)!} x^{n+1} \tag{17}
\end{equation*}
$$

This formula follows from Theorem 14.1 and Example 13.2, since $f^{(k)}(0)=e^{0}=1$.
Remark 14.2. Formula (17) allows to obtain an approximate value of e^{x}, computing the value of the polynomial $1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}$. Moreover, the error is equal $\frac{e^{\xi}}{(n+1)!} x^{n+1}$. For instance, for $x \in[0,3]$ and $n=12$ we have

$$
\left|\frac{e^{\xi}}{(n+1)!} x^{n+1}\right|<\frac{e^{3} 3^{13}}{13!}<\frac{1}{1000}
$$

14.2 Local Extrema of Function

Let $f:(a, b) \rightarrow \mathbb{R}$ be a given function.
Definition 14.1. - A point x_{0} is called a point of local maximum (local minimum) of f, if there exists $\delta>0$ such that $B\left(x_{0}, \delta\right)=\left(x_{0}-\delta, x_{0}+\delta\right) \subset(a, b)$ and $f(x) \leq f\left(x_{0}\right)$ (resp. $\left.f(x) \geq f\left(x_{0}\right)\right)$ for all $x \in B\left(x_{0}, \delta\right)$.
If x_{0} is a point of local minimum or local maximum of f, then it is called a point of local extrema of f.

- A point x_{0} is called a point of strict local maximum (strict local minimum) of f, if there exists $\delta>0$ such that $B\left(x_{0}, \delta\right) \subset(a, b)$ and $f(x)<f\left(x_{0}\right)$ (resp. $f(x)>f\left(x_{0}\right)$) for all $x \in B\left(x_{0}, \delta\right) \backslash\left\{x_{0}\right\}$.
If x_{0} is a point of strict local minimum or strict local maximum of f, then it is called a point of strict local extrema of f.

Example 14.2. For the function $f(x)=x^{2}, x \in \mathbb{R}$, the point $x_{0}=0$ is a point of strict local minimum of f and f takes the smallest value at this point.

Example 14.3. For the function $f(x)=x, x \in[0,1]$, the points $x_{*}=0$ and $x^{*}=1$ are points at which the function takes the smallest and the largest values, respectively. But they are not points of local extrema.

Theorem 14.2. If x_{0} is a point of local extrema of f and f has a derivative at x_{0}, then $f^{\prime}\left(x_{0}\right)=0$.
Proof. Let x_{0} be a point of local maximum. Then by Definition 14.1, there exists $\delta>0$ such that $B\left(x_{0}, \delta\right) \subset(a, b)$ and $f(x) \leq f\left(x_{0}\right)$ for all $x \in B\left(x_{0}, \delta\right)$. In particular, $f\left(x_{0}\right)=\max _{x \in B\left(x_{0}, \delta\right)} f(x)$. Applying the Fermat theorem (see Theorem 11.2) to the function f defined on $\left(x_{0}-\delta, x_{0}+\delta\right)$, we obtain $f^{\prime}\left(x_{0}\right)=0$.

Remark 14.3. Theorem 14.2 gives only a necessary condition of local extrema. If $f^{\prime}\left(x_{0}\right)=0$ at some point $x_{0} \in(a, b)$, then it does not imply that x_{0} is a point of local extrema. For instance, for the function $f(x)=x^{3}, x \in \mathbb{R}$, the point $x_{0}=0$ is not a point of a local extrema while $f^{\prime}(0)=0$.

Remark 14.4. A point at which derivative does not exist can also be a point of local extrema. For example, for the function $f(x)=|x|, x \in \mathbb{R}$, the point $x_{0}=0$ is a point of local minimum but the derivative at $x_{0}=0$ does not exist (see Example 10.2).
Definition 14.2. A point $x_{0} \in(a, b)$ is said to be a critical point or stationary point of f, if $f^{\prime}\left(x_{0}\right)=0$.
Remark 14.5. Point of local extrema of f belong to the set of all critical points of f and points where the derivative of f does not exist.
Theorem 14.3. Let x_{0} be a critical point of f and the function f be differentiable on some neighbourhood of the point x_{0}.
a) If for some $\delta>0 f^{\prime}(x)>0$ for all $x \in\left(x_{0}-\delta, x_{0}\right)$ and $f^{\prime}(x)<0$ for all $x \in\left(x_{0}, x_{0}+\delta\right)$, then x_{0} is a point of strict local maximum of f.
b) If for some $\delta>0 f^{\prime}(x)<0$ for all $x \in\left(x_{0}-\delta, x_{0}\right)$ and $f^{\prime}(x)>0$ for all $x \in\left(x_{0}, x_{0}+\delta\right)$, then x_{0} is a point of strict local minimum of f.

