University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

14 Lecture 14 — Local Extrema of Function

14.1 Taylor’s Formula with Lagrangian Remainder Term
Theorem 14.1. Let n € NU {0} and f : (a,b) — R. We assume that there exists f"+1(z) for all

€ (a,b). Then for each x,xo € (a,b) there exists a point & between x and xy such that

= fW F()

0) (z — z0)* + (z — zo)" (16)

(n
The term f(r:i)(f) (x — 20)"*! is called the Lagrangian remainder term.

Proof. If x = x¢, then formula (16) holds. We assume that zp < z and consider a new function

~ f (’“)(Z) L n
Z )k_ (n+1>'($_2) +17 AS [IL’(),ZU],

where the number L is chosen such that g(zp) = 0. We note that the function g is continuous on
[x0, x] and has a derivative

(1)
J2) =L gy

" (x—2)"

n!

Moreover, g(z) = 0. By Rolle’s theorem (see Theorem 11.3), there exists £ € (zo,x) such that
g'(§) =0, that is,

F(g) L
/ _ n no__
g©=-1"He-g+S@-g=0
Consequently, we have L = f(*+1(¢).
The case z < x is similar. ]

Remark 14.1. Formula (16) is a generalisation of the Lagrange theorem, which can be obtained
taking n = 0.

Example 14.1. Let f(z) = €%, x € R, and 29 = 0. Then for all n € N and = € R there exists £
between 0 and x such that
z? x” ef

-1 = S
e +x+2,+ o T

" (17)

This formula follows from Theorem 14.1 and Example 13.2, since f (k)(()) =el =1.

Remark 14.2. Formula (17) allows to obtain an approximate value of e*, computing the value of the
polynomial 1 + = + %? +...+ % Moreover, the error is equal (neTi)!an_ For instance, for x € [0, 3]

and n = 12 we have
eg

(n+1)!

e3313 1

n+1
< .
13! 1000

xT
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14.2 Local Extrema of Function
Let f: (a,b) — R be a given function.

Definition 14.1. e A point z is called a point of local maximum (local minimum) of f,
if there exists § > 0 such that B(xg,0) = (x0 — 6,20 + 6) C (a,b) and f(x) < f(xg) (resp.
f(z) > f(zo)) for all z € B(xo,0).

If xg is a point of local minimum or local maximum of f, then it is called a point of local
extrema of f.

e A point zg is called a point of strict local maximum (strict local minimum) of f, if
there exists 6 > 0 such that B(zo,6) C (a,b) and f(x) < f(zo) (resp. f(xz) > f(zo)) for all
LS B(.’Eo, 5) \ {.’IJO}

If ¢ is a point of strict local minimum or strict local maximum of f, then it is called a point
of strict local extrema of f.

Example 14.2. For the function f(z) = 22, x € R, the point 2y = 0 is a point of strict local minimum
of f and f takes the smallest value at this point.

Example 14.3. For the function f(z) = z, z € [0, 1], the points x, = 0 and z* = 1 are points at
which the function takes the smallest and the largest values, respectively. But they are not points of
local extrema.

Theorem 14.2. If zy is a point of local extrema of f and f has a derivative at zg, then f'(x¢) = 0.

Proof. Let xg be a point of local maximum. Then by Definition 14.1, there exists 4 > 0 such that
B(zg,0) C (a,b) and f(x) < f(xg) for all z € B(xg,d). In particular, f(zp) = max 5 f(z). Applying
e

B(zo,

the Fermat theorem (see Theorem 11.2) to the function f defined on (xg — d,z¢ + 6), we obtain
f/(.ro) = 0. Ol

Remark 14.3. Theorem 14.2 gives only a necessary condition of local extrema. If f'(xo) = 0 at some
point z¢ € (a,b), then it does not imply that zp is a point of local extrema. For instance, for the
function f(z) = 23, € R, the point z¢ = 0 is not a point of a local extrema while f/(0) = 0.

Remark 14.4. A point at which derivative does not exist can also be a point of local extrema. For
example, for the function f(x) = |z|, x € R, the point zp = 0 is a point of local minimum but the
derivative at xp = 0 does not exist (see Example 10.2).

Definition 14.2. A point xy € (a,b) is said to be a critical point or stationary point of f, if

f'(@o) = 0.

Remark 14.5. Point of local extrema of f belong to the set of all critical points of f and points
where the derivative of f does not exist.

