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13 Lecture 13 — L’Hospital’s Rule and Taylor’s Theorem

13.1 L’Hospital’s Rule

Theorem 13.1 (L’Hospital’s Rule). Let a € R or a = —oco and functions f,g: (a,b) — R satisfy the
following properties

1) f,qg are differentiable on (a,b);
2) xgrg+ f(ZL') - mlgggrg(x) =0or mgrglJr |g($)| - +OO;

3) ¢'(z) #0 for all x € (a,b);
@)
+ ¢'(2)

Then there exists hm % = L.

roal 9

LeR.

4) there exists hm

Proof. We will only give a proof for the case a € R and lim+ f(z) = lim g(z) = 0. For the general
T—a

case see e.g. [1, p.242-244].

We first extend the functions f and g to the interval [a,b), setting f(a) = g(a) := 0. According to
assumption 2), f and g are continuous at the point a. Since f, g are differentiable on (a,b), they are
continuous also at each point of (a,b), by Theorem 10.2. Thus, f, g are continuous on [a,b). Next, we
note that g(z) # 0 for all x € (a,b). Indeed, if g(xg) = 0 for some zy € (a,b), then applying Rolle’s
theorem (see Theorem 11.3) to the function g : [a,z¢] — R, we obtain that there exists ¢ € (a,xq)
such that ¢’(¢) = 0, that is impossible by assumption 3).

Next, to show that Il_i)rgl+% = L, we are going to use Theorem 7.7. Let € > 0 be fixed. By

Theorem 7.7 and assumption 4),

f'(x)
g'(z)
Applying the Cauchy theorem (see Theorem 11.5) to the functions f,g : [a,z] — R, we have for all
x € (a,a+90)

30 >0 Vz € (a,a+90):

—L'<€

f@) | _|fe)=fla) | _ |l .
e e o Rl RV R R
where ¢ € (a,z) C (a,a+ 9). O

Remark 13.1. A similar statement is true for the left-sided limit as = goes to b.

Example 13.1. Using L’Hospital’s Rule, we compute the following limits:

0 .
(sinzx)’

a) lim sine L lim 7 = lim % = 1;
z—0 % z—0 (z) z—0
Inz % (Inz)’ 1

b) lim zInz "2 lim 1 = lim o = lim 2~ = — lim z = 0;

z—0 z—0 % z—0 (5) z—0 (——2> z—0

1

c) lim (cos:z:)ac2 > Jim ez2 Imeos®

z—0 z—0
We compute

1 In cos 3 (In cos z)’ —sinz 1 i 1 1

lim =5 Incosz = lim £<EL = lim - = lim —gese = 711 sinz = —5 lim **-lim —— = —3.
z—0 % z—0 ¥ z—0 (@) z—0 <% 2 g0 TCOST z—0 ¥ p—Q €OST
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Thus, by the continuity of the function f(x) = e*, z € R, we have

Incos x lim 2 Incosx _1 1

lim e= Pl = ez—0® —e 2 =

z—0 Ve’

See [1, p.245-248] for more examples of the application of L’Hospital’s Rule.

Exercise 13.1. Using L’Hospital’s Rule, show that

8
1— cose In(l+z) _ (lnw)af(%) _ a=p .
a) ili)l%) =1; b) };13% e = 1; c) li glﬁﬁe ——— = %%, where a, 3 are some real numbers;

( arctan:p) -1 2a . In(1+x) % R x
oty G a0 iy (M) =k 0 £ =0
g) lim 2Z=0foralle>0; h) lim 2°lnz =0 for all ¢ > 0; i) hm (In(1+4x))* =1.
xr—+00 x——+0

Exercise 13.2. Compute the following limits:
a) lim %’ b) 11 S s ¢) lim (z (5 —arctanz)); d) lim In(z41)—In(z—1).

z—0 -0 @—sinz’ T—+00 ’ z—+oo Va?+l-vazi-1'
1
. <1 . 1 1\ (14z)= —e plna
e) lim (xsin=+ =)"; f) lim (zsin=+ =5)7; lim ~~——; h) lim “+—.
) x%Jroo( & I) ’ ) m%+oo( x xQ) ! ) z—0 & ’ ) T—+00 (Inz)®

13.2 Higher Order Derivatives

We assume that a function f : (a,b) — R is differentiable on (a,b). We denote its derivative f’ by g,
that is g(x) = f'(z), x € (a,b).

