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12 Lecture 12 – Application of Derivatives

12.1 Applications of Lagrange Theorem

Corollary 12.1. Let a function f : (a, b) → R have the derivative f ′ on (a, b) and for each x ∈ (a, b)
f ′(x) = 0. Then there exists L ∈ R such that f(x) = L for all x ∈ (a, b).

Proof. Let x0 ∈ (a, b) be an arbitrary fixed point and x 6= x0. Applying the Lagrange theorem to the
interval with the ends x0 and x, we obtain

f(x)− f(x0) = f ′(c)(x− x0) = 0.

Thus, we can set L := f(x0).

Corollary 12.2. Let functions f, g : (a, b) → R have the derivatives f ′, g′ on (a, b) and for each
x ∈ (a, b) f ′(x) = g′(x). Then there exists L ∈ R such that f(x) = g(x) + L for all x ∈ (a, b).

Proof. Applying Corollary 12.1 to the function f − g, we obtain that there exists a constant L such
that f(x)− g(x) = L, x ∈ (a, b).

Corollary 12.3. Let a function f : (a, b) → R have the derivative f ′ on (a, b) and for each x ∈ (a, b)
f ′(x) = M , where M is some real number. Then there exists L ∈ R such that f(x) = Mx+ L for all
x ∈ (a, b).

Proof. Applying Corollary 12.2 to the functions f and g(x) = Mx, x ∈ (a, b), we obtain the statement.

Exercise 12.1. Let a, b be a fixed numbers. Identify all functions f : R → R such that f ′(x) = ax+b,
x ∈ R.

Exercise 12.2. Identify all functions f : R → R such that f ′(x) = f(x), x ∈ R.
(Hint: Note that (f(x)e−x)′ = (f ′(x)− f(x))e−x, x ∈ R)

Exercise 12.3. Let functions f, g : (a, b) → (0,+∞) be differentiable on (a, b) and for every x ∈ (a, b)
f ′(x)
f(x) = g′(x)

g(x) . Prove that there exists L > 0 such that f(x) = Lg(x) for all x ∈ (a, b).
(Hint: Consider the functions ln f and ln g)

12.2 Proofs of Inequalities

In this section, we are going to prove a couple of inequalities which are often used in mathematics.

Example 12.1. We prove that for all x1, x2 ∈ R

a) | sinx1 − sinx2| ≤ |x1 − x2|; b) | cosx1 − cosx2| ≤ |x1 − x2|; c) | arctanx1 − arctanx2| ≤ |x1 − x2|.
The proof of these inequalities are similar. So, we will prove only a). We assume that x1 < x2.

Then applying the Lagrange theorem to the function f(x) = sinx, x ∈ [x1, x2], we have that there
exists c ∈ (x1, x2) such that

| sinx2 − sinx1| = | cos c| · |x2 − x1| ≤ |x2 − x1|,

since | cos c| ≤ 1.

Exercise 12.4. Prove b) and c) in Example 12.1.
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Exercise 12.5. Prove that
a) |√x1 −

√
x2| ≤ 1

2 |x1 − x2| for all x1, x2 ∈ [1,+∞);

b) |
√
u2 + v2 −

√
u2 + w2| ≤ |v − w| for all u, v, w ∈ R. (Hint: Consider the function f(t) =

√
u2 + t2, t ∈ R)

Example 12.2. We prove that
a) ex ≥ 1 + x for all x ∈ R, where ex = 1 + x only if x = 0; b) ex > 1 + x+ x2

2 for all x > 0.
We prove a). We first assume that x > 0. Then applying the Lagrange theorem to the function

f(u) = eu, u ∈ [0, x], we obtain that there exists c ∈ (0, x) such that ex − e0 = ec · (x − 0). Since
ec > 1 for c > 0, we obtain ex − 1 > x for all x > 0. Next let x < 0. Then we can apply the Lagrange
theorem to the function f(u) = eu, u ∈ [x, 0]. So, we obtain that there exists c ∈ (x, 0) such that
e0 − ex = ec · (0− x). Since ec < 1 for c < 0, we get 1− ex < −x.

In order to prove b), we apply the Cauchy theorem to the functions f(u) = eu, g(u) = 1 + u+ u2

2 ,
u ∈ [0, x]. Hence, there exists c ∈ (0, x) such that

ex − e0

1 + x+ x2

2 − 1
=

ec

1 + c
,

Using a), we have ex − 1 > x+ x2

2 .

Exercise 12.6. Prove that ex > 1 + x+ x2

2! +
x3

3! + . . .+ xn

n! for all x > 0 and n ∈ N.
(Hint: Use Example 12.2 and mathematical induction)

Exercise 12.7. Prove that x
1+x

≤ ln(1 + x) ≤ x for all x > −1.

