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14 Lecture 14 – Local Extrema of Function

14.1 Taylor’s Formula with Lagrangian Remainder Term

Theorem 14.1. Let n ∈ N ∪ {0} and f : (a, b) → R. We assume that there exists f (n+1)(x) for all
x ∈ (a, b). Then for each x, x0 ∈ (a, b) there exists a point ξ between x and x0 such that

f(x) =
n
∑

k=0

f (k)(x0)

k!
(x− x0)

k +
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1. (16)

The term f (n+1)(ξ)
(n+1)! (x− x0)

n+1 is called the Lagrangian remainder term.

Proof. If x = x0, then formula (16) holds. We assume that x0 < x and consider a new function

g(z) := f(x)−
n
∑

k=0

f (k)(z)

k!
(x− z)k −

L

(n+ 1)!
(x− z)n+1, z ∈ [x0, x],

where the number L is chosen such that g(x0) = 0. We note that the function g is continuous on
[x0, x] and has a derivative

g′(z) = −
f (n+1)(z)

n!
(x− z)n +

L

n!
(x− z)n

Moreover, g(x) = 0. By Rolle’s theorem (see Theorem 11.3), there exists ξ ∈ (x0, x) such that
g′(ξ) = 0, that is,

g′(ξ) = −
f (n+1)(ξ)

n!
(x− ξ)n +

L

n!
(x− ξ)n = 0.

Consequently, we have L = f (n+1)(ξ).
The case x < x0 is similar.

Remark 14.1. Formula (16) is a generalisation of the Lagrange theorem, which can be obtained
taking n = 0.

Example 14.1. Let f(x) = ex, x ∈ R, and x0 = 0. Then for all n ∈ N and x ∈ R there exists ξ

between 0 and x such that

ex = 1 + x+
x2

2!
+ . . .+

xn

n!
+

eξ

(n+ 1)!
xn+1. (17)

This formula follows from Theorem 14.1 and Example 13.2, since f (k)(0) = e0 = 1.

Remark 14.2. Formula (17) allows to obtain an approximate value of ex, computing the value of the

polynomial 1 + x+ x2

2! + . . .+ xn

n! . Moreover, the error is equal eξ

(n+1)!x
n+1. For instance, for x ∈ [0, 3]

and n = 12 we have
∣

∣

∣

∣

eξ

(n+ 1)!
xn+1

∣

∣

∣

∣

<
e3313

13!
<

1

1000
.
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14.2 Local Extrema of Function

Let f : (a, b) → R be a given function.

Definition 14.1. • A point x0 is called a point of local maximum (local minimum) of f ,
if there exists δ > 0 such that B(x0, δ) = (x0 − δ, x0 + δ) ⊂ (a, b) and f(x) ≤ f(x0) (resp.
f(x) ≥ f(x0)) for all x ∈ B(x0, δ).

If x0 is a point of local minimum or local maximum of f , then it is called a point of local
extrema of f .

• A point x0 is called a point of strict local maximum (strict local minimum) of f , if
there exists δ > 0 such that B(x0, δ) ⊂ (a, b) and f(x) < f(x0) (resp. f(x) > f(x0)) for all
x ∈ B(x0, δ) \ {x0}.

If x0 is a point of strict local minimum or strict local maximum of f , then it is called a point
of strict local extrema of f .

Example 14.2. For the function f(x) = x2, x ∈ R, the point x0 = 0 is a point of strict local minimum
of f and f takes the smallest value at this point.

Example 14.3. For the function f(x) = x, x ∈ [0, 1], the points x∗ = 0 and x∗ = 1 are points at
which the function takes the smallest and the largest values, respectively. But they are not points of
local extrema.

Theorem 14.2. If x0 is a point of local extrema of f and f has a derivative at x0, then f ′(x0) = 0.

