13 Lecture 13 - L'Hospital's Rule and Taylor's Theorem

13.1 L'Hospital's Rule

Theorem 13.1 (L'Hospital's Rule). Let $a \in \mathbb{R}$ or $a=-\infty$ and functions $f, g:(a, b) \rightarrow \mathbb{R}$ satisfy the following properties

1) f, g are differentiable on (a, b);
2) $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0$ or $\lim _{x \rightarrow a+}|g(x)|=+\infty$;
3) $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$;
4) there exists $\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=: L \in \mathbb{R}$.

Then there exists $\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=L$.
Proof. We will only give a proof for the case $a \in \mathbb{R}$ and $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0$. For the general case see e.g. [1, p.242-244].

We first extend the functions f and g to the interval $[a, b)$, setting $f(a)=g(a):=0$. According to assumption 2), f and g are continuous at the point a. Since f, g are differentiable on (a, b), they are continuous also at each point of (a, b), by Theorem 10.2. Thus, f, g are continuous on $[a, b)$. Next, we note that $g(x) \neq 0$ for all $x \in(a, b)$. Indeed, if $g\left(x_{0}\right)=0$ for some $x_{0} \in(a, b)$, then applying Rolle's theorem (see Theorem 11.3) to the function $g:\left[a, x_{0}\right] \rightarrow \mathbb{R}$, we obtain that there exists $c \in\left(a, x_{0}\right)$ such that $g^{\prime}(c)=0$, that is impossible by assumption 3$)$.

Next, to show that $\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=L$, we are going to use Theorem 7.7. Let $\varepsilon>0$ be fixed. By Theorem 7.7 and assumption 4),

$$
\exists \delta>0 \quad \forall x \in(a, a+\delta):\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\varepsilon
$$

Applying the Cauchy theorem (see Theorem 11.5) to the functions $f, g:[a, x] \rightarrow \mathbb{R}$, we have for all $x \in(a, a+\delta)$

$$
\left|\frac{f(x)}{g(x)}-L\right|=\left|\frac{f(x)-f(a)}{g(x)-g(a)}-L\right|=\left|\frac{f^{\prime}(c)}{g^{\prime}(c)}-L\right|<\varepsilon
$$

where $c \in(a, x) \subset(a, a+\delta)$.
Remark 13.1. A similar statement is true for the left-sided limit as x goes to b.
Example 13.1. Using L'Hospital's Rule, we compute the following limits:
a) $\lim _{x \rightarrow 0} \frac{\sin x}{x} \stackrel{\frac{0}{0}}{=} \lim _{x \rightarrow 0} \frac{(\sin x)^{\prime}}{(x)^{\prime}}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=1$;
b) $\lim _{x \rightarrow 0} x \ln x \stackrel{0 \cdot \infty}{=} \lim _{x \rightarrow 0} \frac{\ln x}{\frac{1}{x}} \stackrel{\infty}{=} \lim _{x \rightarrow 0} \frac{(\ln x)^{\prime}}{\left(\frac{1}{x}\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{\left(-\frac{1}{x^{2}}\right)}=-\lim _{x \rightarrow 0} x=0$;
c) $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}} \stackrel{1^{\infty}}{=} \lim _{x \rightarrow 0} e^{\frac{1}{x^{2}} \ln \cos x}$.

We compute
$\lim _{x \rightarrow 0} \frac{1}{x^{2}} \ln \cos x=\lim _{x \rightarrow 0} \frac{\ln \cos x}{x^{2}} \stackrel{\frac{0}{0}}{=} \lim _{x \rightarrow 0} \frac{(\ln \cos x)^{\prime}}{\left(x^{2}\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{-\frac{\sin x}{\cos x}}{2 x}=-\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x \cos x}=-\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos x}=-\frac{1}{2}$.

