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11 Lecture 11 — Derivatives of Inverse Functions and some Theo-
rems

11.1 Derivative of Inverse Function

Theorem 11.1 (Differentiation of inverse function). Let —oco < a < b < +o00 and a function f :
(a,b) = R satisfy the following properties

1) f is continuous on (a,b);
2) f strictly increases on (a,b).

Let (¢,d) := f((a,b)) = {f(z): x € (a,b)}, where —oo < ¢ < d < +00. Let also g : (¢,d) — (a,b) be
the inverse function to f.

If there exists a deriative f'(zg) # 0 at a point xo € (a,b), then the function g has a derivative
d' (yo) at the point yo = f(xg). Moreover,

9'(yo) ! !
o) = = .
f'(@o)  f'(9(yo))
Remark 11.1. If a function f : (a,b) — R is continuous and strictly increasing, then, by Theorem 8.5,

the range f((a,b)) of f is an interval and there exists the inverse function g to f which is also continuous
and strictly increasing.

Proof of Theorem 11.1. Since the function g is strictly increasing (see Remark 11.1), we have that
9(y) # g(yo) for y # yo. Using the definition of inverse function and Theorem 10.1, we obtain

y—vyo=f(9() — fg(wo)) = f'(9(v0))(g(y) — 9(¥0)) + (9(y))(9(y) — 9(x0)),

where ¢(g(y)) — 0 as g(y) — g(yo). Since g is continuous on (¢, d), one has g(y) — g(yo), ¥ — Yo-
Thus, ¢(g9(y)) — 0, y — yo. Consequently,

y—yo  f(9wo)9(w) — a(wo)) +e(g®)(9(y) — 9(vo))

9(y) — 9(yo) 9(y) — 9(yo)
©
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Remark 11.2. Let us assume that, in Theorem 11.1, the function f has a derivative f’(x) # 0 at
each point z € (a,b). Then for each y € (c,d) there exists the derivative ¢'(y) and one can get a
relationship between f’ and ¢’ using the equalities g(f(z)) = z, = € (a,b), and f(g(y)) =y, y € (¢, d).
Indeed, by the chain rule (see Theorem 10.4), ¢'(f(z))f'(z) = 1, x € (a,b), and f'(g9(v))d'(y) = 1,
y € (c,d).

Example 11.1. Let a > 0, a # 1. Then (log, z)’ = ﬁ for all z > 0. In particular, (Inz) = % for
all x > 0.

We will consider the case o > 1. To compute the derivative (log, x)’, we are going to use The-
orem 11.1. So, we set f(x) := a*, z € (a,b) := R and (¢,d) := (0,400). Then f is continuous
and strictly increasing on R. Moreover, f/(z) = a*lna # 0, 2 € R, by Example 10.7. So, applying
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Theorem 11.1, to the function g(y) = log, vy, y € (¢,d) = (0,+00), which is inverse to f, we get for

Yo € (0, —I—oo)
1 1 1

/ — 1 /: — —
g (y()) ( O8n yO) f/(xO) a®o In v Yo ané,

where yo = f(z0) = a™.

Exercise 11.1. Show that (log, z)' = —4—, z > 0, for 0 < o < 1.
Example 11.2. For all z € R (arctanz) = H%

T T

Again we are going to use Theorem 11.1. We set f(z) := tanz, z € (a,b) := (=%,%) and

(¢,d) == R. By Example 8.5, f is continuous on (—g, g) Moreover, it is strictly increasing and
f(x) = ﬁ #0,x € (—%7 %) Thus, applying Theorem 11.1 to g(y) = arctany, y € R, we have for
each yp € R

1 1 1

/ _ f = = cos®zg = -
9'(yo) = (arctanyo)' = T T T ey 1442

f'(@o)
where yo = f(z¢) = tan xo.

1

Exercise 11.2. For all z € R (arccot z)' = — 7.

|
Example 11.3. For each z € (—1,1) (arcsinz)’ = it

We set f(x) :=sinz, x € (a,b) := (=3, %) and (¢,d) := (—1,1). By Example 8.5, f is continuous on
(—=%.%). Moreover, f is strictly increasing and f’(z) = cosz # 0 for all z € (=%, %), by Example 10.8.

Thus, applying Theorem 11.1 to the function g(x) = arcsiny, y € (—1,1), we obtain for yo € (—1,1)

(o) = ( . y 1 1 1 1
g (yo) = (arcsinyg)’ = = = = ,
fl(xo)  coszo  \/1—sinzg V1-92

where yo = f(z¢) = sin .

Exercise 11.3. Show that for each z € (—1,1) (arccosz) = —

1—x2°
Example 11.4. Compute the derivative of the function f(z)=z*, x > 0.

