11 Lecture 11 – Derivatives of Inverse Functions and some Theorems

UNIVERSITÄT LEIPZIG

11.1 Derivative of Inverse Function

Theorem 11.1 (Differentiation of inverse function). Let $-\infty \leq a < b \leq +\infty$ and a function f: $(a,b) \to \mathbb{R}$ satisfy the following properties

- 1) f is continuous on (a, b);
- 2) f strictly increases on (a, b).

Let $(c,d) := f((a,b)) = \{f(x) : x \in (a,b)\}$, where $-\infty \le c < d \le +\infty$. Let also $g : (c,d) \to (a,b)$ be the inverse function to f.

If there exists a derivative $f'(x_0) \neq 0$ at a point $x_0 \in (a, b)$, then the function g has a derivative $g'(y_0)$ at the point $y_0 = f(x_0)$. Moreover,

$$g'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(g(y_0))}.$$

Remark 11.1. If a function $f : (a, b) \to \mathbb{R}$ is continuous and strictly increasing, then, by Theorem 8.5, the range f((a, b)) of f is an interval and there exists the inverse function g to f which is also continuous and strictly increasing.

Proof of Theorem 11.1. Since the function g is strictly increasing (see Remark 11.1), we have that $g(y) \neq g(y_0)$ for $y \neq y_0$. Using the definition of inverse function and Theorem 10.1, we obtain

$$y - y_0 = f(g(y)) - f(g(y_0)) = f'(g(y_0))(g(y) - g(y_0)) + \varphi(g(y))(g(y) - g(y_0)),$$

where $\varphi(g(y)) \to 0$ as $g(y) \to g(y_0)$. Since g is continuous on (c, d), one has $g(y) \to g(y_0)$, $y \to y_0$. Thus, $\varphi(g(y)) \to 0$, $y \to y_0$. Consequently,

$$\frac{g(y) - g(y_0)}{y - y_0} = \frac{g(y) - g(y_0)}{f'(g(y_0))(g(y) - g(y_0)) + \varphi(g(y))(g(y) - g(y_0))}$$
$$= \frac{1}{f'(g(y_0)) + \varphi(g(y))} \to \frac{1}{f'(g(y_0))}, \quad y \to y_0.$$

Remark 11.2. Let us assume that, in Theorem 11.1, the function f has a derivative $f'(x) \neq 0$ at each point $x \in (a, b)$. Then for each $y \in (c, d)$ there exists the derivative g'(y) and one can get a relationship between f' and g' using the equalities g(f(x)) = x, $x \in (a, b)$, and f(g(y)) = y, $y \in (c, d)$. Indeed, by the chain rule (see Theorem 10.4), g'(f(x))f'(x) = 1, $x \in (a, b)$, and f'(g(y))g'(y) = 1, $y \in (c, d)$.

Example 11.1. Let $\alpha > 0$, $\alpha \neq 1$. Then $(\log_{\alpha} x)' = \frac{1}{x \ln \alpha}$ for all x > 0. In particular, $(\ln x)' = \frac{1}{x}$ for all x > 0.

We will consider the case $\alpha > 1$. To compute the derivative $(\log_{\alpha} x)'$, we are going to use Theorem 11.1. So, we set $f(x) := \alpha^x$, $x \in (a, b) := \mathbb{R}$ and $(c, d) := (0, +\infty)$. Then f is continuous and strictly increasing on \mathbb{R} . Moreover, $f'(x) = \alpha^x \ln \alpha \neq 0$, $x \in \mathbb{R}$, by Example 10.7. So, applying

Theorem 11.1, to the function $g(y) = \log_{\alpha} y$, $y \in (c, d) = (0, +\infty)$, which is inverse to f, we get for $y_0 \in (0, +\infty)$

$$g'(y_0) = (\log_{\alpha} y_0)' = \frac{1}{f'(x_0)} = \frac{1}{\alpha^{x_0} \ln \alpha} = \frac{1}{y_0 \ln \alpha},$$

where $y_0 = f(x_0) = \alpha^{x_0}$.

Exercise 11.1. Show that $(\log_{\alpha} x)' = \frac{1}{x \ln \alpha}, x > 0$, for $0 < \alpha < 1$.

Example 11.2. For all $x \in \mathbb{R}$ $(\arctan x)' = \frac{1}{1+x^2}$.

Again we are going to use Theorem 11.1. We set $f(x) := \tan x, x \in (a,b) := \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $(c,d) := \mathbb{R}$. By Example 8.5, f is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Moreover, it is strictly increasing and $f'(x) = \frac{1}{\cos^2 x} \neq 0, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Thus, applying Theorem 11.1 to $g(y) = \arctan y, y \in \mathbb{R}$, we have for each $y_0 \in \mathbb{R}$

$$g'(y_0) = (\arctan y_0)' = \frac{1}{f'(x_0)} = \cos^2 x_0 = \frac{1}{1 + \tan^2 x_0} = \frac{1}{1 + y_0^2}$$

where $y_0 = f(x_0) = \tan x_0$.

Exercise 11.2. For all $x \in \mathbb{R}$ $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$.

Example 11.3. For each $x \in (-1, 1)$ $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$.