Thus, by the continuity of the function $f(x)=e^{x}, x \in \mathbb{R}$, we have
$\lim _{x \rightarrow 0} e^{\frac{1}{x^{2}} \ln \cos x}=e^{\lim _{x \rightarrow 0} \frac{1}{x^{2}} \ln \cos x}=e^{-\frac{1}{2}}=\frac{1}{\sqrt{e}}$.
See [1, p.245-248] for more examples of the application of L'Hospital's Rule.
Exercise 13.1. Using L'Hospital's Rule, show that
a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=1$; b) $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{\sin x}=1$; c) $\lim _{x \rightarrow e} \frac{(\ln x)^{\alpha}-\left(\frac{x}{e}\right)^{\beta}}{x-e}=\frac{\alpha-\beta}{e}$, where α, β are some real numbers;
d) $\lim _{x \rightarrow 1} \frac{\left(\frac{4}{\pi} \arctan x\right)^{\alpha}-1}{\ln x}=\frac{2 \alpha}{\pi}, \alpha \in \mathbb{R} ;$ e) $\lim _{x \rightarrow 0+}\left(\frac{\ln (1+x)}{x}\right)^{\frac{1}{x}}=e^{-\frac{1}{2}} ;$ f) $\lim _{x \rightarrow+\infty} \frac{x}{2^{x}}=0$;
g) $\lim _{x \rightarrow+\infty} \frac{\ln x}{x^{\varepsilon}}=0$ for all $\varepsilon>0 ;$ h) $\lim _{x \rightarrow+0} x^{\varepsilon} \ln x=0$ for all $\varepsilon>0 ;$ i) $\lim _{x \rightarrow+0}(\ln (1+x))^{x}=1$.

Exercise 13.2. Compute the following limits:
a) $\lim _{x \rightarrow 0} \frac{\ln (1+x)-x}{x^{2}}$;
b) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{\sin x}}{x-\sin x}$;
c) $\lim _{x \rightarrow+\infty}\left(x\left(\frac{\pi}{2}-\arctan x\right)\right)$;
d) $\lim _{x \rightarrow+\infty} \frac{\ln (x+1)-\ln (x-1)}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}$;
e) $\lim _{x \rightarrow+\infty}\left(x \sin \frac{1}{x}+\frac{1}{x}\right)^{x}$; f) $\lim _{x \rightarrow+\infty}\left(x \sin \frac{1}{x}+\frac{1}{x^{2}}\right)^{x}$;
g) $\lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$;
h) $\lim _{x \rightarrow+\infty} \frac{x^{\ln x}}{(\ln x)^{x}}$.

13.2 Higher Order Derivatives

We assume that a function $f:(a, b) \rightarrow \mathbb{R}$ is differentiable on (a, b). We denote its derivative f^{\prime} by g, that is $g(x)=f^{\prime}(x), x \in(a, b)$.

Definition 13.1. If there exists a derivative $g^{\prime}\left(x_{0}\right)$ of the function g at a point x_{0}, then this derivative is called the second derivative of f at the point x_{0} and is denoted by $f^{\prime \prime}\left(x_{0}\right)$ or $\frac{d^{2} f}{d x^{2}}\left(x_{0}\right)$.

Let the n-th derivative $f^{(n)}$ be defined on (a, b). Then the $(n+1)$-th derivative of f at $x_{0} \in(a, b)$ is defined as $f^{(n+1)}\left(x_{0}\right)=\frac{d\left(f^{(n)}\right)}{d x}\left(x_{0}\right)$, if it exists.
Example 13.2. Let $a>0$. Then for each $x \in \mathbb{R}$ we obtain $\left(a^{x}\right)^{\prime}=a^{x} \ln a,\left(a^{x}\right)^{\prime \prime}=a^{x} \ln ^{2} a$, $\left(a^{x}\right)^{\prime \prime \prime}=a^{x} \ln ^{3} a, \ldots,\left(a^{x}\right)^{(n)}=a^{x} \ln ^{n} a$. In particular, $\left(e^{x}\right)^{(n)}=e^{x}, x \in \mathbb{R}$.

Exercise 13.3. Let $\alpha \in \mathbb{R}$. Show that $\left(x^{\alpha}\right)^{n}=\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-n+1) x^{\alpha-n}$ for all $x>0$ and $n \in \mathbb{N}$.

Example 13.3. Let $\alpha \in \mathbb{R}$. Then $\left((1+x)^{\alpha}\right)^{(n)}=\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-n+1)(1+x)^{\alpha-n}$ for all $x>-1$ and $n \in \mathbb{N}$.