Solution. For x > 0 we have (z*)" = (elnwx), = (ewlnx), =M% (glng) = 2% ((x)' Inz + 2(lnz)) =
2® (Inz+21) = 2% (lnz + 1).

11.2 Some Theorems

Theorem 11.2 (Fermat theorem). Let f : (a,b) — R, 29 € (a,b) and f(xo) = m(mz)f(:r:) or
x€(a,

f(zo) = rr%ir})) f(x). If f has a derivative at the point xo, then f'(zo) = 0.
x€(a,

Proof. We assume that f(xg) = max f(z). Then for each x € (a,b) f(x) < f(x9). Thus, by

z€(a,b)

Remark 10.2, we have
T—To— Tr — X
and, similarly,
! / . f(x) — f(x(J)
gl sl B —— <
f(xo) = fi(wo) = lim ——— e

This implies that f/(x¢) = 0.

The case f(zg) = rer%ir%)) (x) is similar. O
z€(a,
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Remark 11.3. In the Fermat theorem, the assumption a < xg < b is essential. Indeed, the statement
is not valid for the function f(z) =z, x € [0,1]. In that case, zg = 1, but f'(z¢) = 1.

Theorem 11.3 (Rolle’s theorem). Let f : [a,b] — R satisfies the following properties
1) f is continuous on [a,b];

2) for each x € (a,b) the derivative f'(x) exists;

3) fa) = f(b).
Then there exists ¢ € (a,b) such that f'(c) = 0.

Proof. 1f for every x € [a,b] f(x) = f(a), then f is a constant function. Consequently, f’(¢) = 0 for
all ¢ € (a,b).
We now assume that
Jz € [a,b] such that f(x) # f(a). (9)

According to the assumption 1) and the 2nd Weierstrass theorem (see Theorem 9.2), there exist

Ty, x* € [a,b] such that f(x.) = m[inb]f(ac) and f(z*) = m[a%]f(x). Using assumptions (9) and 3),
x€E|a xE|a,

we have that f(z.) # f(a) or f(x*);«é f(a). We consider the case f(z*) # f(a). In this case, we
have z* # a and z* # b, which implies that z* € (a,b). Hence, the function f and the point xy = z*
satisfy all assumptions of the Fermat theorem (see Theorem 11.2). Consequently, f'(z*) = 0. We take
c:=z".

The case f(xs) # f(a) can be considered similarly. O

Exercise 11.4. Let a function f € C([a,b]) have the derivative f'(x) # 0 for all z € (a,b). Then
fla) # f(b).

Theorem 11.4 (Lagrange (mean value) theorem). We assume that a function f : [a,b] — R satisfies
the following properties

1) f is continuous on [a,bl;

2) f is differentiable on (a,b), that is, f has a derivative f'(x) for all z € (a,b).
Then there exists ¢ € (a,b) such that f(b) — f(a) = f'(¢)(b— a).
Proof. We take

b) — f(a
o(@) = £(x) — f(a) - O T 0oy ey
and note that ¢ satisfies the assumptions of Rolle’s theorem (see Theorem 11.3). Moreover,
b) — f(a
g@) = sy - TOZTD o)

, . _ N F)—fla)
By Rolle’s theorem, there exists ¢ € (a,b) such that ¢’(c¢) = 0. It implies that f/(c) — % = 0.
Consequently, f(b) — f(a) = f'(c)(b— a). O

Exercise 11.5. Let a function f : (a,b) — R be differentiable on (a,b) and there exists L € R such
that |f/(z)| < L for all x € (a,b). Show that f is uniformly continuous on (a,b).
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Theorem 11.5 (Cauchy theorem). Let functions f, g : [a,b] — R satisfy the following conditions

1) f,qg are continuous on [a,b];
2) f,g are differentiable on (a,b);

3) for every x € (a,b) ¢'(x) # 0.

- f®)=f(a) _ f'(c)
Then there exists ¢ € (a,b) such that J5—="25 = 77 -

Proof. We first note that g(a) # ¢g(b). Otherwise, if g(a) = g(b), then there exists ¢ € (a,b) such that
¢'(c) = 0, by Rolle’s theorem. But this contradicts assumption 3).
So, we can set

f(b) = f(a)

h(z) = f(x) — fla) — ———=(g9(x) — g(a)), x € |a,b].
(z) := f(z) = f(a) g(b)—g(a)(() (a)) [a, 0]
Then the function h satisfies the assumptions of Rolle’s theorem. Consequently, there exists ¢ € (a, b)
such that A'(c) = 0. Thus, f'(c) — ggzg:g((s))g’(c) =0. O
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