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12 Lecture 12 — Application of Derivatives

12.1 Applications of Lagrange Theorem

Corollary 12.1. Let a function f : (a,b) — R have the derivative f" on (a,b) and for each x € (a,b)
f'(x) = 0. Then there exists L € R such that f(x) = L for all z € (a,b).

Proof. Let xy € (a,b) be an arbitrary fixed point and = # xg. Applying the Lagrange theorem to the
interval with the ends xy and x, we obtain

f(x) = f(xo) = f'(c)(x — x) = 0.
Thus, we can set L := f(xq). X

Corollary 12.2. Let functions f,g : (a,b) — R have the derivatives f', g’ on (a,b) and for each
x € (a,b) f'(xz) = ¢'(x). Then there exists L € R such that f(x) = g(x) + L for all x € (a,b).

Proof. Applying Corollary 12.1 to the function f — g, we obtain that there exists a constant L such
that f(z) — g(z) = L, z € (a,b). O

Corollary 12.3. Let a function f : (a,b) — R have the derivative f’ on (a,b) and for each x € (a,b)
f(x) = M, where M is some real number. Then there exists L € R such that f(x) = Mz + L for all
x € (a,b).

Proof. Applying Corollary 12.2 to the functions f and g(x) = Mz, x € (a,b), we obtain the statement.
O

Exercise 12.1. Let a, b be a fixed numbers. Identify all functions f : R — R such that f'(z) = ax+b,
z € R.

Exercise 12.2. Identify all functions f : R — R such that f/'(z) = f(x), x € R.
(Hint: Note that (f(z)e™) = (f'(z) — f(z))e™™, z € R)

Exercise 12.3. Let functions f, g : (a,b) — (0, +00) be differentiable on (a,b) and for every x € (a,b)

]},((f)) = “;,((f)). Prove that there exists L > 0 such that f(z) = Lg(z) for all z € (a,b).
(Hint: Consider the functions In f and In g)

12.2 Proofs of Inequalities
In this section, we are going to prove a couple of inequalities which are often used in mathematics.

Example 12.1. We prove that for all x1,z2 € R

a) |sinzy —sinxg| < |z1 —22|; b) |coszy —cosxe| < |x1 —x2]; ¢) |arctanx; — arctan x| < |z1 — x2].
The proof of these inequalities are similar. So, we will prove only a). We assume that z; < zs.

Then applying the Lagrange theorem to the function f(z) = sinz, x € [x1, 23], we have that there

exists ¢ € (x1,x2) such that

|sinze —sinzy| = |cosc| - |ze — 1| < |x2 — 1],
since | cosc| < 1.

Exercise 12.4. Prove b) and c) in Example 12.1.
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Exercise 12.5. Prove that
a) |\/Z1 — /2| < 3|z1 — 2] for all 21,29 € [1,400);
b) |\/u2 + 02 —VuZ + w?| < |v — w| for all u,v,w € R. (Hint: Consider the function f(t) = vu? + 2, t € R)

Example 12.2. We prove that
a) e* > 1+ x for all x € R, where e* =1+ z only if z =0; b) e* > 1—1—33—1—% for all x > 0.

We prove a). We first assume that 2 > 0. Then applying the Lagrange theorem to the function
f(u) = e*, u € [0,z], we obtain that there exists ¢ € (0,x) such that e* — e? = e (x — 0). Since
e® > 1 for ¢ > 0, we obtain e®* —1 > z for all z > 0. Next let x < 0. Then we can apply the Lagrange
theorem to the function f(u) = e*, u € [x,0]. So, we obtain that there exists ¢ € (z,0) such that
e¥ —e® =e¢- (0 —x). Since €€ < 1 for ¢ < 0, we get 1 — e* < —x.

In order to prove b), we apply the Cauchy theorem to the functions f(u) =e*, g(u) =14 u+ %,

u € [0, z]. Hence, there exists ¢ € (0, z) such that
e® — el e

l4z+2 -1 14c

. 2
Using a), we have ¢* —1 >z + %-.

Exercise 12.6. Prove that ez>1+x+‘§—?+%+...+%forallx>0andn€N.

(Hint: Use Example 12.2 and mathematical induction)
Exercise 12.7. Prove that 7 <In(1 + ) <z for all x > —1.