Proof. We will only prove a). Since $f^{\prime}(x)>0$ for all $x \in\left(x_{0}-\delta, x_{0}\right)$, the function f strictly increases on $\left(x_{0}-\delta, x_{0}\right]$, by Remark 12.1. Hence, $f(x)<f\left(x_{0}\right)$ for all $x \in\left(x_{0}-\delta, x_{0}\right)$. Similarly, $f\left(x_{0}\right)>f(x)$ for all $x \in\left(x_{0}, x_{0}+\delta\right)$, since the function f strictly decreases on $\left[x_{0}, x_{0}+\delta\right)$ due to $f^{\prime}(x)<0$, $x \in\left(x_{0}, x_{0}+\delta\right)$. Thus, x_{0} is a point of strict local maximum.

Example 14.4. For the function $f(x)=x^{3}-3 x, x \in \mathbb{R}$, the points 1 and -1 are critical points of f, since the derivative $f(x)=3 x^{2}-3, x \in \mathbb{R}$, equals zero at those points. The point -1 is a point of strict local maximum because the derivative changes its sign from "+" to "-", passing through -1 . The point 1 is a point of strict local minimum because the derivative changes its sign from "-" to "+", passing through 1.

Exercise 14.1. Find points of local extrema of the following functions:
a) $f(x)=x^{2} e^{x}, x \in \mathbb{R}$;
b) $f(x)=x+\frac{1}{x}, x>0$;
c) $f(x)=x^{x}, x>0$;
d) $f(x)=|x| e^{-x^{2}}, x \in \mathbb{R}$.

Theorem 14.4. Let a function $f:(a, b) \rightarrow \mathbb{R}$ and a point $x_{0} \in(a, b)$ satisfy the following properties:

1) there exists $\delta>0$ such that f is differentiable on $\left(x_{0}-\delta, x_{0}+\delta\right)$;
2) $f^{\prime}\left(x_{0}\right)=0$;
3) there exists $f^{\prime \prime}\left(x_{0}\right)$ and $f^{\prime \prime}\left(x_{0}\right) \neq 0$.

If $f^{\prime \prime}\left(x_{0}\right)<0$, then x_{0} is a point of strict local maximum. If $f^{\prime \prime}\left(x_{0}\right)>0$, then x_{0} is a point of strict local minimum.

Proof. We write for the function f and the point x_{0} the Taylor formula (see Theorem13.4). So,

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+o\left(\left(x-x_{0}\right)^{2}\right), \quad x \rightarrow x_{0}
$$

Hence, for $x \neq x_{0}$ we have

$$
f(x)-f\left(x_{0}\right)=\left(x-x_{0}\right)^{2}\left(\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}+\frac{o\left(\left(x-x_{0}\right)^{2}\right)}{\left(x-x_{0}\right)^{2}}\right)
$$

and, hence, $f(x)-f\left(x_{0}\right)$ has the same sign as $f^{\prime \prime}\left(x_{0}\right)$ on some neighbourhood of x_{0}, since $\frac{o\left(\left(x-x_{0}\right)^{2}\right)}{\left(x-x_{0}\right)^{2}} \rightarrow 0$, $x \rightarrow x_{0}$.

Example 14.5. For the function $f(x)=x^{2}-x, x \in \mathbb{R}$, the point $\frac{1}{2}$ is a point of strict local minimum, since $f^{\prime}\left(\frac{1}{2}\right)=0$ and $f^{\prime \prime}\left(\frac{1}{2}\right)=2<0$.

Theorem 14.5. Let $f:(a, b) \rightarrow \mathbb{R}$, a point x_{0} belong to (a, b) and $m \in \mathbb{N}, m \geq 2$. We also assume that the following conditions hold:

1) there exists $\delta>0$ such that $f^{(m-1)}(x)$ exists for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$;
2) $f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\ldots=f^{(m-1)}\left(x_{0}\right)=0$;
3) there exists $f^{(m)}\left(x_{0}\right)$ and $f^{(m)}\left(x_{0}\right) \neq 0$.

If m is even and $f^{(m)}\left(x_{0}\right)<0$, then x_{0} is a point of local maximum. If m is even and $f^{(m)}\left(x_{0}\right)>0$, then x_{0} is a point of local minimum. If m is odd, then x_{0} is not a point of local extrema.

Proof. The proof of Theorem 14.5 is similar to the proof of Theorem 14.4.
Exercise 14.2. Prove Theorem 14.5.
Exercise 14.3. Find points of local extrema of the following functions:
a) $f(x)=x^{4}(1-x)^{3}, x \in \mathbb{R} ; \quad$ b) $f(x)=\frac{x^{2}}{2}-\frac{1}{4}+\frac{9}{4\left(2 x^{2}+1\right)}, x \in \mathbb{R} ; \quad$ c) $f(x)=\left\{\begin{array}{ll}e^{-\frac{1}{x^{2}}}, & x \neq 0, \\ 0, & x=0,\end{array}, x \in \mathbb{R}\right.$.

