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13 Lecture 13 – L’Hospital’s Rule and Taylor’s Theorem

13.1 L’Hospital’s Rule

Theorem 13.1 (L’Hospital’s Rule). Let a ∈ R or a = −∞ and functions f, g : (a, b) → R satisfy the
following properties

1) f, g are differentiable on (a, b);

2) lim
x→a+

f(x) = lim
x→a+

g(x) = 0 or lim
x→a+

|g(x)| = +∞;

3) g′(x) 6= 0 for all x ∈ (a, b);

4) there exists lim
x→a+

f ′(x)
g′(x) =: L ∈ R.

Then there exists lim
x→a+

f(x)
g(x) = L.

Proof. We will only give a proof for the case a ∈ R and lim
x→a+

f(x) = lim
x→a+

g(x) = 0. For the general

case see e.g. [1, p.242-244].
We first extend the functions f and g to the interval [a, b), setting f(a) = g(a) := 0. According to

assumption 2), f and g are continuous at the point a. Since f, g are differentiable on (a, b), they are
continuous also at each point of (a, b), by Theorem 10.2. Thus, f, g are continuous on [a, b). Next, we
note that g(x) 6= 0 for all x ∈ (a, b). Indeed, if g(x0) = 0 for some x0 ∈ (a, b), then applying Rolle’s
theorem (see Theorem 11.3) to the function g : [a, x0] → R, we obtain that there exists c ∈ (a, x0)
such that g′(c) = 0, that is impossible by assumption 3).

Next, to show that lim
x→a+

f(x)
g(x) = L, we are going to use Theorem 7.7. Let ε > 0 be fixed. By

Theorem 7.7 and assumption 4),

∃δ > 0 ∀x ∈ (a, a+ δ) :

∣

∣

∣

∣

f ′(x)

g′(x)
− L

∣

∣

∣

∣

< ε.

Applying the Cauchy theorem (see Theorem 11.5) to the functions f, g : [a, x] → R, we have for all
x ∈ (a, a+ δ)

∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x)− f(a)

g(x)− g(a)
− L

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(c)

g′(c)
− L

∣

∣

∣

∣

< ε,

where c ∈ (a, x) ⊂ (a, a+ δ).

Remark 13.1. A similar statement is true for the left-sided limit as x goes to b.

Example 13.1. Using L’Hospital’s Rule, we compute the following limits:

a) lim
x→0

sinx
x

0
0= lim

x→0

(sinx)′

(x)′ = lim
x→0

cosx
1 = 1;

b) lim
x→0

x lnx
0·∞
= lim

x→0

lnx
1
x

∞

∞= lim
x→0

(lnx)′

( 1
x)

′ = lim
x→0

1
x

(

− 1
x2

) = − lim
x→0

x = 0;

c) lim
x→0

(cosx)
1
x2

1∞
= lim

x→0
e

1
x2

ln cosx.

We compute

lim
x→0

1
x2 ln cosx = lim

x→0

ln cosx
x2

0
0= lim

x→0

(ln cosx)′

(x2)′
= lim

x→0

− sin x
cos x
2x = −1

2 lim
x→0

sinx
x cosx = −1

2 lim
x→0

sinx
x

· lim
x→0

1
cosx = −1

2 .
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Thus, by the continuity of the function f(x) = ex, x ∈ R, we have

lim
x→0

e
1
x2

ln cosx = e
lim
x→0

1
x2

ln cosx
= e−

1
2 = 1√

e
.

See [1, p.245-248] for more examples of the application of L’Hospital’s Rule.