Indeed, $\left((1+x)^{\alpha}\right)^{\prime}=\alpha(1+x)^{\alpha-1},\left((1+x)^{\alpha}\right)^{\prime \prime}=\left(\alpha(1+x)^{\alpha-1}\right)^{\prime}=\alpha(\alpha-1)(1+x)^{\alpha-2}$ and so on.
Exercise 13.4. Show that $(\ln (1+x))^{(n)}=\frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}}$ for all $x>-1$ and $n \in \mathbb{N}$.
Example 13.4. For each $x \in \mathbb{R}(\sin x)^{(n)}=\sin \left(x+n \frac{\pi}{2}\right)$ and $(\cos x)^{(n)}=\cos \left(x+n \frac{\pi}{2}\right)$.
Indeed, $(\sin x)^{\prime}=\cos x=\sin \left(x+\frac{\pi}{2}\right),(\sin x)^{\prime \prime}=(\cos x)^{\prime}=-\sin x=\sin \left(x+2 \frac{\pi}{2}\right),(\sin x)^{\prime \prime \prime}=$ $(-\sin x)^{\prime}=-\cos x=\sin \left(x+3 \frac{\pi}{2}\right)$ and so on. The same computation for $(\cos x)^{(n)}$.

Exercise 13.5. Compute the n-th derivative of the following functions:
a) $f(x)=2^{x-1}, x \in \mathbb{R}$;
b) $f(x)=\sqrt{1+x}, x>-1$;
c) $f(x)=\arctan x, x \in \mathbb{R}$.

Theorem 13.2. Let functions $f, g:(a, b) \rightarrow \mathbb{R}$ have n-th derivatives on (a, b). Then the following equalities are true.

1) for all $k \in\{1, \ldots, n\}\left(f^{(n-k)}\right)^{(k)}=\left(f^{(k)}\right)^{(n-k)}=f^{(n)}$, where $f^{(0)}=f$;
2) for all $c \in \mathbb{R}(c f)^{(n)}=c f^{(n)}$;
3) $(f+g)^{(n)}=f^{(n)}+g^{(n)}$.

Theorem 13.3 (Leibniz Formula). For a number $n \in \mathbb{N}$ let $g, f:(a, b) \rightarrow \mathbb{R}$ have n-th derivatives on (a, b). Then $f \cdot g$ has the n-th derivative on (a, b) and

$$
(f \cdot g)^{(n)}=\sum_{k=0}^{n} C_{n}^{k} f^{(k)} g^{(n-k)}
$$

where $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.
Exercise 13.6. Compute the following derivatives:
a) $\left(x^{2} e^{x}\right)^{(n)}, x \in \mathbb{R}$; b) $\left.\left(x^{3} \sin x\right)^{(n)}, x \in \mathbb{R} ; ~ c\right)\left(x^{n} \ln x\right)^{(n)}, x>0$.

13.3 Taylor's Formula

13.3.1 Taylor's Formula for a Polynomial

Let $n \in \mathbb{N}$ and $\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right\} \subset \mathbb{R}$. For any point $x_{0} \in \mathbb{R}$ a polynomial

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}, \quad x \in \mathbb{R}
$$

can be written in the form

$$
\begin{equation*}
P(x)=b_{0}+b_{1}\left(x-x_{0}\right)+b_{2}\left(x-x_{0}\right)^{2}+\ldots+b_{n}\left(x-x_{0}\right)^{n}, \quad x \in \mathbb{R}, \tag{11}
\end{equation*}
$$

where $\left\{b_{0}, b_{1}, b_{2}, \ldots, b_{n}\right\}$ are some real numbers, which can be computed by the following way. Inserting $x=x_{0}$ into (11), we obtain $b_{0}=P\left(x_{0}\right)$. Next we compute P^{\prime}. So,

$$
\begin{equation*}
P^{\prime}(x)=b_{1}+2 b_{2}\left(x-x_{0}\right)+3 b_{3}\left(x-x_{0}\right)^{2}+\ldots+n b_{n}\left(x-x_{0}\right)^{n-1}, \quad x \in \mathbb{R} \tag{12}
\end{equation*}
$$