Definition 13.1. If there exists a derivative ¢'(xg) of the function g at a point zg, then this derivative
is called the second derivative of f at the point z( and is denoted by f”(z) or ZIJ; (o).

Let the n-th derivative f be defined on (a,b). Then the (n41)-th derivative of f at zq € (a,b)
is defined as f**1)(zq) = 51(1;7:))(%0)’ if it exists.

Example 13.2. Let a > 0. Then for each * € R we obtain (a®) = a®lna, (a®)” = a®In’a,
(a®)" = a®In?a, ..., (¢®)™ = a®In" a. In particular, (e*)™ = ¢*, z € R.

Exercise 13.3. Let o € R. Show that (z®)" = a(a —1)(a—2)...(a —=n+ 1)z* " for all x > 0 and
n € N.

Example 13.3. Let a € R. Then ((1+2)*)™ = a(a— 1)(a —2)...(a — n+ 1)(1 + 2)*™ for all
x> —landn eN.
Indeed, (14 2)*) = a(l+2)*7, (14 2)*)" = (a(1 + :v)“_l)/ =ala—1)(1+2)* 2 and so on.

Exercise 13.4. Show that (In(1+ z))™ = % for all z > —1 and n € N.

Example 13.4. For each z € R (sinz)™ = sin (z +n%) and (cosz)™ = cos (z + n%).
Indeed, (sinz)’ = cosz = sin (z+ %), (sinz)” = (cosz) = —sinz = sin (z +2%), (sinz)” =
(—sinz) = — cosz = sin (z + 3% ) and so on. The same computation for (Cos z)™),

Exercise 13.5. Compute the n-th derivative of the following functions:

a) f(r) =21 2 €R; b) f(x) =1+, 2>-1; ¢) f(z) = arctanz, x € R.

Theorem 13.2. Let functions f,g : (a,b) — R have n-th derivatives on (a,b). Then the following
equalities are true.
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1) for all k € {1,...,n} (fO=R)K) = (fENO=k) = () yhere fO) = f;
2) for all ¢ € R (cf)™ = cf);
3) (f+9)" = f) + gt

Theorem 13.3 (Leibniz Formula). For a number n € N let g, f : (a,b) — R have n-th derivatives on
(a,b). Then f - g has the n-th derivative on (a,b) and

(F- 9™ =) Cuf®g™,
k=0

k _ !
where C) = m

Exercise 13.6. Compute the following derivatives:
a) (z2e*)), z e R; b) (3sinz)™, z € R; ¢) (2" Inz)™, z > 0.

13.3 Taylor’s Formula
13.3.1 Taylor’s Formula for a Polynomial

Let n € N and {ag, a1,as,...,a,} C R. For any point g € R a polynomial
P(x) = ap + a1z + azz® + ... + a,z”, z €R,
can be written in the form
P(z) = by 4 by(z — x0) 4+ ba(z — z0)? + ... + bp(z — z0)", z €R, (11)

where {bg, b1, ba, ..., b, } are some real numbers, which can be computed by the following way. Inserting
x = o into (11), we obtain by = P(zo). Next we compute P’. So,

P'(z) = by + 2ba(x — x0) 4 3b3(x — 20)* + ... + nby(x —20)" !, xR (12)

Inserting « = x¢ into (12), we get by = P’(x¢). Next, we compute the second derivative of P

P'(z) =2by+3-2 -b3(x —20) + ... +n(n— Dby (x —x0)""2, xR (13)
Inserting x = x into (13), we obtain by = w. Similarly, we obtain
Pk (z0)
b = — k>0.
Thus, for each z € R
P P P(n)
P(z) = P(x0) + SSO) (z — z0) + 2(,”00) (@ —20)2+...+ #(m — o)™ (14)

We see that any polynomial can be completely defined only by its value and values of its derivatives
at a point xg. Formula (14) does not hold if P is not a polynomial, but it turns out that values of a
function are close to the right hand side of (14) if x is close to zp.
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13.3.2 Taylor’s Formula with Peano Remainder Term

Let f,g: A — R be some functions and xg be a limit point of A. If % — 0, z — xg, then we will
write f(xz) = o(g(x)), x — 0, or f =0(g), r — xo.