Proof. Let x0 be a point of local maximum. Then by Definition 14.1, there exists δ > 0 such that
B(x0, δ) ⊂ (a, b) and f(x) ≤ f(x0) for all x ∈ B(x0, δ). In particular, f(x0) = max

x∈B(x0,δ)
f(x). Applying

the Fermat theorem (see Theorem 11.2) to the function f defined on (x0 − δ, x0 + δ), we obtain
f ′(x0) = 0.

Remark 14.3. Theorem 14.2 gives only a necessary condition of local extrema. If f ′(x0) = 0 at some
point x0 ∈ (a, b), then it does not imply that x0 is a point of local extrema. For instance, for the
function f(x) = x3, x ∈ R, the point x0 = 0 is not a point of a local extrema while f ′(0) = 0.

Remark 14.4. A point at which derivative does not exist can also be a point of local extrema. For
example, for the function f(x) = |x|, x ∈ R, the point x0 = 0 is a point of local minimum but the
derivative at x0 = 0 does not exist (see Example 10.2).

Definition 14.2. A point x0 ∈ (a, b) is said to be a critical point or stationary point of f , if
f ′(x0) = 0.

Remark 14.5. Point of local extrema of f belong to the set of all critical points of f and points
where the derivative of f does not exist.

Theorem 14.3. Let x0 be a critical point of f and the function f be differentiable on some neigh-
bourhood of the point x0.

a) If for some δ > 0 f ′(x) > 0 for all x ∈ (x0 − δ, x0) and f ′(x) < 0 for all x ∈ (x0, x0 + δ), then
x0 is a point of strict local maximum of f .

b) If for some δ > 0 f ′(x) < 0 for all x ∈ (x0 − δ, x0) and f ′(x) > 0 for all x ∈ (x0, x0 + δ), then
x0 is a point of strict local minimum of f .
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Proof. We will only prove a). Since f ′(x) > 0 for all x ∈ (x0 − δ, x0), the function f strictly increases
on (x0 − δ, x0], by Remark 12.1. Hence, f(x) < f(x0) for all x ∈ (x0 − δ, x0). Similarly, f(x0) > f(x)
for all x ∈ (x0, x0 + δ), since the function f strictly decreases on [x0, x0 + δ) due to f ′(x) < 0,
x ∈ (x0, x0 + δ). Thus, x0 is a point of strict local maximum.

Example 14.4. For the function f(x) = x3 − 3x, x ∈ R, the points 1 and −1 are critical points of
f , since the derivative f(x) = 3x2 − 3, x ∈ R, equals zero at those points. The point −1 is a point of
strict local maximum because the derivative changes its sign from “+” to “−”, passing through −1.
The point 1 is a point of strict local minimum because the derivative changes its sign from “−” to
“+”, passing through 1.

Exercise 14.1. Find points of local extrema of the following functions:
a) f(x) = x2ex, x ∈ R; b) f(x) = x+ 1

x
, x > 0; c) f(x) = xx, x > 0; d) f(x) = |x|e−x2

, x ∈ R.

Theorem 14.4. Let a function f : (a, b) → R and a point x0 ∈ (a, b) satisfy the following properties:

1) there exists δ > 0 such that f is differentiable on (x0 − δ, x0 + δ);

2) f ′(x0) = 0;

3) there exists f ′′(x0) and f ′′(x0) 6= 0.

If f ′′(x0) < 0, then x0 is a point of strict local maximum. If f ′′(x0) > 0, then x0 is a point of strict
local minimum.

Proof. We write for the function f and the point x0 the Taylor formula (see Theorem13.4). So,

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + o((x− x0)
2), x → x0.

Hence, for x 6= x0 we have

f(x)− f(x0) = (x− x0)
2

(

f ′′(x0)

2!
+

o((x− x0)
2)

(x− x0)2

)

and, hence, f(x)−f(x0) has the same sign as f ′′(x0) on some neighbourhood of x0, since
o((x−x0)2)
(x−x0)2

→ 0,
x → x0.