Exercise 12.8 (Generalised Bernoulli inequality). For each α > 1, prove that (1 + x)α ≥ 1 + αx for
all x > −1. Moreover, (1 + x)α = 1 + αx iff x = 0.

Exercise 12.9. Prove that
a) x− x3

3! ≤ sinx ≤ x for all x ≥ 0;

b) 1− x2

2 ≤ cosx ≤ 1 for all x ≥ 0.

12.3 Investigation of Monotonicity of Functions

Theorem 12.1. Let −∞ ≤ a < b ≤ +∞ and a function f : (a, b) → R be differentiable on (a, b).

(i) The function f increases on (a, b) iff f ′(x) ≥ 0 for all x ∈ (a, b).

(ii) The function f decreases on (a, b) iff f ′(x) ≤ 0 for all x ∈ (a, b).

Proof. We prove (i). Let first f ′(x) ≥ 0 for all x ∈ (a, b). We take x1, x2 ∈ (a, b) and x1 < x2. Then
applying the Lagrange theorem to the function f on the interval [x1, x2], we have that there exists
c ∈ (x1, x2) such that

f(x2)− f(x1) = f ′(c)(x2 − x1) ≥ 0. (10)

Next, let f increases on (a, b). Then for each x0 ∈ (a, b)

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0+

f(x)− f(x0)

x− x0
≥ 0.

Here we used the definition of derivative, Remark 10.2 and the fact that f(x) ≥ f(x0) for x > x0.
In order to prove (ii), apply (i) of the theorem to the function g(x) = −f(x), x ∈ (a, b).
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Remark 12.1. a) If f ′(x) > 0 for all x ∈ (a, b), then the function f is strictly increasing.

b) If f ′(x) < 0 for all x ∈ (a, b), then the function f is strictly decreasing.
Indeed, a) immediately follows from (10), where we have the strict inequality.

We note that the inverse statements of Remark 12.1 is not valid. Indeed, the function f(x) = x3,
x ∈ R, strictly increases but its derivative f ′(x) = 3x2, x ∈ R, equals 0 at x = 0.

We formulate more general statement about strictly monotone functions.

Theorem 12.2. Let −∞ ≤ a < b ≤ +∞ and a function f : (a, b) → R be differentiable on (a, b).

(i) The function f strictly increases on (a, b) iff f ′(x) ≥ 0 for all x ∈ (a, b) and there exists no
interval (α, β) ⊂ (a, b) such that f ′(x) = 0 for all x ∈ (α, β).

(ii) The function f strictly decreases on (a, b) iff f ′(x) ≤ 0 for all x ∈ (a, b) and there exists no
interval (α, β) ⊂ (a, b) such that f ′(x) = 0 for all x ∈ (α, β).

Example 12.3. By Theorem 12.2, the function f(x) = x2 + bx + c, x ∈ R, strictly decreases on
(

−∞,− b
2

]

and strictly increases on
[

− b
2 ,+∞

)

, since f ′(x) = 2x + b < 0 for x < − b
2 and f ′(x) =

2x+ b > 0 for x > − b
2

Example 12.4. By Theorem 12.2, the function f(x) = ex, x ∈ R, is strictly increasing on R, since
f ′(x) = ex > 0, x ∈ R.

Example 12.5. By Theorem 12.2, the function f(x) = x + sinx, x ∈ R, is strictly increasing on R,
since f ′(x) = 1 + cosx > 0 for all x ∈ R \ {x : cosx = −1} = R \ {(2k + 1)π : k ∈ Z}.

Example 12.6. The function f(x) = lnx
x
, x > 0, strictly increases on (0, e] and strictly decreases on

[e,+∞) according to Theorem 12.2. Indeed, its derivative f ′(x) = 1−lnx
x2 , x > 0, is strictly positive on

(0, e) and strictly negative on (e,+∞).

Example 12.7. The function f(x) = xx, x > 0, is strictly increasing on
[

1
e
,+∞

)

and strictly
decreasing on

(

−∞, 1
e

]

according to Theorem 12.2. Indeed, its derivative f ′(x) = xx(1 + lnx), x > 0,
is strictly positive on

(

1
e
,+∞

)

and strictly negative on
(

−∞, 1
e

)

. For the computation of the derivative
see Example 11.4.

Exercise 12.10. Identify intervals on which the following functions are monotone.
a) f(x) = x2 − x, x ∈ R; b) f(x) = x

1+x2 , x ∈ R; c) f(x) = 1
x3 − 1

x
, x ∈ R \ {0};

d) f(x) = x+
√

|1− x2|, x ∈ R.

Exercise 12.11. Identify a ∈ R for which the function f(x) = x+ a sinx, x ∈ R, is increasing on R.
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