11 Lecture 11 - Derivatives of Inverse Functions and some Theorems

11.1 Derivative of Inverse Function

Theorem 11.1 (Differentiation of inverse function). Let $-\infty \leq a<b \leq+\infty$ and a function f : $(a, b) \rightarrow \mathbb{R}$ satisfy the following properties

1) f is continuous on (a, b);
2) f strictly increases on (a, b).

Let $(c, d):=f((a, b))=\{f(x): x \in(a, b)\}$, where $-\infty \leq c<d \leq+\infty$. Let also $g:(c, d) \rightarrow(a, b)$ be the inverse function to f.

If there exists a derivative $f^{\prime}\left(x_{0}\right) \neq 0$ at a point $x_{0} \in(a, b)$, then the function g has a derivative $g^{\prime}\left(y_{0}\right)$ at the point $y_{0}=f\left(x_{0}\right)$. Moreover,

$$
g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{f^{\prime}\left(g\left(y_{0}\right)\right)}
$$

Remark 11.1. If a function $f:(a, b) \rightarrow \mathbb{R}$ is continuous and strictly increasing, then, by Theorem 8.5, the range $f((a, b))$ of f is an interval and there exists the inverse function g to f which is also continuous and strictly increasing.

Proof of Theorem 11.1. Since the function g is strictly increasing (see Remark 11.1), we have that $g(y) \neq g\left(y_{0}\right)$ for $y \neq y_{0}$. Using the definition of inverse function and Theorem 10.1, we obtain

$$
y-y_{0}=f(g(y))-f\left(g\left(y_{0}\right)\right)=f^{\prime}\left(g\left(y_{0}\right)\right)\left(g(y)-g\left(y_{0}\right)\right)+\varphi(g(y))\left(g(y)-g\left(y_{0}\right)\right)
$$

where $\varphi(g(y)) \rightarrow 0$ as $g(y) \rightarrow g\left(y_{0}\right)$. Since g is continuous on (c, d), one has $g(y) \rightarrow g\left(y_{0}\right), y \rightarrow y_{0}$. Thus, $\varphi(g(y)) \rightarrow 0, y \rightarrow y_{0}$. Consequently,

$$
\begin{aligned}
\frac{g(y)-g\left(y_{0}\right)}{y-y_{0}} & =\frac{g(y)-g\left(y_{0}\right)}{f^{\prime}\left(g\left(y_{0}\right)\right)\left(g(y)-g\left(y_{0}\right)\right)+\varphi(g(y))\left(g(y)-g\left(y_{0}\right)\right)} \\
& =\frac{1}{f^{\prime}\left(g\left(y_{0}\right)\right)+\varphi(g(y))} \rightarrow \frac{1}{f^{\prime}\left(g\left(y_{0}\right)\right)}, \quad y \rightarrow y_{0}
\end{aligned}
$$

Remark 11.2. Let us assume that, in Theorem 11.1, the function f has a derivative $f^{\prime}(x) \neq 0$ at each point $x \in(a, b)$. Then for each $y \in(c, d)$ there exists the derivative $g^{\prime}(y)$ and one can get a relationship between f^{\prime} and g^{\prime} using the equalities $g(f(x))=x, x \in(a, b)$, and $f(g(y))=y, y \in(c, d)$. Indeed, by the chain rule (see Theorem 10.4), $g^{\prime}(f(x)) f^{\prime}(x)=1, x \in(a, b)$, and $f^{\prime}(g(y)) g^{\prime}(y)=1$, $y \in(c, d)$.
Example 11.1. Let $\alpha>0, \alpha \neq 1$. Then $\left(\log _{\alpha} x\right)^{\prime}=\frac{1}{x \ln \alpha}$ for all $x>0$. In particular, $(\ln x)^{\prime}=\frac{1}{x}$ for all $x>0$.