Theorem 14.3. Let xg be a critical point of f and the function f be differentiable on some neigh-
bourhood of the point xq.

a) If for some 6 >0 f'(x) > 0 for all x € (xg — §,20) and f'(x) <0 for all x € (xg,x¢ + 0), then
xg s a point of strict local mazximum of f.

b) If for some § >0 f'(x) <0 for all z € (xzg — d,x0) and f'(x) > 0 for all x € (xo,xo + 0), then
g 1S a point of strict local minimum of f.
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Proof. We will only prove a). Since f'(z) > 0 for all z € (¢ — §, z), the function f strictly increases
on (xzg — 6, x|, by Remark 12.1. Hence, f(x) < f(xo) for all z € (zg — J, zp). Similarly, f(xo) > f(z)
for all z € (xg,z¢ + 0), since the function f strictly decreases on [xg, 29 + ) due to f'(z) < 0,
x € (xg,z0 + 9). Thus, z¢ is a point of strict local maximum. O

Example 14.4. For the function f(z) = 2% — 3z, x € R, the points 1 and —1 are critical points of
f, since the derivative f(z) = 322 — 3, x € R, equals zero at those points. The point —1 is a point of
strict local maximum because the derivative changes its sign from “+” to “—”, passing through —1.
The point 1 is a point of strict local minimum because the derivative changes its sign from “—” to
“4+7” passing through 1.

Exercise 14.1. Find points of local extrema of the following functions:
a) f(z) =22,z €R; b) fx)=a+1 2>0; ¢) flz) =2, 2>0; d) f(z) = z|le™*, z € R.

Theorem 14.4. Let a function f : (a,b) — R and a point xo € (a,b) satisfy the following properties:
1) there exists § > 0 such that f is differentiable on (zg — 0,9 + 0);
2) f'(zo) = 0;
3) there exists f"(xo) and f"(xo) # 0.

If f"(z0) < 0, then xq is a point of strict local mazimum. If f"(xg) > 0, then x¢ is a point of strict
local minimum.

Proof. We write for the function f and the point xy the Taylor formula (see Theorem13.4). So,

£(@) = Fa0) + 1)~ 20) + L0 @ a0 4 of(z —zo), w0

Hence, for x # xy we have

)= fo) = oo (g + S

and, hence, f(x)— f(z¢) has the same sign as f”(x) on some neighbourhood of x, since O(((;E__iﬂi)o));) — %
T — Xg.

Example 14.5. For the function f(z) = 22—z, 2 € R, the point % is a point of strict local minimum,
since f’ (%) =0 and f” (%) =2<0.

Theorem 14.5. Let f : (a,b) — R, a point xy belong to (a,b) and m € N, m > 2. We also assume
that the following conditions hold:

1) there exists § > 0 such that f(™V(z) exists for all x € (zg — 8,20+ );
2) f'(wo) = f"(wo) = ... = [0 D(xo) = 0;
3) there exists f™ (x0) and ™ () # 0.

If m is even and f(™ (xo) < 0, then zq is a point of local mazimum.
If m is even and f(™) (xo) > 0, then xq is a point of local minimum.
If m is odd, then xq is not a point of local extrema.
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Proof. The proof of Theorem 14.5 is similar to the proof of Theorem 14.4. U
Exercise 14.2. Prove Theorem 14.5.

Exercise 14.3. Find points of local extrema of the following functions:

1
22
a) ) =a*(1—2)%, 2 €R; b) f(a) =% — L + 5, 7 €R; 0 f(x)—{e 270 R

14.3 Convex and Concave Functions
Let —c0 <a <b< +o0.

Definition 14.3. e A function f : (a,b) — R is said to be a convex function on (a,b), if for
each x1,x2 € (a,b) and a € (0,1)

flazy + (1 —a)xo) < af(z1)+ (1 — a)f(x).

e A function f: (a,b) — R is said to be a concave function on (a,b), if for each z1, 22 € (a,b)
and a € (0,1)
flaxr + (1 —a)ze) > af(x1) + (1 —a)f(za).

Definition 14.4. e A function f : (a,b) — R is said to be a strictly convex function on (a,b),
if for each x1,x9 € (a,b), x1 # x2, and «a € (0,1)

floax + (1 —a)zg) < af (x1) + (1 — ) f(x2).

e A function f : (a,b) — R is said to be a strictly concave function on (a,b), if for each
x1,x9 € (a,b), x1 # w9, and « € (0, 1)

flazy + (1 —a)z2) > af(z1) + (1 —a)f(za).

