12 Lecture 12 – Application of Derivatives

12.1 Applications of Lagrange Theorem

Corollary 12.1. Let a function $f : (a,b) \to \mathbb{R}$ have the derivative f' on (a,b) and for each $x \in (a,b)$ f'(x) = 0. Then there exists $L \in \mathbb{R}$ such that f(x) = L for all $x \in (a,b)$.

Proof. Let $x_0 \in (a, b)$ be an arbitrary fixed point and $x \neq x_0$. Applying the Lagrange theorem to the interval with the ends x_0 and x, we obtain

$$f(x) - f(x_0) = f'(c)(x - x_0) = 0.$$

Thus, we can set $L := f(x_0)$.

Corollary 12.2. Let functions $f, g: (a, b) \to \mathbb{R}$ have the derivatives f', g' on (a, b) and for each $x \in (a, b)$ f'(x) = g'(x). Then there exists $L \in \mathbb{R}$ such that f(x) = g(x) + L for all $x \in (a, b)$.

Proof. Applying Corollary 12.1 to the function f - g, we obtain that there exists a constant L such that f(x) - g(x) = L, $x \in (a, b)$.

Corollary 12.3. Let a function $f : (a,b) \to \mathbb{R}$ have the derivative f' on (a,b) and for each $x \in (a,b)$ f'(x) = M, where M is some real number. Then there exists $L \in \mathbb{R}$ such that f(x) = Mx + L for all $x \in (a,b)$.

Proof. Applying Corollary 12.2 to the functions f and g(x) = Mx, $x \in (a, b)$, we obtain the statement.

Exercise 12.1. Let a, b be a fixed numbers. Identify all functions $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) = ax + b, $x \in \mathbb{R}$.

Exercise 12.2. Identify all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f'(x) = f(x), x \in \mathbb{R}$. (*Hint:* Note that $(f(x)e^{-x})' = (f'(x) - f(x))e^{-x}, x \in \mathbb{R}$)

Exercise 12.3. Let functions $f, g: (a, b) \to (0, +\infty)$ be differentiable on (a, b) and for every $x \in (a, b)$ $\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)}$. Prove that there exists L > 0 such that f(x) = Lg(x) for all $x \in (a, b)$. (*Hint:* Consider the functions $\ln f$ and $\ln g$)

12.2 Proofs of Inequalities

In this section, we are going to prove a couple of inequalities which are often used in mathematics.

Example 12.1. We prove that for all $x_1, x_2 \in \mathbb{R}$

a) $|\sin x_1 - \sin x_2| \le |x_1 - x_2|$; b) $|\cos x_1 - \cos x_2| \le |x_1 - x_2|$; c) $|\arctan x_1 - \arctan x_2| \le |x_1 - x_2|$. The proof of these inequalities are similar. So, we will prove only a). We assume that $x_1 < x_2$.

Then applying the Lagrange theorem to the function $f(x) = \sin x$, $x \in [x_1, x_2]$, we have that there exists $c \in (x_1, x_2)$ such that

$$|\sin x_2 - \sin x_1| = |\cos c| \cdot |x_2 - x_1| \le |x_2 - x_1|,$$

since $|\cos c| \le 1$.

Exercise 12.4. Prove b) and c) in Example 12.1.

Exercise 12.5. Prove that

a) $|\sqrt{x_1} - \sqrt{x_2}| \le \frac{1}{2}|x_1 - x_2|$ for all $x_1, x_2 \in [1, +\infty)$; b) $|\sqrt{u^2 + v^2} - \sqrt{u^2 + w^2}| \le |v - w|$ for all $u, v, w \in \mathbb{R}$. (*Hint:* Consider the function $f(t) = \sqrt{u^2 + t^2}, t \in \mathbb{R}$)

UNIVERSITÄT LEIPZIG

Example 12.2. We prove that

a) $e^x \ge 1 + x$ for all $x \in \mathbb{R}$, where $e^x = 1 + x$ only if x = 0; b) $e^x > 1 + x + \frac{x^2}{2}$ for all x > 0. We prove a). We first assume that x > 0. Then applying the Lagrange theorem to the function $f(u) = e^u, u \in [0, x]$, we obtain that there exists $c \in (0, x)$ such that $e^x - e^0 = e^c \cdot (x - 0)$. Since $e^{c} > 1$ for c > 0, we obtain $e^{x} - 1 > x$ for all x > 0. Next let x < 0. Then we can apply the Lagrange theorem to the function $f(u) = e^u$, $u \in [x, 0]$. So, we obtain that there exists $c \in (x, 0)$ such that $e^{0} - e^{x} = e^{c} \cdot (0 - x)$. Since $e^{c} < 1$ for c < 0, we get $1 - e^{x} < -x$.

In order to prove b), we apply the Cauchy theorem to the functions $f(u) = e^u$, $g(u) = 1 + u + \frac{u^2}{2}$, $u \in [0, x]$. Hence, there exists $c \in (0, x)$ such that

$$\frac{e^x - e^0}{1 + x + \frac{x^2}{2} - 1} = \frac{e^c}{1 + c},$$

Using a), we have $e^{x} - 1 > x + \frac{x^{2}}{2}$.

Exercise 12.6. Prove that $e^x > 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!}$ for all x > 0 and $n \in \mathbb{N}$. (*Hint:* Use Example 12.2 and mathematical induction)

Exercise 12.7. Prove that $\frac{x}{1+x} \leq \ln(1+x) \leq x$ for all x > -1.