We set $f(x) := \sin x, x \in (a, b) := \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and (c, d) := (-1, 1). By Example 8.5, f is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Moreover, f is strictly increasing and $f'(x) = \cos x \neq 0$ for all $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, by Example 10.8. Thus, applying Theorem 11.1 to the function $g(x) = \arcsin y, y \in (-1, 1)$, we obtain for $y_0 \in (-1, 1)$

$$g'(y_0) = (\arcsin y_0)' = \frac{1}{f'(x_0)} = \frac{1}{\cos x_0} = \frac{1}{\sqrt{1 - \sin^2 x_0}} = \frac{1}{\sqrt{1 - y_0^2}},$$

where $y_0 = f(x_0) = \sin x_0$.

Exercise 11.3. Show that for each $x \in (-1, 1)$ $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$.

Example 11.4. Compute the derivative of the function $f(x) = x^x$, x > 0. Solution. For x > 0 we have $(x^x)' = (e^{\ln x^x})' = (e^{x \ln x})' = e^{x \ln x} (x \ln x)' = x^x ((x)' \ln x + x(\ln x)') = x^x (\ln x + x \frac{1}{x}) = x^x (\ln x + 1)$.

11.2 Some Theorems

Theorem 11.2 (Fermat theorem). Let $f : (a,b) \to \mathbb{R}$, $x_0 \in (a,b)$ and $f(x_0) = \max_{x \in (a,b)} f(x)$ or $f(x_0) = \min_{x \in (a,b)} f(x)$. If f has a derivative at the point x_0 , then $f'(x_0) = 0$.

Proof. We assume that $f(x_0) = \max_{x \in (a,b)} f(x)$. Then for each $x \in (a,b)$ $f(x) \leq f(x_0)$. Thus, by Remark 10.2, we have

$$f'(x_0) = f'_{-}(x_0) = \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

and, similarly,

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0+} \frac{f(x) - f(x_0)}{x - x_0} \le 0.$$

This implies that $f'(x_0) = 0$.

The case $f(x_0) = \min_{x \in (a,b)} f(x)$ is similar.

Remark 11.3. In the Fermat theorem, the assumption $a < x_0 < b$ is essential. Indeed, the statement is not valid for the function f(x) = x, $x \in [0, 1]$. In that case, $x_0 = 1$, but $f'(x_0) = 1$.

Theorem 11.3 (Rolle's theorem). Let $f : [a, b] \to \mathbb{R}$ satisfies the following properties

- 1) f is continuous on [a, b];
- 2) for each $x \in (a, b)$ the derivative f'(x) exists;
- 3) f(a) = f(b).

Then there exists $c \in (a, b)$ such that f'(c) = 0.

Proof. If for every $x \in [a, b]$ f(x) = f(a), then f is a constant function. Consequently, f'(c) = 0 for all $c \in (a, b)$.

We now assume that

$$\exists x \in [a, b] \quad \text{such that} \quad f(x) \neq f(a). \tag{9}$$

According to the assumption 1) and the 2nd Weierstrass theorem (see Theorem 9.2), there exist $x_*, x^* \in [a, b]$ such that $f(x_*) = \min_{x \in [a, b]} f(x)$ and $f(x^*) = \max_{x \in [a, b]} f(x)$. Using assumptions (9) and 3), we have that $f(x_*) \neq f(a)$ or $f(x^*) \neq f(a)$. We consider the case $f(x^*) \neq f(a)$. In this case, we have $x^* \neq a$ and $x^* \neq b$, which implies that $x^* \in (a, b)$. Hence, the function f and the point $x_0 = x^*$ satisfy all assumptions of the Fermat theorem (see Theorem 11.2). Consequently, $f'(x^*) = 0$. We take $c := x^*$.

The case $f(x_*) \neq f(a)$ can be considered similarly.

Exercise 11.4. Let a function $f \in C([a, b])$ have the derivative $f'(x) \neq 0$ for all $x \in (a, b)$. Then $f(a) \neq f(b)$.

Theorem 11.4 (Lagrange (mean value) theorem). We assume that a function $f : [a, b] \to \mathbb{R}$ satisfies the following properties

- 1) f is continuous on [a, b];
- 2) f is differentiable on (a, b), that is, f has a derivative f'(x) for all $x \in (a, b)$.

Then there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a).

Proof. We take

$$g(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a), \quad x \in [a, b],$$

and note that g satisfies the assumptions of Rolle's theorem (see Theorem 11.3). Moreover,

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}, \quad x \in (a, b).$$

By Rolle's theorem, there exists $c \in (a, b)$ such that g'(c) = 0. It implies that $f'(c) - \frac{f(b) - f(a)}{b - a} = 0$. Consequently, f(b) - f(a) = f'(c)(b - a).

Exercise 11.5. Let a function $f : (a, b) \to \mathbb{R}$ be differentiable on (a, b) and there exists $L \in \mathbb{R}$ such that $|f'(x)| \leq L$ for all $x \in (a, b)$. Show that f is uniformly continuous on (a, b).

Theorem 11.5 (Cauchy theorem). Let functions $f, g : [a, b] \to \mathbb{R}$ satisfy the following conditions

- 1) f, g are continuous on [a, b];
- 2) f, g are differentiable on (a, b);
- 3) for every $x \in (a, b)$ $g'(x) \neq 0$.

Then there exists $c \in (a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.

Proof. We first note that $g(a) \neq g(b)$. Otherwise, if g(a) = g(b), then there exists $c \in (a, b)$ such that g'(c) = 0, by Rolle's theorem. But this contradicts assumption 3).

So, we can set

$$h(x) := f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)), \quad x \in [a, b].$$

Then the function h satisfies the assumptions of Rolle's theorem. Consequently, there exists $c \in (a, b)$ such that h'(c) = 0. Thus, $f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0$.