12 Lecture 12 - Application of Derivatives

12.1 Applications of Lagrange Theorem

Corollary 12.1. Let a function $f:(a, b) \rightarrow \mathbb{R}$ have the derivative f^{\prime} on (a, b) and for each $x \in(a, b)$ $f^{\prime}(x)=0$. Then there exists $L \in \mathbb{R}$ such that $f(x)=L$ for all $x \in(a, b)$.

Proof. Let $x_{0} \in(a, b)$ be an arbitrary fixed point and $x \neq x_{0}$. Applying the Lagrange theorem to the interval with the ends x_{0} and x, we obtain

$$
f(x)-f\left(x_{0}\right)=f^{\prime}(c)\left(x-x_{0}\right)=0 .
$$

Thus, we can set $L:=f\left(x_{0}\right)$.
Corollary 12.2. Let functions $f, g:(a, b) \rightarrow \mathbb{R}$ have the derivatives f^{\prime}, g^{\prime} on (a, b) and for each $x \in(a, b) f^{\prime}(x)=g^{\prime}(x)$. Then there exists $L \in \mathbb{R}$ such that $f(x)=g(x)+L$ for all $x \in(a, b)$.

Proof. Applying Corollary 12.1 to the function $f-g$, we obtain that there exists a constant L such that $f(x)-g(x)=L, x \in(a, b)$.

Corollary 12.3. Let a function $f:(a, b) \rightarrow \mathbb{R}$ have the derivative f^{\prime} on (a, b) and for each $x \in(a, b)$ $f^{\prime}(x)=M$, where M is some real number. Then there exists $L \in \mathbb{R}$ such that $f(x)=M x+L$ for all $x \in(a, b)$.

Proof. Applying Corollary 12.2 to the functions f and $g(x)=M x, x \in(a, b)$, we obtain the statement.

Exercise 12.1. Let a, b be a fixed numbers. Identify all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=a x+b$, $x \in \mathbb{R}$.

Exercise 12.2. Identify all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(x), x \in \mathbb{R}$.
(Hint: Note that $\left.\left(f(x) e^{-x}\right)^{\prime}=\left(f^{\prime}(x)-f(x)\right) e^{-x}, x \in \mathbb{R}\right)$
Exercise 12.3. Let functions $f, g:(a, b) \rightarrow(0,+\infty)$ be differentiable on (a, b) and for every $x \in(a, b)$ $\frac{f^{\prime}(x)}{f(x)}=\frac{g^{\prime}(x)}{g(x)}$. Prove that there exists $L>0$ such that $f(x)=L g(x)$ for all $x \in(a, b)$.
(Hint: Consider the functions $\ln f$ and $\ln g$)

12.2 Proofs of Inequalities

In this section, we are going to prove a couple of inequalities which are often used in mathematics.
Example 12.1. We prove that for all $x_{1}, x_{2} \in \mathbb{R}$
a) $\left|\sin x_{1}-\sin x_{2}\right| \leq\left|x_{1}-x_{2}\right|$; b) $\left|\cos x_{1}-\cos x_{2}\right| \leq\left|x_{1}-x_{2}\right|$; c) $\left|\arctan x_{1}-\arctan x_{2}\right| \leq\left|x_{1}-x_{2}\right|$.

The proof of these inequalities are similar. So, we will prove only a). We assume that $x_{1}<x_{2}$. Then applying the Lagrange theorem to the function $f(x)=\sin x, x \in\left[x_{1}, x_{2}\right]$, we have that there exists $c \in\left(x_{1}, x_{2}\right)$ such that

$$
\left|\sin x_{2}-\sin x_{1}\right|=|\cos c| \cdot\left|x_{2}-x_{1}\right| \leq\left|x_{2}-x_{1}\right|
$$

since $|\cos c| \leq 1$.
Exercise 12.4. Prove b) and c) in Example 12.1.