Example 14.5. For the function f(x) = x2−x, x ∈ R, the point 1
2 is a point of strict local minimum,

since f ′
(

1
2

)

= 0 and f ′′
(

1
2

)

= 2 < 0.

Theorem 14.5. Let f : (a, b) → R, a point x0 belong to (a, b) and m ∈ N, m ≥ 2. We also assume
that the following conditions hold:

1) there exists δ > 0 such that f (m−1)(x) exists for all x ∈ (x0 − δ, x0 + δ);

2) f ′(x0) = f ′′(x0) = . . . = f (m−1)(x0) = 0;

3) there exists f (m)(x0) and f (m)(x0) 6= 0.

If m is even and f (m)(x0) < 0, then x0 is a point of local maximum.
If m is even and f (m)(x0) > 0, then x0 is a point of local minimum.
If m is odd, then x0 is not a point of local extrema.
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Proof. The proof of Theorem 14.5 is similar to the proof of Theorem 14.4.

Exercise 14.2. Prove Theorem 14.5.

Exercise 14.3. Find points of local extrema of the following functions:

a) f(x) = x4(1− x)3, x ∈ R; b) f(x) = x2

2 − 1
4 + 9

4(2x2+1)
, x ∈ R; c) f(x) =

{

e
−

1
x2 , x 6= 0,

0, x = 0,
, x ∈ R.

14.3 Convex and Concave Functions

Let −∞ ≤ a < b ≤ +∞.

Definition 14.3. • A function f : (a, b) → R is said to be a convex function on (a, b), if for
each x1, x2 ∈ (a, b) and α ∈ (0, 1)

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

• A function f : (a, b) → R is said to be a concave function on (a, b), if for each x1, x2 ∈ (a, b)
and α ∈ (0, 1)

f(αx1 + (1− α)x2) ≥ αf(x1) + (1− α)f(x2).

Definition 14.4. • A function f : (a, b) → R is said to be a strictly convex function on (a, b),
if for each x1, x2 ∈ (a, b), x1 6= x2, and α ∈ (0, 1)

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2).

• A function f : (a, b) → R is said to be a strictly concave function on (a, b), if for each
x1, x2 ∈ (a, b), x1 6= x2, and α ∈ (0, 1)

f(αx1 + (1− α)x2) > αf(x1) + (1− α)f(x2).

Example 14.6. Let M,L ∈ R. The function f(x) = Mx+ L, x ∈ R, is both convex and concave on
R. Indeed, for each x1, x2 ∈ R and α ∈ (0, 1) we have

f(αx1+(1−α)x2) = M(αx1+(1−α)x2)+L = α(Mx1+L)+(1−α)(Mx2+L) = αf(x1)+(1−α)f(x2).

Example 14.7. The function f(x) = |x|, x ∈ R, is convex on R. Indeed, for each x1, x2 ∈ (a, b) and
α ∈ (0, 1)

f(αx1 + (1− α)x2) = |αx1 + (1− α)x2| ≤ α|x1|+ (1− α)|x2| = αf(x1) + (1− α)f(x2),

by the triangular inequality (see Theorem 2.5).

Example 14.8. The function f(x) = x2, x ∈ R, is strictly convex on R. To prove this, we fix
x1, x2 ∈ R, x1 6= x2, α ∈ (0, 1) and use the inequality 2x1x2 < x21 + x22 which trivially follows from
(x1 − x2)

2 > 0. Thus,

f(αx1 + (1− α)x2) = (αx1 + (1− α)x2)
2 = α2x21 + 2α(1− α)x1x2 + (1− α)2x22

< α2x21 + α(1− α)(x21 + x22) + (1− α)2x22 = αx21 + (1− α)x22 = αf(x1) + (1− α)f(x2).
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Theorem 14.6. Let a function f : (a, b) → R has the derivative f ′(x) for all x ∈ (a, b).

(i) The function f is convex (strictly convex) on (a, b), if f ′ increases (strictly increases) on (a, b).

