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11 Lecture 11 – Derivatives of Inverse Functions and some Theo-

rems

11.1 Derivative of Inverse Function

Theorem 11.1 (Differentiation of inverse function). Let −∞ ≤ a < b ≤ +∞ and a function f :
(a, b) → R satisfy the following properties

1) f is continuous on (a, b);

2) f strictly increases on (a, b).

Let (c, d) := f((a, b)) = {f(x) : x ∈ (a, b)}, where −∞ ≤ c < d ≤ +∞. Let also g : (c, d) → (a, b) be
the inverse function to f .

If there exists a derivative f ′(x0) 6= 0 at a point x0 ∈ (a, b), then the function g has a derivative
g′(y0) at the point y0 = f(x0). Moreover,

g′(y0) =
1

f ′(x0)
=

1

f ′(g(y0))
.

Remark 11.1. If a function f : (a, b) → R is continuous and strictly increasing, then, by Theorem 8.5,
the range f((a, b)) of f is an interval and there exists the inverse function g to f which is also continuous
and strictly increasing.

Proof of Theorem 11.1. Since the function g is strictly increasing (see Remark 11.1), we have that
g(y) 6= g(y0) for y 6= y0. Using the definition of inverse function and Theorem 10.1, we obtain

y − y0 = f(g(y))− f(g(y0)) = f ′(g(y0))(g(y)− g(y0)) + ϕ(g(y))(g(y)− g(y0)),

where ϕ(g(y)) → 0 as g(y) → g(y0). Since g is continuous on (c, d), one has g(y) → g(y0), y → y0.
Thus, ϕ(g(y)) → 0, y → y0. Consequently,

g(y)− g(y0)

y − y0
=

g(y)− g(y0)

f ′(g(y0))(g(y)− g(y0)) + ϕ(g(y))(g(y)− g(y0))

=
1

f ′(g(y0)) + ϕ(g(y))
→

1

f ′(g(y0))
, y → y0.

Remark 11.2. Let us assume that, in Theorem 11.1, the function f has a derivative f ′(x) 6= 0 at
each point x ∈ (a, b). Then for each y ∈ (c, d) there exists the derivative g′(y) and one can get a
relationship between f ′ and g′ using the equalities g(f(x)) = x, x ∈ (a, b), and f(g(y)) = y, y ∈ (c, d).
Indeed, by the chain rule (see Theorem 10.4), g′(f(x))f ′(x) = 1, x ∈ (a, b), and f ′(g(y))g′(y) = 1,
y ∈ (c, d).

Example 11.1. Let α > 0, α 6= 1. Then (logα x)
′ = 1

x lnα
for all x > 0. In particular, (lnx)′ = 1

x
for

all x > 0.
We will consider the case α > 1. To compute the derivative (logα x)

′, we are going to use The-
orem 11.1. So, we set f(x) := αx, x ∈ (a, b) := R and (c, d) := (0,+∞). Then f is continuous
and strictly increasing on R. Moreover, f ′(x) = αx lnα 6= 0, x ∈ R, by Example 10.7. So, applying
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Theorem 11.1, to the function g(y) = logα y, y ∈ (c, d) = (0,+∞), which is inverse to f , we get for
y0 ∈ (0,+∞)

g′(y0) = (logα y0)
′ =

1

f ′(x0)
=

1

αx0 lnα
=

1

y0 lnα
,

where y0 = f(x0) = αx0 .

Exercise 11.1. Show that (logα x)
′ = 1

x lnα
, x > 0, for 0 < α < 1.

Example 11.2. For all x ∈ R (arctanx)′ = 1
1+x2 .

Again we are going to use Theorem 11.1. We set f(x) := tanx, x ∈ (a, b) :=
(

−π
2 ,

π
2

)

and
(c, d) := R. By Example 8.5, f is continuous on

(

−π
2 ,

π
2

)

. Moreover, it is strictly increasing and
f ′(x) = 1

cos2 x
6= 0, x ∈

(

−π
2 ,

π
2

)

. Thus, applying Theorem 11.1 to g(y) = arctan y, y ∈ R, we have for
each y0 ∈ R

g′(y0) = (arctan y0)
′ =

1

f ′(x0)
= cos2 x0 =

1

1 + tan2 x0
=

1

1 + y20
,

where y0 = f(x0) = tanx0.

Exercise 11.2. For all x ∈ R (arccotx)′ = − 1
1+x2 .

Example 11.3. For each x ∈ (−1, 1) (arcsinx)′ = 1√
1−x2

.

We set f(x) := sinx, x ∈ (a, b) :=
(

−π
2 ,

π
2

)

and (c, d) := (−1, 1). By Example 8.5, f is continuous on
(

−π
2 ,

π
2

)

. Moreover, f is strictly increasing and f ′(x) = cosx 6= 0 for all x ∈
(

−π
2 ,

π
2

)

, by Example 10.8.
Thus, applying Theorem 11.1 to the function g(x) = arcsin y, y ∈ (−1, 1), we obtain for y0 ∈ (−1, 1)

g′(y0) = (arcsin y0)
′ =

1

f ′(x0)
=

1

cosx0
=

1
√

1− sin2 x0
=

1
√

1− y20
,

where y0 = f(x0) = sinx0.