Exercise 13.1. Using L’Hospital’s Rule, show that

a) lim
x→0

1−cosx
x2 = 1; b) lim

x→0

ln(1+x)
sinx

= 1; c) lim
x→e

(lnx)α−(x
e )

β

x−e
= α−β

e
, where α, β are some real numbers;

d) lim
x→1

( 4
π
arctanx)

α
−1

lnx
= 2α

π
, α ∈ R; e) lim

x→0+

(

ln(1+x)
x

)
1
x
= e−

1
2 ; f) lim

x→+∞
x
2x = 0;

g) lim
x→+∞

lnx
xε = 0 for all ε > 0; h) lim

x→+0
xε lnx = 0 for all ε > 0; i) lim

x→+0
(ln(1 + x))x = 1.

Exercise 13.2. Compute the following limits:
a) lim

x→0

ln(1+x)−x

x2 ; b) lim
x→0

ex−esin x

x−sinx
; c) lim

x→+∞

(

x
(

π
2 − arctanx

))

; d) lim
x→+∞

ln(x+1)−ln(x−1)√
x2+1−

√
x2−1

;

e) lim
x→+∞

(

x sin 1
x
+ 1

x

)x
; f) lim

x→+∞

(

x sin 1
x
+ 1

x2

)x
; g) lim

x→0

(1+x)
1
x−e

x
; h) lim

x→+∞
xln x

(lnx)x .

13.2 Higher Order Derivatives

We assume that a function f : (a, b) → R is differentiable on (a, b). We denote its derivative f ′ by g,
that is g(x) = f ′(x), x ∈ (a, b).

Definition 13.1. If there exists a derivative g′(x0) of the function g at a point x0, then this derivative

is called the second derivative of f at the point x0 and is denoted by f ′′(x0) or
d2f
dx2 (x0).

Let the n-th derivative f (n) be defined on (a, b). Then the (n+1)-th derivative of f at x0 ∈ (a, b)

is defined as f (n+1)(x0) =
d(f (n))

dx
(x0), if it exists.

Example 13.2. Let a > 0. Then for each x ∈ R we obtain (ax)′ = ax ln a, (ax)′′ = ax ln2 a,
(ax)′′′ = ax ln3 a, ..., (ax)(n) = ax lnn a. In particular, (ex)(n) = ex, x ∈ R.

Exercise 13.3. Let α ∈ R. Show that (xα)n = α(α− 1)(α− 2) . . . (α− n+ 1)xα−n for all x > 0 and
n ∈ N.

Example 13.3. Let α ∈ R. Then ((1 + x)α)(n) = α(α − 1)(α − 2) . . . (α − n + 1)(1 + x)α−n for all
x > −1 and n ∈ N.

Indeed, ((1 + x)α)′ = α(1 + x)α−1, ((1 + x)α)′′ =
(

α(1 + x)α−1
)′
= α(α− 1)(1 + x)α−2 and so on.

Exercise 13.4. Show that (ln(1 + x))(n) = (−1)n−1(n−1)!
(1+x)n for all x > −1 and n ∈ N.

Example 13.4. For each x ∈ R (sinx)(n) = sin
(

x+ nπ
2

)

and (cosx)(n) = cos
(

x+ nπ
2

)

.
Indeed, (sinx)′ = cosx = sin

(

x+ π
2

)

, (sinx)′′ = (cosx)′ = − sinx = sin
(

x+ 2π
2

)

, (sinx)′′′ =

(− sinx)′ = − cosx = sin
(

x+ 3π
2

)

and so on. The same computation for (cosx)(n).

Exercise 13.5. Compute the n-th derivative of the following functions:
a) f(x) = 2x−1, x ∈ R; b) f(x) =

√
1 + x, x > −1; c) f(x) = arctanx, x ∈ R.

Theorem 13.2. Let functions f, g : (a, b) → R have n-th derivatives on (a, b). Then the following
equalities are true.
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1) for all k ∈ {1, . . . , n} (f (n−k))(k) = (f (k))(n−k) = f (n), where f (0) = f ;

2) for all c ∈ R (cf)(n) = cf (n);

3) (f + g)(n) = f (n) + g(n).