(ii) The function f is concave (strictly concave) on (a, b), if f ′ decreases (strictly decreases) on (a, b).

Combining theorems 14.6, 12.1 and 12.2 we obtain the following statement.

Theorem 14.7. Let a function f : (a, b) → R have the second derivative f ′′(x) for all x ∈ (a, b).

(i) The function f is convex (concave) on (a, b) iff f ′′(x) ≥ 0 (resp. f ′′(x) ≤ 0) for all x ∈ (a, b).

(ii) The function f is strictly convex (strictly concave) on (a, b) iff f ′′(x) ≥ 0 (resp. f ′′(x) ≤ 0) for
all x ∈ (a, b) and there is no interval (α, β) ⊂ (a, b) such that f ′′(x) = 0 for all x ∈ (α, β).

Exercise 14.4. Identify intervals on which the following functions are convex or concave:
a) f(x) = ex, x ∈ R; b) f(x) = lnx, x > 0; c) f(x) = sinx, x ∈ R; d) f(x) = arctanx, x ∈ R;
e) f(x) = xα, x > 0, α ∈ R.

Theorem 14.8 (Jensen’s inequality). Let f : (a, b) → R be a convex function. Then for each n ≥ 2,
x1, . . . , xn ∈ (a, b) and α1, . . . , αn ∈ [0, 1], α1 + . . .+ αn = 1, the inequality

f(α1x1 + . . .+ αnxn) ≤ α1f(x1) + . . .+ αnf(xn) (18)

holds.

Proof. We are going to use the mathematical induction to prove the theorem. For n = 2 inequality (18)
is true due to the convexity of f .

Next, we assume that inequality (18) holds for some n ≥ 2 and each x1, . . . , xn ∈ (a, b) and
each α1, . . . , αn ∈ [0, 1], α1 + . . . + αn = 1, and prove (18) for n + 1 and x1, . . . , xn+1 ∈ (a, b),
α1, . . . , αn+1 ∈ [0, 1], α1 + . . . + αn+1 = 1. We remark that there exists k such that αk < 1. So, let
αn+1 < 1. Then, by Definition 14.3 and the induction assumption,

f

(

n+1
∑

k=1

αkxk

)

= f

(

αn+1xn+1 +
n
∑

k=1

αkxk

)

≤ αn+1f(xn+1) + (1− αn+1)f

(

n
∑

k=1

αk

1− αn+1
xk

)

≤ αn+1f(xn+1) + (1− αn+1)

n
∑

k=1

αk

1− αn+1
f(xk) =

n+1
∑

k=1

αkf(xk).

Example 14.9. The function f(x) = − lnx, x > 0, is convex on (0,+∞), since f ′′(x) = 1
x2 > 0,

x > 0 (see Theorem 14.7 (i)). Applying (18) to f , for each n ≥ 2, x1, . . . , xn ∈ (0,+∞) and
α1, . . . , αn ∈ [0, 1], α1 + . . .+ αn = 1, we have

ln

(

n
∑

k=1

αkxk

)

≥
n
∑

k=1

αk lnxk.

This implies
n
∏

k=1

x
αk

k ≤
n
∑

k=1

αkxk (19)
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for all n ≥ 2, x1, . . . , xn ∈ (0,+∞) and α1, . . . , αn ∈ [0, 1], α1 + . . . + αn = 1. In particular, taking
α1 = . . . = αn = 1

n
, we get

n

√

√

√

√

n
∏

k=1

xk ≤
1

n

n
∑

k=1

xk

for all n ≥ 2, x1, . . . , xn ∈ (0,+∞), which is the inequality of arithmetic and geometric means.

Exercise 14.5 (Young’s inequality). Let p > 1, q > 1 and 1
p
+ 1

q
= 1. Prove that xy ≤ xp

p
+ yq

q
for all

x, y ∈ (0,+∞).
(Hint: Use inequality (19))
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