Exercise 12.8 (Generalised Bernoulli inequality). For each a > 1, prove that (1 4+ x)* > 1 + ax for
all z > —1. Moreover, (1+2)* =1+ az iff z = 0.

Exercisg 12.9. Prove that
a)x—%ﬁsinxﬁmforallmzo;
b) 1—”—;§cosx§1forallx20.

12.3 Investigation of Monotonicity of Functions

Theorem 12.1. Let —o0o < a < b < 400 and a function f : (a,b) — R be differentiable on (a,b).
(i) The function f increases on (a,b) iff f'(x) >0 for all x € (a,b).
(i1) The function f decreases on (a,b) iff f'(x) <0 for all z € (a,b).

Proof. We prove (i). Let first f'(z) > 0 for all x € (a,b). We take x1,z2 € (a,b) and 1 < z2. Then
applying the Lagrange theorem to the function f on the interval [z1,x2], we have that there exists
¢ € (x1,x2) such that

fx2) = f(z1) = f'(c) (w2 — 21) 2 0. (10)
Next, let f increases on (a,b). Then for each z¢ € (a,b)
T—T0o T — Xg T—xo+ Tr — X0

Here we used the definition of derivative, Remark 10.2 and the fact that f(z) > f(zo) for > xo.
In order to prove (ii), apply (i) of the theorem to the function g(z) = —f(x), « € (a,b). O
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Remark 12.1. a) If f/(x) > 0 for all « € (a,b), then the function f is strictly increasing.

b) If f’(x) < 0 for all z € (a,b), then the function f is strictly decreasing.
Indeed, a) immediately follows from (10), where we have the strict inequality.

We note that the inverse statements of Remark 12.1 is not valid. Indeed, the function f(z) = 23,

x € R, strictly increases but its derivative f'(z) = 322, x € R, equals 0 at = = 0.
We formulate more general statement about strictly monotone functions.

Theorem 12.2. Let —o0o < a < b < 400 and a function f: (a,b) — R be differentiable on (a,b).

(i) The function f strictly increases on (a,b) iff f'(x) > 0 for all x € (a,b) and there exists no
interval (o, B) C (a,b) such that f'(z) =0 for all x € (a, B).

(i) The function f strictly decreases on (a,b) iff f'(x) < 0 for all x € (a,b) and there exists no
interval (o, B) C (a,b) such that f'(z) =0 for all x € (a, B).

Example 12.3. By Theorem 12.2, the function f(z) = z? 4 bx + ¢, v € R, strictly decreases on
(—o00, —2] and strictly increases on [—2, +00), since f'(z) = 22 4+b < 0 for z < =% and f'(z) =

2x—|—b>0for:c>—%

Example 12.4. By Theorem 12.2, the function f(x) = e®, x € R, is strictly increasing on R, since
fl(z)=¢e">0,z€R.

Example 12.5. By Theorem 12.2, the function f(z) = x + sinz, x € R, is strictly increasing on R,
since f'(x) =1+cosx >0forallz e R\ {x: cosz=—-1} =R\ {(2k+ 1) : k € Z}.

Example 12.6. The function f(z) = 1“795, x > 0, strictly increases on (0, e] and strictly decreases on
[e, +00) according to Theorem 12.2. Indeed, its derivative f/(z) = 3=12 2 > 0, is strictly positive on

r2
(0,€e) and strictly negative on (e, +00).

Example 12.7. The function f(x) = 2%, x > 0, is strictly increasing on [%, —|—oo) and strictly
decreasing on (—oo, 1] according to Theorem 12.2. Indeed, its derivative f'(z) = 2*(1+ Inz), z > 0,
is strictly positive on (%, —|—oo) and strictly negative on (—oo, %) For the computation of the derivative

see Example 11.4.

Exercise 12.10. Identify intervals on which the following functions are monotone.
a) f(z) =2° —a, z €R; b) f(z) = z€R; ¢) f(z) = g5 — 5, v € R\ {0}
d) flz) =24+ /|1 — 23],z € R.

P
1427

Exercise 12.11. Identify a € R for which the function f(z) =z + asinz, x € R, is increasing on R.
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