Exercise 12.5. Prove that
a) $\left|\sqrt{x_{1}}-\sqrt{x_{2}}\right| \leq \frac{1}{2}\left|x_{1}-x_{2}\right|$ for all $x_{1}, x_{2} \in[1,+\infty)$;
b) $\left|\sqrt{u^{2}+v^{2}}-\sqrt{u^{2}+w^{2}}\right| \leq|v-w|$ for all $u, v, w \in \mathbb{R}$. (Hint: Consider the function $f(t)=\sqrt{u^{2}+t^{2}}, t \in \mathbb{R}$)

Example 12.2. We prove that
a) $e^{x} \geq 1+x$ for all $x \in \mathbb{R}$, where $e^{x}=1+x$ only if $x=0 ;$ b) $e^{x}>1+x+\frac{x^{2}}{2}$ for all $x>0$.

We prove a). We first assume that $x>0$. Then applying the Lagrange theorem to the function $f(u)=e^{u}, u \in[0, x]$, we obtain that there exists $c \in(0, x)$ such that $e^{x}-e^{0}=e^{c} \cdot(x-0)$. Since $e^{c}>1$ for $c>0$, we obtain $e^{x}-1>x$ for all $x>0$. Next let $x<0$. Then we can apply the Lagrange theorem to the function $f(u)=e^{u}, u \in[x, 0]$. So, we obtain that there exists $c \in(x, 0)$ such that $e^{0}-e^{x}=e^{c} \cdot(0-x)$. Since $e^{c}<1$ for $c<0$, we get $1-e^{x}<-x$.

In order to prove b), we apply the Cauchy theorem to the functions $f(u)=e^{u}, g(u)=1+u+\frac{u^{2}}{2}$, $u \in[0, x]$. Hence, there exists $c \in(0, x)$ such that

$$
\frac{e^{x}-e^{0}}{1+x+\frac{x^{2}}{2}-1}=\frac{e^{c}}{1+c},
$$

Using a), we have $e^{x}-1>x+\frac{x^{2}}{2}$.
Exercise 12.6. Prove that $e^{x}>1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}$ for all $x>0$ and $n \in \mathbb{N}$.
(Hint: Use Example 12.2 and mathematical induction)
Exercise 12.7. Prove that $\frac{x}{1+x} \leq \ln (1+x) \leq x$ for all $x>-1$.
Exercise 12.8 (Generalised Bernoulli inequality). For each $\alpha>1$, prove that $(1+x)^{\alpha} \geq 1+\alpha x$ for all $x>-1$. Moreover, $(1+x)^{\alpha}=1+\alpha x$ iff $x=0$.

Exercise 12.9. Prove that
a) $x-\frac{x^{3}}{3!} \leq \sin x \leq x$ for all $x \geq 0$;
b) $1-\frac{x^{2}}{2} \leq \cos x \leq 1$ for all $x \geq 0$.

12.3 Investigation of Monotonicity of Functions

Theorem 12.1. Let $-\infty \leq a<b \leq+\infty$ and a function $f:(a, b) \rightarrow \mathbb{R}$ be differentiable on (a, b).
(i) The function f increases on (a, b) iff $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$.
(ii) The function f decreases on (a, b) iff $f^{\prime}(x) \leq 0$ for all $x \in(a, b)$.

Proof. We prove (i). Let first $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$. We take $x_{1}, x_{2} \in(a, b)$ and $x_{1}<x_{2}$. Then applying the Lagrange theorem to the function f on the interval $\left[x_{1}, x_{2}\right]$, we have that there exists $c \in\left(x_{1}, x_{2}\right)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right) \geq 0 \tag{10}
\end{equation*}
$$

Next, let f increases on (a, b). Then for each $x_{0} \in(a, b)$

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}+} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq 0
$$

Here we used the definition of derivative, Remark 10.2 and the fact that $f(x) \geq f\left(x_{0}\right)$ for $x>x_{0}$.
In order to prove (ii), apply (i) of the theorem to the function $g(x)=-f(x), x \in(a, b)$.