Inserting $x=x_{0}$ into (12), we get $b_{1}=P^{\prime}\left(x_{0}\right)$. Next, we compute the second derivative of P

$$
\begin{equation*}
P^{\prime \prime}(x)=2 b_{2}+3 \cdot 2 \cdot b_{3}\left(x-x_{0}\right)+\ldots+n(n-1) b_{n}\left(x-x_{0}\right)^{n-2}, \quad x \in \mathbb{R} . \tag{13}
\end{equation*}
$$

Inserting $x=x_{0}$ into (13), we obtain $b_{2}=\frac{P^{\prime \prime}\left(x_{0}\right)}{2}$. Similarly, we obtain

$$
b_{k}=\frac{P^{(k)}\left(x_{0}\right)}{k!}, \quad k \geq 0
$$

Thus, for each $x \in \mathbb{R}$

$$
\begin{equation*}
P(x)=P\left(x_{0}\right)+\frac{P^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{P^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots+\frac{P^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} . \tag{14}
\end{equation*}
$$

We see that any polynomial can be completely defined only by its value and values of its derivatives at a point x_{0}. Formula (14) does not hold if P is not a polynomial, but it turns out that values of a function are close to the right hand side of (14) if x is close to x_{0}.

13.3.2 Taylor's Formula with Peano Remainder Term

Let $f, g: A \rightarrow \mathbb{R}$ be some functions and x_{0} be a limit point of A. If $\frac{f(x)}{g(x)} \rightarrow 0, x \rightarrow x_{0}$, then we will write $f(x)=o(g(x)), x \rightarrow 0$, or $f=o(g), x \rightarrow x_{0}$.

Exercise 13.7. Show that
a) $x=o(1), x \rightarrow 0$;
b) $x^{3}=o\left(2^{x}\right), x \rightarrow+\infty$;
c) $\ln x=o(\sqrt{x}), x \rightarrow+\infty$;
d) $x-\sin x=o(x), x \rightarrow 0$.

Theorem 13.4. Let $n \in \mathbb{N}$ and let a function $f:(a, b) \rightarrow \mathbb{R}$ and a point $x_{0} \in(a, b)$ satisfy the following conditions:

1) there exists $f^{(n-1)}(x)$ for all $x \in(a, b)$;
2) there exists $f^{(n)}\left(x_{0}\right)$.

Then

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+o\left(\left(x-x_{0}\right)^{n}\right), \quad x \rightarrow x_{0} \tag{15}
\end{equation*}
$$

The term o $\left(\left(x-x_{0}\right)^{n}\right)$ is called the Peano remainder term.
Proof. We recall that $0!=1$ and set

$$
R_{n}(x):=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}, \quad x \in(a, b)
$$

According to assumptions 1) and 2), there exists $R^{(n-1)}(x)$ for all $x \in(a, b)$ and $R^{(n)}\left(x_{0}\right)$. Moreover it is easy to see that

$$
R_{n}\left(x_{0}\right)=R_{n}^{\prime}\left(x_{0}\right)=R_{n}^{\prime \prime}\left(x_{0}\right)=\ldots=R_{n}^{(n)}\left(x_{0}\right)=0
$$

Assuming $x>x_{0}$ and applying the Lagrange theorem (see Theorem 11.4), we have

$$
\begin{aligned}
\left|\frac{R_{n}(x)}{\left(x-x_{0}\right)^{n}}\right| & =\left|\frac{R_{n}(x)-R_{n}\left(x_{0}\right)}{\left(x-x_{0}\right)^{n}}\right|=\left|\frac{R_{n}^{\prime}\left(c_{1}\right)\left(x-x_{0}\right)}{\left(x-x_{0}\right)^{n}}\right|=\left|\frac{R_{n}^{\prime}\left(c_{1}\right)-R_{n}^{\prime}\left(x_{0}\right)}{\left(x-x_{0}\right)^{n-1}}\right| \\
& =\left|\frac{R_{n}^{\prime \prime}\left(c_{2}\right)\left(c_{1}-x_{0}\right)}{\left(x-x_{0}\right)^{n-1}}\right| \leq\left|\frac{R_{n}^{\prime \prime}\left(c_{2}\right)}{\left(x-x_{0}\right)^{n-2}}\right|=\left|\frac{R_{n}^{\prime \prime}\left(c_{2}\right)-R_{n}^{\prime \prime}\left(x_{0}\right)}{\left(x-x_{0}\right)^{n-2}}\right|=\left|\frac{R_{n}^{\prime \prime \prime}\left(c_{3}\right)\left(c_{2}-x_{0}\right)}{\left(x-x_{0}\right)^{n-2}}\right| \leq \ldots \\
& \leq\left|\frac{R_{n}^{(n-1)}\left(c_{n-1}\right)-R_{n}^{(n-1)}\left(x_{0}\right)}{x-x_{0}}\right| \rightarrow\left|R_{n}^{(n)}\left(x_{0}\right)\right|=0, \quad x \rightarrow x_{0}+
\end{aligned}
$$