We will consider the case $\alpha>1$. To compute the derivative $\left(\log _{\alpha} x\right)^{\prime}$, we are going to use Theorem 11.1. So, we set $f(x):=\alpha^{x}, x \in(a, b):=\mathbb{R}$ and $(c, d):=(0,+\infty)$. Then f is continuous and strictly increasing on \mathbb{R}. Moreover, $f^{\prime}(x)=\alpha^{x} \ln \alpha \neq 0, x \in \mathbb{R}$, by Example 10.7. So, applying

Theorem 11.1, to the function $g(y)=\log _{\alpha} y, y \in(c, d)=(0,+\infty)$, which is inverse to f, we get for $y_{0} \in(0,+\infty)$

$$
g^{\prime}\left(y_{0}\right)=\left(\log _{\alpha} y_{0}\right)^{\prime}=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{\alpha^{x_{0}} \ln \alpha}=\frac{1}{y_{0} \ln \alpha},
$$

where $y_{0}=f\left(x_{0}\right)=\alpha^{x_{0}}$.
Exercise 11.1. Show that $\left(\log _{\alpha} x\right)^{\prime}=\frac{1}{x \ln \alpha}, x>0$, for $0<\alpha<1$.
Example 11.2. For all $x \in \mathbb{R}(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$.
Again we are going to use Theorem 11.1. We set $f(x):=\tan x, x \in(a, b):=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $(c, d):=\mathbb{R}$. By Example 8.5, f is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Moreover, it is strictly increasing and $f^{\prime}(x)=\frac{1}{\cos ^{2} x} \neq 0, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Thus, applying Theorem 11.1 to $g(y)=\arctan y, y \in \mathbb{R}$, we have for each $y_{0} \in \mathbb{R}$

$$
g^{\prime}\left(y_{0}\right)=\left(\arctan y_{0}\right)^{\prime}=\frac{1}{f^{\prime}\left(x_{0}\right)}=\cos ^{2} x_{0}=\frac{1}{1+\tan ^{2} x_{0}}=\frac{1}{1+y_{0}^{2}}
$$

where $y_{0}=f\left(x_{0}\right)=\tan x_{0}$.
Exercise 11.2. For all $x \in \mathbb{R}(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}$.
Example 11.3. For each $x \in(-1,1)(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$.
We set $f(x):=\sin x, x \in(a, b):=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $(c, d):=(-1,1)$. By Example $8.5, f$ is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Moreover, f is strictly increasing and $f^{\prime}(x)=\cos x \neq 0$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, by Example 10.8. Thus, applying Theorem 11.1 to the function $g(x)=\arcsin y, y \in(-1,1)$, we obtain for $y_{0} \in(-1,1)$

$$
g^{\prime}\left(y_{0}\right)=\left(\arcsin y_{0}\right)^{\prime}=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{\cos x_{0}}=\frac{1}{\sqrt{1-\sin ^{2} x_{0}}}=\frac{1}{\sqrt{1-y_{0}^{2}}}
$$

where $y_{0}=f\left(x_{0}\right)=\sin x_{0}$.
Exercise 11.3. Show that for each $x \in(-1,1)(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}$.
Example 11.4. Compute the derivative of the function $f(x)=x^{x}, x>0$.
Solution. For $x>0$ we have $\left(x^{x}\right)^{\prime}=\left(e^{\ln x^{x}}\right)^{\prime}=\left(e^{x \ln x}\right)^{\prime}=e^{x \ln x}(x \ln x)^{\prime}=x^{x}\left((x)^{\prime} \ln x+x(\ln x)^{\prime}\right)=$ $x^{x}\left(\ln x+x \frac{1}{x}\right)=x^{x}(\ln x+1)$.

11.2 Some Theorems

Theorem 11.2 (Fermat theorem). Let $f:(a, b) \rightarrow \mathbb{R}, x_{0} \in(a, b)$ and $f\left(x_{0}\right)=\max _{x \in(a, b)} f(x)$ or $f\left(x_{0}\right)=\min _{x \in(a, b)} f(x)$. If f has a derivative at the point x_{0}, then $f^{\prime}\left(x_{0}\right)=0$.