Exercise 12.8 (Generalised Bernoulli inequality). For each $\alpha > 1$, prove that $(1 + x)^{\alpha} \ge 1 + \alpha x$ for all x > -1. Moreover, $(1 + x)^{\alpha} = 1 + \alpha x$ iff x = 0.

Exercise 12.9. Prove that

a) $x - \frac{x^3}{3!} \le \sin x \le x$ for all $x \ge 0$; b) $1 - \frac{x^2}{2} \le \cos x \le 1$ for all $x \ge 0$.

12.3 Investigation of Monotonicity of Functions

Theorem 12.1. Let $-\infty \leq a < b \leq +\infty$ and a function $f:(a,b) \to \mathbb{R}$ be differentiable on (a,b).

- (i) The function f increases on (a,b) iff $f'(x) \ge 0$ for all $x \in (a,b)$.
- (ii) The function f decreases on (a, b) iff $f'(x) \leq 0$ for all $x \in (a, b)$.

Proof. We prove (i). Let first $f'(x) \ge 0$ for all $x \in (a, b)$. We take $x_1, x_2 \in (a, b)$ and $x_1 < x_2$. Then applying the Lagrange theorem to the function f on the interval $[x_1, x_2]$, we have that there exists $c \in (x_1, x_2)$ such that

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0.$$
(10)

Next, let f increases on (a, b). Then for each $x_0 \in (a, b)$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Here we used the definition of derivative, Remark 10.2 and the fact that $f(x) \ge f(x_0)$ for $x > x_0$.

In order to prove (ii), apply (i) of the theorem to the function $g(x) = -f(x), x \in (a, b)$.

Remark 12.1. a) If f'(x) > 0 for all $x \in (a, b)$, then the function f is strictly increasing.

b) If f'(x) < 0 for all $x \in (a, b)$, then the function f is strictly decreasing. Indeed, a) immediately follows from (10), where we have the strict inequality.

We note that the inverse statements of Remark 12.1 is not valid. Indeed, the function $f(x) = x^3$, $x \in \mathbb{R}$, strictly increases but its derivative $f'(x) = 3x^2$, $x \in \mathbb{R}$, equals 0 at x = 0.

We formulate more general statement about strictly monotone functions.

Theorem 12.2. Let $-\infty \leq a < b \leq +\infty$ and a function $f:(a,b) \to \mathbb{R}$ be differentiable on (a,b).

- (i) The function f strictly increases on (a,b) iff $f'(x) \ge 0$ for all $x \in (a,b)$ and there exists no interval $(\alpha,\beta) \subset (a,b)$ such that f'(x) = 0 for all $x \in (\alpha,\beta)$.
- (ii) The function f strictly decreases on (a,b) iff $f'(x) \leq 0$ for all $x \in (a,b)$ and there exists no interval $(\alpha,\beta) \subset (a,b)$ such that f'(x) = 0 for all $x \in (\alpha,\beta)$.

Example 12.3. By Theorem 12.2, the function $f(x) = x^2 + bx + c$, $x \in \mathbb{R}$, strictly decreases on $\left(-\infty, -\frac{b}{2}\right]$ and strictly increases on $\left[-\frac{b}{2}, +\infty\right)$, since f'(x) = 2x + b < 0 for $x < -\frac{b}{2}$ and f'(x) = 2x + b > 0 for $x > -\frac{b}{2}$

Example 12.4. By Theorem 12.2, the function $f(x) = e^x$, $x \in \mathbb{R}$, is strictly increasing on \mathbb{R} , since $f'(x) = e^x > 0$, $x \in \mathbb{R}$.

Example 12.5. By Theorem 12.2, the function $f(x) = x + \sin x$, $x \in \mathbb{R}$, is strictly increasing on \mathbb{R} , since $f'(x) = 1 + \cos x > 0$ for all $x \in \mathbb{R} \setminus \{x : \cos x = -1\} = \mathbb{R} \setminus \{(2k+1)\pi : k \in \mathbb{Z}\}.$

Example 12.6. The function $f(x) = \frac{\ln x}{x}$, x > 0, strictly increases on (0, e] and strictly decreases on $[e, +\infty)$ according to Theorem 12.2. Indeed, its derivative $f'(x) = \frac{1-\ln x}{x^2}$, x > 0, is strictly positive on (0, e) and strictly negative on $(e, +\infty)$.

Example 12.7. The function $f(x) = x^x$, x > 0, is strictly increasing on $\left[\frac{1}{e}, +\infty\right)$ and strictly decreasing on $\left(-\infty, \frac{1}{e}\right]$ according to Theorem 12.2. Indeed, its derivative $f'(x) = x^x(1 + \ln x)$, x > 0, is strictly positive on $\left(\frac{1}{e}, +\infty\right)$ and strictly negative on $\left(-\infty, \frac{1}{e}\right)$. For the computation of the derivative see Example 11.4.

Exercise 12.10. Identify intervals on which the following functions are monotone. a) $f(x) = x^2 - x$, $x \in \mathbb{R}$; b) $f(x) = \frac{x}{1+x^2}$, $x \in \mathbb{R}$; c) $f(x) = \frac{1}{x^3} - \frac{1}{x}$, $x \in \mathbb{R} \setminus \{0\}$; d) $f(x) = x + \sqrt{|1-x^2|}$, $x \in \mathbb{R}$.

Exercise 12.11. Identify $a \in \mathbb{R}$ for which the function $f(x) = x + a \sin x$, $x \in \mathbb{R}$, is increasing on \mathbb{R} .