where $x_{0}<c_{n-1}<c_{n-2}<\ldots<c_{2}<c_{1}<x$. Moreover $c_{n-1} \rightarrow x_{0}$ as $x \rightarrow x_{0}+$.
One can similarly obtain that $\left|\frac{R_{n}(x)}{\left(x-x_{0}\right)^{n}}\right| \rightarrow 0, x \rightarrow x_{0}-$. Consequently,

$$
R_{n}(x)=o\left(\left(x-x_{0}\right)^{n}\right), \quad x \rightarrow x_{0}
$$

by Theorem 7.8.
Example 13.5. For every $n \in \mathbb{N}$

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+o\left(x^{n}\right), \quad x \rightarrow 0
$$

The formula follows from Theorem 13.4 applying to $f(x)=e^{x}, x \in \mathbb{R}$, and the fact that $f^{(k)}(0)=$ $e^{0}=1$ (see Example 13.2).

Example 13.6. For all $n \in \mathbb{N}$

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{n-1} \frac{x^{n}}{n}+o\left(x^{n}\right), \quad x \rightarrow 0
$$

The formula follows from Theorem 13.4 applying to $f(x)=\ln (1+x), x>-1$, and the fact that $f^{(k)}(0)=\frac{(-1)^{k-1}(k-1)!}{(1+0)^{k}}=(-1)^{k-1}(k-1)!$ (see Example 13.4).

Example 13.7. For each $\alpha \in \mathbb{R}$ and $n \in \mathbb{N}$

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1) x^{2}}{2!}+\ldots+\frac{\alpha(\alpha-1) \ldots(\alpha-n+1) x^{n}}{n!}+o\left(x^{n}\right), \quad x \rightarrow 0 .
$$

The formula follows from Theorem 13.4 applying to $f(x)=(1+x)^{\alpha}, x>-1$, and the fact that $f^{(k)}(0)=\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)(1+0)^{\alpha-k}=\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)$ (see Example 13.3).

Exercise 13.8. Show that for every $n \in \mathbb{N} \cup\{0\}$

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+o\left(x^{2 n+2}\right), \quad x \rightarrow 0 \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+o\left(x^{2 n+1}\right), \quad x \rightarrow 0
\end{aligned}
$$

Exercise 13.9. Show that for every $n \in \mathbb{N} \cup\{0\}$

$$
\begin{aligned}
& \sinh x=\frac{e^{x}-e^{-x}}{2}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots+\frac{x^{2 n+1}}{(2 n+1)!}+o\left(x^{2 n+2}\right), \quad x \rightarrow 0 \\
& \cosh x=\frac{e^{x}+e^{-x}}{2}=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots+\frac{x^{2 n}}{(2 n)!}+o\left(x^{2 n+1}\right), \quad x \rightarrow 0
\end{aligned}
$$

Exercise 13.10. Use Taylor's formula to compute the limits:
a) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$;
b) $\lim _{x \rightarrow 0} \frac{x-\sin x}{e^{x}-1-x-\frac{x^{2}}{2}}$;
c) $\lim _{x \rightarrow 0} \frac{\ln \left(1+x+x^{2}\right)-\ln \left(1-x-x^{2}\right)}{x \sin x}$;
d) $\lim _{x \rightarrow 0} \frac{\cos \left(x e^{x}\right)-\cos \left(x e^{-x}\right)}{x^{3}}$.