Exercise 11.3. Show that for each x ∈ (−1, 1) (arccosx)′ = − 1√
1−x2

.

Example 11.4. Compute the derivative of the function f(x) = xx, x > 0.
Solution. For x > 0 we have (xx)′ =

(

elnxx
)′
=

(

ex lnx
)′
= ex lnx(x lnx)′ = xx ((x)′ lnx+ x(lnx)′) =

xx
(

lnx+ x 1
x

)

= xx (lnx+ 1).

11.2 Some Theorems

Theorem 11.2 (Fermat theorem). Let f : (a, b) → R, x0 ∈ (a, b) and f(x0) = max
x∈(a,b)

f(x) or

f(x0) = min
x∈(a,b)

f(x). If f has a derivative at the point x0, then f ′(x0) = 0.

Proof. We assume that f(x0) = max
x∈(a,b)

f(x). Then for each x ∈ (a, b) f(x) ≤ f(x0). Thus, by

Remark 10.2, we have

f ′(x0) = f ′
−(x0) = lim

x→x0−

f(x)− f(x0)

x− x0
≥ 0

and, similarly,

f ′(x0) = f ′
+(x0) = lim

x→x0+

f(x)− f(x0)

x− x0
≤ 0.

This implies that f ′(x0) = 0.
The case f(x0) = min

x∈(a,b)
f(x) is similar.
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Remark 11.3. In the Fermat theorem, the assumption a < x0 < b is essential. Indeed, the statement
is not valid for the function f(x) = x, x ∈ [0, 1]. In that case, x0 = 1, but f ′(x0) = 1.

Theorem 11.3 (Rolle’s theorem). Let f : [a, b] → R satisfies the following properties

1) f is continuous on [a, b];

2) for each x ∈ (a, b) the derivative f ′(x) exists;

3) f(a) = f(b).

Then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. If for every x ∈ [a, b] f(x) = f(a), then f is a constant function. Consequently, f ′(c) = 0 for
all c ∈ (a, b).

We now assume that
∃x ∈ [a, b] such that f(x) 6= f(a). (9)

According to the assumption 1) and the 2nd Weierstrass theorem (see Theorem 9.2), there exist
x∗, x

∗ ∈ [a, b] such that f(x∗) = min
x∈[a,b]

f(x) and f(x∗) = max
x∈[a,b]

f(x). Using assumptions (9) and 3),

we have that f(x∗) 6= f(a) or f(x∗) 6= f(a). We consider the case f(x∗) 6= f(a). In this case, we
have x∗ 6= a and x∗ 6= b, which implies that x∗ ∈ (a, b). Hence, the function f and the point x0 = x∗

satisfy all assumptions of the Fermat theorem (see Theorem 11.2). Consequently, f ′(x∗) = 0. We take
c := x∗.

The case f(x∗) 6= f(a) can be considered similarly.

Exercise 11.4. Let a function f ∈ C([a, b]) have the derivative f ′(x) 6= 0 for all x ∈ (a, b). Then
f(a) 6= f(b).

Theorem 11.4 (Lagrange (mean value) theorem). We assume that a function f : [a, b] → R satisfies
the following properties

1) f is continuous on [a, b];

2) f is differentiable on (a, b), that is, f has a derivative f ′(x) for all x ∈ (a, b).

Then there exists c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

Proof. We take

g(x) := f(x)− f(a)−
f(b)− f(a)

b− a
(x− a), x ∈ [a, b],

and note that g satisfies the assumptions of Rolle’s theorem (see Theorem 11.3). Moreover,

g′(x) = f ′(x)−
f(b)− f(a)

b− a
, x ∈ (a, b).

By Rolle’s theorem, there exists c ∈ (a, b) such that g′(c) = 0. It implies that f ′(c) − f(b)−f(a)
b−a

= 0.
Consequently, f(b)− f(a) = f ′(c)(b− a).

Exercise 11.5. Let a function f : (a, b) → R be differentiable on (a, b) and there exists L ∈ R such
that |f ′(x)| ≤ L for all x ∈ (a, b). Show that f is uniformly continuous on (a, b).

46



University of Leipzig – WS18/19
10-PHY-BIPMA1 – Mathematics 1 / Vitalii Konarovskyi

Theorem 11.5 (Cauchy theorem). Let functions f, g : [a, b] → R satisfy the following conditions

1) f, g are continuous on [a, b];

2) f, g are differentiable on (a, b);

3) for every x ∈ (a, b) g′(x) 6= 0.

Then there exists c ∈ (a, b) such that f(b)−f(a)
g(b)−g(a) = f ′(c)

g′(c) .

Proof. We first note that g(a) 6= g(b). Otherwise, if g(a) = g(b), then there exists c ∈ (a, b) such that
g′(c) = 0, by Rolle’s theorem. But this contradicts assumption 3).

So, we can set

h(x) := f(x)− f(a)−
f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)), x ∈ [a, b].

Then the function h satisfies the assumptions of Rolle’s theorem. Consequently, there exists c ∈ (a, b)

such that h′(c) = 0. Thus, f ′(c)− f(b)−f(a)
g(b)−g(a) g

′(c) = 0.
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