14.3 Convex and Concave Functions

Let $-\infty \leq a<b \leq+\infty$.
Definition 14.3. - A function $f:(a, b) \rightarrow \mathbb{R}$ is said to be a convex function on (a, b), if for each $x_{1}, x_{2} \in(a, b)$ and $\alpha \in(0,1)$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

- A function $f:(a, b) \rightarrow \mathbb{R}$ is said to be a concave function on (a, b), if for each $x_{1}, x_{2} \in(a, b)$ and $\alpha \in(0,1)$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \geq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

Definition 14.4. - A function $f:(a, b) \rightarrow \mathbb{R}$ is said to be a strictly convex function on (a, b), if for each $x_{1}, x_{2} \in(a, b), x_{1} \neq x_{2}$, and $\alpha \in(0,1)$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)<\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

- A function $f:(a, b) \rightarrow \mathbb{R}$ is said to be a strictly concave function on (a, b), if for each $x_{1}, x_{2} \in(a, b), x_{1} \neq x_{2}$, and $\alpha \in(0,1)$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)>\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) .
$$

Example 14.6. Let $M, L \in \mathbb{R}$. The function $f(x)=M x+L, x \in \mathbb{R}$, is both convex and concave on \mathbb{R}. Indeed, for each $x_{1}, x_{2} \in \mathbb{R}$ and $\alpha \in(0,1)$ we have
$f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)=M\left(\alpha x_{1}+(1-\alpha) x_{2}\right)+L=\alpha\left(M x_{1}+L\right)+(1-\alpha)\left(M x_{2}+L\right)=\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)$.
Example 14.7. The function $f(x)=|x|, x \in \mathbb{R}$, is convex on \mathbb{R}. Indeed, for each $x_{1}, x_{2} \in(a, b)$ and $\alpha \in(0,1)$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)=\left|\alpha x_{1}+(1-\alpha) x_{2}\right| \leq \alpha\left|x_{1}\right|+(1-\alpha)\left|x_{2}\right|=\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

by the triangular inequality (see Theorem 2.5).
Example 14.8. The function $f(x)=x^{2}, x \in \mathbb{R}$, is strictly convex on \mathbb{R}. To prove this, we fix $x_{1}, x_{2} \in \mathbb{R}, x_{1} \neq x_{2}, \alpha \in(0,1)$ and use the inequality $2 x_{1} x_{2}<x_{1}^{2}+x_{2}^{2}$ which trivially follows from $\left(x_{1}-x_{2}\right)^{2}>0$. Thus,

$$
\begin{aligned}
f\left(\alpha x_{1}\right. & \left.+(1-\alpha) x_{2}\right)=\left(\alpha x_{1}+(1-\alpha) x_{2}\right)^{2}=\alpha^{2} x_{1}^{2}+2 \alpha(1-\alpha) x_{1} x_{2}+(1-\alpha)^{2} x_{2}^{2} \\
& <\alpha^{2} x_{1}^{2}+\alpha(1-\alpha)\left(x_{1}^{2}+x_{2}^{2}\right)+(1-\alpha)^{2} x_{2}^{2}=\alpha x_{1}^{2}+(1-\alpha) x_{2}^{2}=\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
\end{aligned}
$$

Theorem 14.6. Let a function $f:(a, b) \rightarrow \mathbb{R}$ has the derivative $f^{\prime}(x)$ for all $x \in(a, b)$.
(i) The function f is convex (strictly convex) on (a, b), if f^{\prime} increases (strictly increases) on (a, b).
(ii) The function f is concave (strictly concave) on (a, b), if f^{\prime} decreases (strictly decreases) on (a, b).

Combining theorems 14.6, 12.1 and 12.2 we obtain the following statement.
Theorem 14.7. Let a function $f:(a, b) \rightarrow \mathbb{R}$ have the second derivative $f^{\prime \prime}(x)$ for all $x \in(a, b)$.
(i) The function f is convex (concave) on (a, b) iff $f^{\prime \prime}(x) \geq 0$ (resp. $\left.f^{\prime \prime}(x) \leq 0\right)$ for all $x \in(a, b)$.
(ii) The function f is strictly convex (strictly concave) on (a, b) iff $f^{\prime \prime}(x) \geq 0$ (resp. $f^{\prime \prime}(x) \leq 0$) for all $x \in(a, b)$ and there is no interval $(\alpha, \beta) \subset(a, b)$ such that $f^{\prime \prime}(x)=0$ for all $x \in(\alpha, \beta)$.