Theorem 13.3 (Leibniz Formula). For a number n ∈ N let g, f : (a, b) → R have n-th derivatives on
(a, b). Then f · g has the n-th derivative on (a, b) and

(f · g)(n) =
n
∑

k=0

Ck
nf

(k)g(n−k),

where Ck
n = n!

k!(n−k)! .

Exercise 13.6. Compute the following derivatives:
a) (x2ex)(n), x ∈ R; b) (x3 sinx)(n), x ∈ R; c) (xn lnx)(n), x > 0.

13.3 Taylor’s Formula

13.3.1 Taylor’s Formula for a Polynomial

Let n ∈ N and {a0, a1, a2, . . . , an} ⊂ R. For any point x0 ∈ R a polynomial

P (x) = a0 + a1x+ a2x
2 + . . .+ anx

n, x ∈ R,

can be written in the form

P (x) = b0 + b1(x− x0) + b2(x− x0)
2 + . . .+ bn(x− x0)

n, x ∈ R, (11)

where {b0, b1, b2, . . . , bn} are some real numbers, which can be computed by the following way. Inserting
x = x0 into (11), we obtain b0 = P (x0). Next we compute P ′. So,

P ′(x) = b1 + 2b2(x− x0) + 3b3(x− x0)
2 + . . .+ nbn(x− x0)

n−1, x ∈ R. (12)

Inserting x = x0 into (12), we get b1 = P ′(x0). Next, we compute the second derivative of P

P ′′(x) = 2b2 + 3 · 2 · b3(x− x0) + . . .+ n(n− 1)bn(x− x0)
n−2, x ∈ R. (13)

Inserting x = x0 into (13), we obtain b2 =
P ′′(x0)

2 . Similarly, we obtain

bk =
P (k)(x0)

k!
, k ≥ 0.

Thus, for each x ∈ R

P (x) = P (x0) +
P ′(x0)

1!
(x− x0) +

P ′′(x0)

2!
(x− x0)

2 + . . .+
P (n)(x0)

n!
(x− x0)

n. (14)

We see that any polynomial can be completely defined only by its value and values of its derivatives
at a point x0. Formula (14) does not hold if P is not a polynomial, but it turns out that values of a
function are close to the right hand side of (14) if x is close to x0.
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13.3.2 Taylor’s Formula with Peano Remainder Term

Let f, g : A → R be some functions and x0 be a limit point of A. If f(x)
g(x) → 0, x → x0, then we will

write f(x) = o(g(x)), x → 0, or f = o(g), x → x0.

Exercise 13.7. Show that
a) x = o(1), x → 0; b) x3 = o(2x), x → +∞; c) lnx = o(

√
x), x → +∞; d) x− sinx = o(x), x → 0.

Theorem 13.4. Let n ∈ N and let a function f : (a, b) → R and a point x0 ∈ (a, b) satisfy the
following conditions:

1) there exists f (n−1)(x) for all x ∈ (a, b);

2) there exists f (n)(x0).

Then

f(x) =

n
∑

k=0

f (k)(x0)

k!
(x− x0)

k + o((x− x0)
n), x → x0. (15)

The term o((x− x0)
n) is called the Peano remainder term.

Proof. We recall that 0! = 1 and set

Rn(x) := f(x)−
n
∑

k=0

f (k)(x0)

k!
(x− x0)

k, x ∈ (a, b).

According to assumptions 1) and 2), there exists R(n−1)(x) for all x ∈ (a, b) and R(n)(x0). Moreover
it is easy to see that

Rn(x0) = R′
n(x0) = R′′

n(x0) = . . . = R(n)
n (x0) = 0.