Proof. We assume that $f\left(x_{0}\right)=\max _{x \in(a, b)} f(x)$. Then for each $x \in(a, b) f(x) \leq f\left(x_{0}\right)$. Thus, by Remark 10.2, we have

$$
f^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}-} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq 0
$$

and, similarly,

$$
f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}+} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \leq 0
$$

This implies that $f^{\prime}\left(x_{0}\right)=0$.
The case $f\left(x_{0}\right)=\min _{x \in(a, b)} f(x)$ is similar.

Remark 11.3. In the Fermat theorem, the assumption $a<x_{0}<b$ is essential. Indeed, the statement is not valid for the function $f(x)=x, x \in[0,1]$. In that case, $x_{0}=1$, but $f^{\prime}\left(x_{0}\right)=1$.

Theorem 11.3 (Rolle's theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ satisfies the following properties

1) f is continuous on $[a, b]$;
2) for each $x \in(a, b)$ the derivative $f^{\prime}(x)$ exists;
3) $f(a)=f(b)$.

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Proof. If for every $x \in[a, b] f(x)=f(a)$, then f is a constant function. Consequently, $f^{\prime}(c)=0$ for all $c \in(a, b)$.

We now assume that

$$
\begin{equation*}
\exists x \in[a, b] \quad \text { such that } f(x) \neq f(a) . \tag{9}
\end{equation*}
$$

According to the assumption 1) and the 2nd Weierstrass theorem (see Theorem 9.2), there exist $x_{*}, x^{*} \in[a, b]$ such that $f\left(x_{*}\right)=\min _{x \in[a, b]} f(x)$ and $f\left(x^{*}\right)=\max _{x \in[a, b]} f(x)$. Using assumptions (9) and 3), we have that $f\left(x_{*}\right) \neq f(a)$ or $f\left(x^{*}\right) \neq f(a)$. We consider the case $f\left(x^{*}\right) \neq f(a)$. In this case, we have $x^{*} \neq a$ and $x^{*} \neq b$, which implies that $x^{*} \in(a, b)$. Hence, the function f and the point $x_{0}=x^{*}$ satisfy all assumptions of the Fermat theorem (see Theorem 11.2). Consequently, $f^{\prime}\left(x^{*}\right)=0$. We take $c:=x^{*}$.

The case $f\left(x_{*}\right) \neq f(a)$ can be considered similarly.
Exercise 11.4. Let a function $f \in \mathrm{C}([a, b])$ have the derivative $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then $f(a) \neq f(b)$.

Theorem 11.4 (Lagrange (mean value) theorem). We assume that a function $f:[a, b] \rightarrow \mathbb{R}$ satisfies the following properties

1) f is continuous on $[a, b]$;
2) f is differentiable on (a, b), that is, f has a derivative $f^{\prime}(x)$ for all $x \in(a, b)$.

Then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
Proof. We take

$$
g(x):=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a), \quad x \in[a, b],
$$

and note that g satisfies the assumptions of Rolle's theorem (see Theorem 11.3). Moreover,

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}, \quad x \in(a, b)
$$

By Rolle's theorem, there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. It implies that $f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0$. Consequently, $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Exercise 11.5. Let a function $f:(a, b) \rightarrow \mathbb{R}$ be differentiable on (a, b) and there exists $L \in \mathbb{R}$ such that $\left|f^{\prime}(x)\right| \leq L$ for all $x \in(a, b)$. Show that f is uniformly continuous on (a, b).

Theorem 11.5 (Cauchy theorem). Let functions $f, g:[a, b] \rightarrow \mathbb{R}$ satisfy the following conditions

1) f, g are continuous on $[a, b]$;
2) f, g are differentiable on (a, b);
3) for every $x \in(a, b) g^{\prime}(x) \neq 0$.

Then there exists $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$.
Proof. We first note that $g(a) \neq g(b)$. Otherwise, if $g(a)=g(b)$, then there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$, by Rolle's theorem. But this contradicts assumption 3).

So, we can set

$$
h(x):=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a)), \quad x \in[a, b] .
$$

Then the function h satisfies the assumptions of Rolle's theorem. Consequently, there exists $c \in(a, b)$ such that $h^{\prime}(c)=0$. Thus, $f^{\prime}(c)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(c)=0$.