Example 14.6. Let M, L € R. The function f(x) = Mz + L, x € R, is both convex and concave on
R. Indeed, for each z1,22 € R and « € (0,1) we have

flari+(1—a)xz) = M(az1+(1—a)ze)+L = a(Mz1+L)+(1—a)(Mza+L) = af(z1)+(1—a) f(z2).

Example 14.7. The function f(z) = |z|, x € R, is convex on R. Indeed, for each z1,z2 € (a,b) and
ac(0,1)

flaz + (1 — a)az) = ez + (1 — d)ao| < alz| + (1 — a)|z| = af(z1) + (1 — a) f(22),
by the triangular inequality (see Theorem 2.5).

Example 14.8. The function f(z) = 22, € R, is strictly convex on R. To prove this, we fix
1,72 € R, x1 # x9, @ € (0,1) and use the inequality 2z129 < m% + :U% which trivially follows from
(w1 — x2)? > 0. Thus,

flazy + (1 — a)zs) = (axy + (1 — a)z2)? = a®2F + 2a(1 — a)z129 + (1 — )?23

<’ ra(l—a)(zi+23)+ (1 —a)zd=az? + (1 —a)rd = af(z1) + (1 — ) f(x).
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Theorem 14.6. Let a function f : (a,b) — R has the derivative f'(z) for all x € (a,b).
(i) The function f is convex (strictly convex) on (a,b), if f' increases (strictly increases) on (a,b).
(ii) The function f is concave (strictly concave) on (a,b), if f' decreases (strictly decreases) on (a,b).
Combining theorems 14.6, 12.1 and 12.2 we obtain the following statement.
Theorem 14.7. Let a function f : (a,b) — R have the second derivative f"(x) for all x € (a,b).
(i) The function f is convex (concave) on (a,b) iff f"(x) >0 (resp. f"(x) <0) for all z € (a,b).

(i1) The function f is strictly convez (strictly concave) on (a,b) iff f"(x) >0 (resp. f"(x) <0) for
all x € (a,b) and there is no interval (o, ) C (a,b) such that f"(x) =0 for all x € (o, B).

Exercise 14.4. Identify intervals on which the following functions are convex or concave:
a) fl(x) =€,z €R; b) f(z) =lnz, 2> 0; ¢) f(z) =sinz, z € R; d) f(z) = arctanz, x € R;
e) f(z) =2% >0, aeR.

Theorem 14.8 (Jensen’s inequality). Let f : (a,b) — R be a convex function. Then for each n > 2,
X1y Xy € (a,b) and oy, ..., ap € [0,1], a1 + ... + oy = 1, the inequality

f(alxl +~-+anxn) < alf(x1)+'~'+anf(xn) (18>
holds.

Proof. We are going to use the mathematical induction to prove the theorem. For n = 2 inequality (18)
is true due to the convexity of f.

Next, we assume that inequality (18) holds for some n > 2 and each zi,...,z, € (a,b) and
each ay,...,a € [0,1], a1 + ... + a, = 1, and prove (18) for n + 1 and zy,...,zp4+1 € (a,b),
..oy pi1 € [0,1], a1 + ...+ apy1 = 1. We remark that there exists k such that ap < 1. So, let

ant+1 < 1. Then, by Definition 14.3 and the induction assumption,

n+1 n n
! <Z O‘kxk) =f <@n+1l’n+1 + Z%%) < aptrf(@nt1) + (1 — apgr) f (Z ak:%)
k=1

11—«
k=1 k=1 n+1
n+1

< api1f(@n1) + (1= ani1) Y %f(xk) = anf(a).
=1 Ot k=1
O

Example 14.9. The function f(z) = —lnz, z > 0, is convex on (0,+400), since f”(z) = m—lg > 0,
x > 0 (see Theorem 14.7 (i)). Applying (18) to f, for each n > 2, x1,...,2, € (0,+00) and
a,...,an €10,1], a1 + ...+ ap = 1, we have

This implies

n
H zph <Y oy (19)
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for all m > 2, x1,...,2, € (0,4+00) and ay,...,a, € [0,1], a1 + ...+ a, = 1. In particular, taking
Ozl:...:an:%,weget

for all n > 2, 1,...,2, € (0,400), which is the inequality of arithmetic and geometric means.

Exercise 14.5 (Young’s inequality). Let p > 1, ¢ > 1 and %+% = 1. Prove that zy < ‘%p + % for all
x,y € (0, 400).
(Hint: Use inequality (19))
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