Assuming x > x0 and applying the Lagrange theorem (see Theorem 11.4), we have
∣

∣

∣

∣

Rn(x)

(x− x0)n

∣

∣

∣

∣

=

∣

∣

∣

∣

Rn(x)−Rn(x0)

(x− x0)n

∣

∣

∣

∣

=

∣

∣

∣

∣

R′
n(c1)(x− x0)

(x− x0)n

∣

∣

∣

∣

=

∣

∣

∣

∣

R′
n(c1)−R′

n(x0)

(x− x0)n−1

∣

∣

∣

∣

=

∣

∣

∣

∣

R′′
n(c2)(c1 − x0)

(x− x0)n−1

∣

∣

∣

∣

≤
∣

∣

∣

∣

R′′
n(c2)

(x− x0)n−2

∣

∣

∣

∣

=

∣

∣

∣

∣

R′′
n(c2)−R′′

n(x0)

(x− x0)n−2

∣

∣

∣

∣

=

∣

∣

∣

∣

R′′′
n (c3)(c2 − x0)

(x− x0)n−2

∣

∣

∣

∣

≤ . . .

≤
∣

∣

∣

∣

∣

R
(n−1)
n (cn−1)−R

(n−1)
n (x0)

x− x0

∣

∣

∣

∣

∣

→
∣

∣

∣
R(n)

n (x0)
∣

∣

∣
= 0, x → x0+,

where x0 < cn−1 < cn−2 < . . . < c2 < c1 < x. Moreover cn−1 → x0 as x → x0+.

One can similarly obtain that
∣

∣

∣

Rn(x)
(x−x0)n

∣

∣

∣
→ 0, x → x0−. Consequently,

Rn(x) = o((x− x0)
n), x → x0,

by Theorem 7.8.

Example 13.5. For every n ∈ N

ex = 1 + x+
x2

2!
+ . . .+

xn

n!
+ o(xn), x → 0.

The formula follows from Theorem 13.4 applying to f(x) = ex, x ∈ R, and the fact that f (k)(0) =
e0 = 1 (see Example 13.2).

54



University of Leipzig – WS18/19
10-PHY-BIPMA1 – Mathematics 1 / Vitalii Konarovskyi

Example 13.6. For all n ∈ N

ln(1 + x) = x− x2

2
+

x3

3
− . . .+ (−1)n−1x

n

n
+ o(xn), x → 0.

The formula follows from Theorem 13.4 applying to f(x) = ln(1 + x), x > −1, and the fact that

f (k)(0) = (−1)k−1(k−1)!
(1+0)k

= (−1)k−1(k − 1)! (see Example 13.4).

Example 13.7. For each α ∈ R and n ∈ N

(1 + x)α = 1 + αx+
α(α− 1)x2

2!
+ . . .+

α(α− 1) . . . (α− n+ 1)xn

n!
+ o(xn), x → 0.

The formula follows from Theorem 13.4 applying to f(x) = (1 + x)α, x > −1, and the fact that
f (k)(0) = α(α−1)(α−2) . . . (α−k+1)(1+0)α−k = α(α−1)(α−2) . . . (α−k+1) (see Example 13.3).

Exercise 13.8. Show that for every n ∈ N ∪ {0}

sinx = x− x3

3!
+

x5

5!
− . . .+ (−1)n

x2n+1

(2n+ 1)!
+ o(x2n+2), x → 0,

cosx = 1− x2

2!
+

x4

4!
− . . .+ (−1)n

x2n

(2n)!
+ o(x2n+1), x → 0.

Exercise 13.9. Show that for every n ∈ N ∪ {0}

sinhx =
ex − e−x

2
= x+

x3

3!
+

x5

5!
+ . . .+

x2n+1

(2n+ 1)!
+ o(x2n+2), x → 0,

coshx =
ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+ . . .+

x2n

(2n)!
+ o(x2n+1), x → 0.

Exercise 13.10. Use Taylor’s formula to compute the limits:

a) lim
x→0

ex−1−x
x2 ; b) lim

x→0

x−sinx

ex−1−x−x2

2

; c) lim
x→0

ln(1+x+x2)−ln(1−x−x2)
x sinx

; d) lim
x→0

cos(xex)−cos(xe−x)
x3 .
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