Exercise 13.7. Show that
a)x =o(1),z — 0; b) z3=0(2%), z = +o0; ¢) Inz = o(\/T), x — +o0; d)z—sinz =o(x), z — 0.

Theorem 13.4. Let n € N and let a function f : (a,b) — R and a point xy € (a,b) satisfy the
following conditions:

1) there exists f™V(x) for all x € (a,b);
2) there exists ™ (xq).
Then "
f(z) :ZfT(!xO)(x—xo)k—i—o((:r—mo)"), x — 0. (15)
k=0

The term o((x — x0)™) is called the Peano remainder term.

Proof. We recall that 0! = 1 and set

") (g
R, (x) := f(z) — ZfT('O)(x —z0)*, x € (a,b).

k=0

According to assumptions 1) and 2), there exists R~V (z) for all z € (a,b) and R™ (z). Moreover

it is easy to see that
R,(z0) = Rl (x0) = Rl(w0) = ... = R (z0) = 0.

Assuming x > xg and applying the Lagrange theorem (see Theorem 11.4), we have

Rn(z) | _ | Bn(x) = Ru(zo)| _ ‘R%(Cl)(x —0)| _ ‘Ré(cl) — Ry, (o)
(x —xo)" (z — xo)" (x — xo)" (x — xo)" 1
_ | Bale2)(er — o) Ry(ca) | _ ‘RZ(@) — Ry(zo)| _ ‘Rﬁ'(cs)(@ — o)
(x —zo)" ! (x — x0)" 2 (x — x0)" 2 (x —zo)2 |~
(n-1) (n-1)
< |Bn o) = Bn (o)), RGO (w0)| =0, &= w0+,
r — X

where g < ¢p—1 < Cph—2 < ... < cg < ¢1 < x. Moreover ¢,_1 — xo as T — To+.
Rn(2)
(z—z0)"

One can similarly obtain that ‘ — 0, z = xg—. Consequently,

Rny(z) = o((z — x0)"), x — o,
by Theorem 7.8. O

Example 13.5. For every n € N

z? z"
=142+ —=+...+4 —+o(z"), z—0.
2! n!

The formula follows from Theorem 13.4 applying to f(z) = €%, z € R, and the fact that f*)(0) =
eY =1 (see Example 13.2).
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Example 13.6. For alln € N

2 3 n

n(l+a2) =2 -5+ % =+ ()" St o@), 20,
The formula follows from Theorem 13.4 applying to f(z) = In(1 4+ z), * > —1, and the fact that
k k |
F®(0) = % = (=11 (k — 1)! (see Example 13.4).

Example 13.7. For each a € R and n € N

a(a—l)x2_’_.“_’_a(a—l)...(a—n—l—l)x"

51 ] +o(z"), = —0.

l1+2)*=14az+

(14 x)%, = > —1, and the fact that

The formula follows from Theorem 13.4 applying to f(z) =
—1(a=2)...(a—k+1) (see Example 13.3).

f#0)=ala—1)(a—=2)...(a—k+1)(1+0)** = a(a

Exercise 13.8. Show that for every n € NU {0}

3 a2d 2t _—

smx—x—y—i—g—...—k(— m—ko(w ), = —0,

2 4 m
— r. .z _ n 2n+1
cosz =1— 2[ + 4' +( 1) (2,”)‘ +0(.’E )7 QU*)O
Exercise 13.9. Show that for every n € NU {0}
: e’ —e? > 2 22t ot

Slnhm:T—$+§+5 +.+m+0(£ ), xz — 0,

cosha = S — 1+£2+:i4+ -+ - +o(@**h), -0

-2 4l (2n)! ’ :

Exercise 13.10. Use Taylor’s formula to compute the limits:
e 71 x. b) lim r—sinz . C) lim In(14+z+22)—In(1—z— r2) d) lim cos(ze®)—cos(ze™¥)
’ z—0 em—l—x—% ’ z—0 zsinz z—0 a? ’

a) hr%
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