Remark 12.1. a) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then the function f is strictly increasing.
b) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then the function f is strictly decreasing.

Indeed, a) immediately follows from (10), where we have the strict inequality.
We note that the inverse statements of Remark 12.1 is not valid. Indeed, the function $f(x)=x^{3}$, $x \in \mathbb{R}$, strictly increases but its derivative $f^{\prime}(x)=3 x^{2}, x \in \mathbb{R}$, equals 0 at $x=0$.

We formulate more general statement about strictly monotone functions.
Theorem 12.2. Let $-\infty \leq a<b \leq+\infty$ and a function $f:(a, b) \rightarrow \mathbb{R}$ be differentiable on (a, b).
(i) The function f strictly increases on (a, b) iff $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$ and there exists no interval $(\alpha, \beta) \subset(a, b)$ such that $f^{\prime}(x)=0$ for all $x \in(\alpha, \beta)$.
(ii) The function f strictly decreases on (a, b) iff $f^{\prime}(x) \leq 0$ for all $x \in(a, b)$ and there exists no interval $(\alpha, \beta) \subset(a, b)$ such that $f^{\prime}(x)=0$ for all $x \in(\alpha, \beta)$.

Example 12.3. By Theorem 12.2 , the function $f(x)=x^{2}+b x+c, x \in \mathbb{R}$, strictly decreases on $\left(-\infty,-\frac{b}{2}\right]$ and strictly increases on $\left[-\frac{b}{2},+\infty\right)$, since $f^{\prime}(x)=2 x+b<0$ for $x<-\frac{b}{2}$ and $f^{\prime}(x)=$ $2 x+b>0$ for $x>-\frac{b}{2}$

Example 12.4. By Theorem 12.2 , the function $f(x)=e^{x}, x \in \mathbb{R}$, is strictly increasing on \mathbb{R}, since $f^{\prime}(x)=e^{x}>0, x \in \mathbb{R}$.

Example 12.5. By Theorem 12.2 , the function $f(x)=x+\sin x, x \in \mathbb{R}$, is strictly increasing on \mathbb{R}, since $f^{\prime}(x)=1+\cos x>0$ for all $x \in \mathbb{R} \backslash\{x: \cos x=-1\}=\mathbb{R} \backslash\{(2 k+1) \pi: k \in \mathbb{Z}\}$.

Example 12.6. The function $f(x)=\frac{\ln x}{x}, x>0$, strictly increases on $(0, e]$ and strictly decreases on $[e,+\infty)$ according to Theorem 12.2. Indeed, its derivative $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}, x>0$, is strictly positive on $(0, e)$ and strictly negative on $(e,+\infty)$.

Example 12.7. The function $f(x)=x^{x}, x>0$, is strictly increasing on $\left[\frac{1}{e},+\infty\right)$ and strictly decreasing on $\left(-\infty, \frac{1}{e}\right]$ according to Theorem 12.2. Indeed, its derivative $f^{\prime}(x)=x^{x}(1+\ln x), x>0$, is strictly positive on $\left(\frac{1}{e},+\infty\right)$ and strictly negative on $\left(-\infty, \frac{1}{e}\right)$. For the computation of the derivative see Example 11.4.

Exercise 12.10. Identify intervals on which the following functions are monotone.
a) $f(x)=x^{2}-x, x \in \mathbb{R}$;
b) $f(x)=\frac{x}{1+x^{2}}, x \in \mathbb{R}$;
c) $f(x)=\frac{1}{x^{3}}-\frac{1}{x}, x \in \mathbb{R} \backslash\{0\} ;$
d) $f(x)=x+\sqrt{\left|1-x^{2}\right|}, x \in \mathbb{R}$.

Exercise 12.11. Identify $a \in \mathbb{R}$ for which the function $f(x)=x+a \sin x, x \in \mathbb{R}$, is increasing on \mathbb{R}.