Exercise 14.4. Identify intervals on which the following functions are convex or concave:
a) $f(x)=e^{x}, x \in \mathbb{R}$;
b) $f(x)=\ln x, x>0$;
c) $f(x)=\sin x, x \in \mathbb{R}$;
d) $f(x)=\arctan x, x \in \mathbb{R}$;
e) $f(x)=x^{\alpha}, x>0, \alpha \in \mathbb{R}$.

Theorem 14.8 (Jensen's inequality). Let $f:(a, b) \rightarrow \mathbb{R}$ be a convex function. Then for each $n \geq 2$, $x_{1}, \ldots, x_{n} \in(a, b)$ and $\alpha_{1}, \ldots, \alpha_{n} \in[0,1], \alpha_{1}+\ldots+\alpha_{n}=1$, the inequality

$$
\begin{equation*}
f\left(\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right) \leq \alpha_{1} f\left(x_{1}\right)+\ldots+\alpha_{n} f\left(x_{n}\right) \tag{18}
\end{equation*}
$$

holds.
Proof. We are going to use the mathematical induction to prove the theorem. For $n=2$ inequality (18) is true due to the convexity of f.

Next, we assume that inequality (18) holds for some $n \geq 2$ and each $x_{1}, \ldots, x_{n} \in(a, b)$ and each $\alpha_{1}, \ldots, \alpha_{n} \in[0,1], \alpha_{1}+\ldots+\alpha_{n}=1$, and prove (18) for $n+1$ and $x_{1}, \ldots, x_{n+1} \in(a, b)$, $\alpha_{1}, \ldots, \alpha_{n+1} \in[0,1], \alpha_{1}+\ldots+\alpha_{n+1}=1$. We remark that there exists k such that $\alpha_{k}<1$. So, let $\alpha_{n+1}<1$. Then, by Definition 14.3 and the induction assumption,

$$
\begin{aligned}
f\left(\sum_{k=1}^{n+1} \alpha_{k} x_{k}\right) & =f\left(\alpha_{n+1} x_{n+1}+\sum_{k=1}^{n} \alpha_{k} x_{k}\right) \leq \alpha_{n+1} f\left(x_{n+1}\right)+\left(1-\alpha_{n+1}\right) f\left(\sum_{k=1}^{n} \frac{\alpha_{k}}{1-\alpha_{n+1}} x_{k}\right) \\
& \leq \alpha_{n+1} f\left(x_{n+1}\right)+\left(1-\alpha_{n+1}\right) \sum_{k=1}^{n} \frac{\alpha_{k}}{1-\alpha_{n+1}} f\left(x_{k}\right)=\sum_{k=1}^{n+1} \alpha_{k} f\left(x_{k}\right)
\end{aligned}
$$

Example 14.9. The function $f(x)=-\ln x, x>0$, is convex on $(0,+\infty)$, since $f^{\prime \prime}(x)=\frac{1}{x^{2}}>0$, $x>0$ (see Theorem 14.7 (i)). Applying (18) to f, for each $n \geq 2, x_{1}, \ldots, x_{n} \in(0,+\infty)$ and $\alpha_{1}, \ldots, \alpha_{n} \in[0,1], \alpha_{1}+\ldots+\alpha_{n}=1$, we have

$$
\ln \left(\sum_{k=1}^{n} \alpha_{k} x_{k}\right) \geq \sum_{k=1}^{n} \alpha_{k} \ln x_{k}
$$

This implies

$$
\begin{equation*}
\prod_{k=1}^{n} x_{k}^{\alpha_{k}} \leq \sum_{k=1}^{n} \alpha_{k} x_{k} \tag{19}
\end{equation*}
$$

for all $n \geq 2, x_{1}, \ldots, x_{n} \in(0,+\infty)$ and $\alpha_{1}, \ldots, \alpha_{n} \in[0,1], \alpha_{1}+\ldots+\alpha_{n}=1$. In particular, taking $\alpha_{1}=\ldots=\alpha_{n}=\frac{1}{n}$, we get

$$
\sqrt[n]{\prod_{k=1}^{n} x_{k}} \leq \frac{1}{n} \sum_{k=1}^{n} x_{k}
$$

for all $n \geq 2, x_{1}, \ldots, x_{n} \in(0,+\infty)$, which is the inequality of arithmetic and geometric means.
Exercise 14.5 (Young's inequality). Let $p>1, q>1$ and $\frac{1}{p}+\frac{1}{q}=1$. Prove that $x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}$ for all $x, y \in(0,+\infty)$.
(Hint: Use inequality (19))

